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Mixed solitons in a (2+1)-dimensional multicomponent long-wave–short-wave system
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We derive a (2+1)-dimensional multicomponent long-wave−short-wave resonance interaction (LSRI) system
as the evolution equation for propagation of N -dispersive waves in weak Kerr-type nonlinear medium in
the small-amplitude limit. The mixed- (bright-dark) type soliton solutions of a particular (2+1)-dimensional
multicomponent LSRI system, deduced from the general multicomponent higher-dimensional LSRI system, are
obtained by applying the Hirota’s bilinearization method. Particularly, we show that the solitons in the LSRI
system with two short-wave components behave like scalar solitons. We point out that for an N -component
LSRI system with N > 3, if the bright solitons appear in at least two components, interesting collision behavior
takes place, resulting in energy exchange among the bright solitons. However, the dark solitons undergo standard
elastic collision accompanied by a position shift and a phase shift. Our analysis on the mixed bound solitons
shows that the additional degree of freedom which arises due to the higher-dimensional nature of the system
results in a wide range of parameters for which the soliton collision can take place.
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I. INTRODUCTION

The nonlinear interaction of multiple waves results in
several new physical processes [1–3]. It has been shown
in the two-layer fluid model that resonance between the
long-wave component and short-wave component occurs when
the phase velocity of the former matches with the group
velocity of the latter [4]. This is a ubiquitous phenomenon
which appears in hydrodynamics [5], biophysics [6], plasma
physics [7], and in nonlinear optical systems [8]. Though there
are many studies on the long-wave−short-wave resonance
interaction (LSRI) in one dimension [7–12], results are scarce
for the multicomponent higher-dimensional LSRI system. In
the context of nonlinear optics, the interaction of bright and
small-amplitude dark pulses in optical fiber is governed by the
integrable Zakharov model [7,8].

The resonance interaction of long waves with short waves
was first investigated by Benney for capillary-gravity waves
in deep water [13]. In this case, simple interaction equations
cannot be obtained, because for deep-water waves there is no
wave in the long wavelength limit. However, simple interaction
equations can be deduced in a stable stratified fluid for
oblique propagation of long and short waves [5]. The single-
component two-dimensional LSRI equation for a two-layer
fluid model was derived in Ref. [4] by using the multiple-
scale perturbation method and bright- and dark-type one-
and two-soliton solutions have been reported. In Ref. [14],
Ohta et al. derived an integrable two-component analog of
the two-dimensional LSRI system as a governing equation
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for the interaction of the nonlinear dispersive waves by
applying the reductive perturbation method. It is worth noting
that there exist several articles [15–17] on this perturbation
approach, which is based on a consistent and mathematically
rigorous expansion of the linear dispersion relation, including
the nonlinear optical response of the medium. It leads to a
new equation for self-focusing of extremely focused short-
duration intense pulses [15] and also to a general propaga-
tion equation for the pulse envelope of an electromagnetic
field in an isotropic nonlinear dispersive medium [16] with
all orders of dispersion, diffraction, and nonlinearity. Very
recently, the nonintegrable three-component Gross-Pitaevskii
equations have been reduced to single-component Yajima-
Oikawa system by using a multiple-scale method [18]. In
another recent work [19], the one-dimensional integrable two-
component Zakharov-Yajima-Oikawa equation was derived
using a multiple-scale method and special bright-dark one-
soliton solutions have been reported.

In Ref. [20], we have obtained a general bright M-soliton
solution, for arbitrary M , of the same integrable multi-
component (2 + 1)-dimensional LSRI system [see Eq. (12)]
considered in the present paper. Moreover, the bright soliton
bound states of the same system have been analyzed in
Ref. [21]. Our earlier work [20] on bright soliton solutions
of the multicomponent LSRI system shows that the role
of long interfacial wave is to induce nonlinear interaction
among the short-wave components, resulting in nontrivial
(shape-changing) collision behavior characterized by energy
exchange among the two short-wave components. As far as
we know, for the first time in Ref. [20] we have identified
the shape-changing (energy sharing) collisions of bright
solitons in a two-dimensional integrable nonlinear system.
This system will act as a potential candidate for realiz-
ing soliton collision-based computing and multistate logic
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[22–24]. It is now of interest to derive the general two-
dimensional N -component equations describing the interac-
tion of several short-wave packets with long waves in a
physical setup and to look for other types of multicomponent
soliton solutions.

In recent years, much attention has been paid to in-
vestigate mixed (bright-dark) soliton dynamics in different
dynamical systems, including nonlinear optical systems and
Bose-Einstein condensates [1,8,14,18,19,25–27] of coupled
bright-dark solitons and to analyze their propagation properties
and collision dynamics. In the present work, we derive the
(2+1)-dimensional N -component LSRI system governing the
evolution of m short waves and n long waves (with m + n =
N ) in a nonlinear dispersive medium and reduce the system
to an integrable system for a particular choice of the system
parameters. Then, by applying the elegant Hirota’s direct
method to the integrable multicomponent LSRI system for a
particular choice, we obtain the coupled bright-dark one- and
two-soliton solutions. We will show that bright and dark parts
of the mixed solitons in the two-short-wave-components case
behave like scalar solitons, whereas if we go for three or more
short-wave components the multicomponent nature of the
solitons will come into picture and one can observe interesting
propagation and collision properties. It is a straightforward,
albeit lengthy, procedure to extend the analysis to construct
M-soliton solution, with arbitrary M .

The present paper is organized as below. The general N -
component LSRI system is derived by applying the multiple-
scale perturbation method in the next section. In Sec. III,
bilinear equations for the integrable (2+1)-dimensional mul-
ticomponent LSRI system are given. Sections IV and V
deal with the mixed one- and two-soliton solutions of the
multicomponent LSRI system. The collision dynamics of the
solitons are discussed in Sec. VI. Discussion on the mixed
soliton bound states is presented in Sec. VII. The final section
is allotted for conclusion.

II. THE MODEL

To begin, we obtain the general two-dimensional mul-
ticomponent evolution equation for the propagation of N -
dispersive waves in a Kerr-type nonlinear medium (ex.: optical
fiber, photorefractive medium) by generalizing the approach
developed in Refs. [8,14] for the two- and three-components
cases. The waves are assumed to obey the following weakly
nonlinear dispersion relations:

ωj = ωj (Kj ;Lj : |A1|2,|A2|2, . . . ,|AN |2),

j = 1,2,3, . . . ,N, (1)

where Kj and Lj are the x and y components of the wave
vector and Aj (≡Aj (x,y,t)) and ωj are the complex amplitude
and angular frequency of the j -th wave. Especially, in the
physical setting of propagation of an incoherent self-trapped
beam in a slow Kerr-like medium, the nonlinearity arising
from the change in refractive index profile (say, δn) created by
all incoherent components of the light beam can be expressed
as δn = ∑M

m=1 αm|Am|2, where |Am|2 is the intensity of the
m-th incoherent component, αm is the nonlinearity coefficient
of the m-th component, and M denotes the total number of

components. This shows that we can very well have nonlin-
earities which are purely dependent only on intensities even
for multicomponent systems. Such media will be appropriate
to realize the type of dispersion relation considered in this
paper. This type of system is known as an incoherently coupled
system in the context of nonlinear optics [1]. The funda-
mental carrier wave is of the form ei(K0x+L0y−ω0t). The most
convenient way to derive the evolution equation for the
amplitudes Aj ’s is to Taylor expand the angular frequencies
ωj ’s around the x and y components of the wave vector of the
carrier waveK0 andL0, respectively, and the central frequency
ω0 at |Aj | = 0, as follows:

(ωj − ω0) = (ωj,Kj
)0�Kj + (ωj,Lj

)0�Lj

+ 1

2
(ωj,KjKj

)0�K2
j + 1

2
(ωj,LjLj

)0�L2
j

+ (ωj,KjLj
)0(�Kj )(�Lj )

+
N∑

m=1

(ωj,|Am|2 )0|Am|2 + . . . ,

j = 1,2, . . . ,N, (2)

where �Kj = Kj − K0, �Lj = Lj − L0, and
j = 1,2, . . . ,N . In this Taylor expansion and in the following,
the subscript “0” given in Eq. (2) as ( )0 represents the fact
that the quantity appearing inside the bracket is evaluated
at Kj = K0, Lj = L0, ωj = ω0 and |Aj | = 0. In Eq. (2),

ωj,Kj
= ∂ωj

∂Kj
, ωj,Lj

= ∂ωj

∂Lj
, ωj,KjKj

= ∂2ωj

∂K2
j

, ωj,LjLj
= ∂2ωj

∂L2
j

,

ωj,KjLj
= ∂2ωj

∂Kj ∂Lj
and ωj,|Am|2 = ∂ωj

∂|Am|2 . Then, by replacing

(ωj − ω0), �Kj , and �Lj by the operators −i ∂
∂t

, i ∂
∂x

,
and i ∂

∂y
, respectively, and transforming to the moving

coordinates x ′ = x − ω1t , y ′ = y − ω2t , and t ′ = t , with the
assumption that beyond a particular component (say, q th) all
the derivatives ( ∂ωj

∂Kj
)0, j = q + 1,q + 2, . . . ,N , are the same

as are the derivatives ( ∂ωj

∂Lj
)0, i.e., (ωq+1,Kq+1 )0(≡ ∂ωq+1

∂Kq+1
) =

(ωq+2,Kq+2 )0 = · · · = (ωN,KN
)0 ≡ ω1 and (ωq+1,Lq+1 )0 =

(ωq+2,Lq+2 )0 = · · · = (ωN,LN
)0 ≡ ω2, and omitting the primes

for simplicity of notation, we get

iAj,t + ivjxAj,x + ivjyAj,y + C
(j )
1 Aj,xx + C

(j )
2 Aj,yy

+C
(j )
3 Aj,xy +

N∑
l=1

B
(j )
l |Al|2Aj = 0, (3a)

iAp,t + C4Ap,xx + C5Ap,yy + C6Ap,xy

+
N∑

l=1

B
(p)
l |Al|2Ap = 0,

j = 1,2, . . . ,q, p = q + 1,q + 2, . . . ,N. (3b)

Here the independent variables appearing in the suf-
fixes after the comma denote partial derivatives with
respect to those variables and the group velocities of
the j th component along the x and y directions are
vjx = ((ωj,Kj

)0 − ω1) and vjy = ((ωj,Lj
)0 − ω2), respec-

tively. Various quantities in Eqs. (3) are defined as
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C
(j )
1 = (−ωj,Kj Kj

2 )0, C
(j )
2 = (−ωj,Lj Lj

2 )0, C
(j )
3 = (−ωj,KjLj

)0,

C4 = (
−ω1,KN

2 )0, C5 = (
−ω2,LN

2 )0, C6 = (−ω1,LN
)0, and B

(i)
j =

( ∂ωi

∂|Aj |2 )0 ≡ (ωi,|Aj |2 )0, i,j = 1,2,3, . . . ,N .
We consider the case where the first q components are in

the anomalous dispersion region and the remaining (N − q)
components are in the normal dispersion regime. Following
Ref. [8], the solutions of (3) are sought in the form

Aj = ψj (x,y,t)eiδj t , j = 1,2, . . . ,q, (4a)

Ap = (u0 + ap(x,y,t))ei[�pt+ϑp(x,t)],

p = q + 1,q + 2, . . . ,N, (4b)

where δj = ∑N
l=q+1 B

(j )
l u2

0, �p = ∑N
l=q+1 B

(p)
l u2

0, and ap’s
are assumed to take only small values.

Substituting Eqs. (4) into (3a) and neglecting the higher-
order terms involving (ap,ϑp) and their derivatives results in
the equation

i(ψj,t + vjxψj,x + vjyψj,y) + C
(j )
1 ψj,xx

+ C
(j )
2 ψj,yy + C

(j )
3 ψj,xy +

(
q∑

l=1

B
(j )
l |ψl|2

)
ψj

+
⎛
⎝ N∑

p=q+1

B(j )
p (2u0ap)

⎞
⎠ ψj = 0, j =1,2, . . . ,q.

(5)

In a similar manner, by incorporating (4) into (3b) and
collecting the real and imaginary parts, we arrive at a set
of two coupled equations. The resulting coupled equations
can be grouped together to obtain the following equation by
differentiating the imaginary part equation twice with respect
to “t” and making use of the real part equation,

ap,tt + C2
4ap,xxxx + C4C5ap,xxyy + C4C6ap,xxxy

+ C4u0

⎛
⎝ q∑

j=1

B
(p)
j |ψj |2xx

⎞
⎠ + 2C4u

2
0

N∑
l=q+1

B
(p)
l al,xx = 0,

p = q + 1,q + 2, . . . ,N. (6)

Equations (5) and (6) are general equations describing the
two-dimensional propagation of q waves in the anomalous
dispersion region and (N − q) waves in the normal dispersion
region. For the N = 3 case with q = 2 the system has
two short-wave components and one long-wave component
and coincides with the corresponding equations presented in
Ref. [14]. One can notice from the general form of Eqs. (5)
and (6) that for the same N (=3) but with a different q value
(say, q = 1), there is another possibility which will have one
short-wave component and two long-wave components, and,
ultimately, the dynamics will differ from that of the q = 2
case. Also, this systematic generalization to the N -component
case is necessary to identify the way by which the additional
wave components (modes) in the normal dispersion regime
alter the governing equation for the three-components case
given in Ref. [14].

To deduce an integrable equation associated with the
combined systems (5) and (6) we choose all the B

(p)
l ’s,

l,p = q + 1, . . . ,N, in Eq. (6) to be equal to a constant value
(say, −γ1, γ1 > 0). Then we get

ap,tt + C2
4ap,xxxx + C4C5ap,xxyy + C4C6ap,xxxy

+ C4u0

⎛
⎝ q∑

j=1

B
(p)
j |ψj |2xx

⎞
⎠ − 2C4γ1u

2
0

N∑
l=q+1

al,xx = 0,

p = q + 1,q + 2, . . . ,N. (7)

In the following, we investigate the cumulative effect of
the small-amplitude ap’s on the short-wave components by
considering the superposition of these amplitudes involving
only the sum of all the amplitudes and neglect all other
combinations as they will be small due to the smallness
of ap’s. Particularly, we add all the a equations and define∑N

l=q+1 al = L. By doing so we get

Ltt + C2
4Lxxxx + C4C5Lxxyy + C4C6Lxxxy

+ C4u0

⎛
⎝ N∑

p=q+1

q∑
j=1

B
(p)
j |ψj |2xx

⎞
⎠

− 2C4[N − q]u2
0γ1Lxx = 0. (8)

The dispersion relation for the linear excitation corresponding
to the long-wave components is found as

�2 = c2k2

[
1 + C2

4

c2
k2 + C4C5

c2
l2 + C4C6

c2
kl

]
, (9)

where c2 = 2C4u
2
0(N − q)γ1. Note that the velocity of the

linear excitation depends on the number of components N

and increases as we increase the number of components
(modes) in the normal dispersion regime. Thus our systematic
generalization of the N -component case shows that by altering
the number of components in the normal dispersion region one
can change the velocity of the pulse.

Next we apply the multiple-scale approximation method to
derive the two-dimensional multicomponent LSRI system as
in Ref. [14]. We rescale the variables t , x, y, ap, and ψj as

t ′′ = εt, x ′′ = √
ε(x + ct), y ′′ = εy,

ap = εâp, ψj = ε3/4S(j ), (10)

where c is as defined above after the dispersion relation (9).
Then the following set of equations results from Eq. (8) at the
order ε5/2,

2cLxt + C4u0

⎛
⎝ N∑

p=q+1

q∑
j=1

B
(p)
j |S(j )|2xx

⎞
⎠ = 0,

p = q + 1,q + 2, . . . ,N. (11a)

At the order of ε5/4, we notice from Eq. (5) that all the
group velocities of the short-wave components along the x

direction are the same and their magnitudes are equal to
the phase velocity of the long-wave component “c” (i.e.,
vjx = −c,j = 1,2, . . . ,q). This is the condition for resonant
interaction between long waves and short waves. Equation (5)
reduces to the following set of coupled equations at the order
of ε7/4 after replacing vjx by c and rescaling of the variables
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as defined in Eq. (10),

i
(
S

(j )
t + vjyS

(j )
y

) + C
(j )
1 S(j )

xx +
⎛
⎝2u0

N∑
p=q+1

B(j )
p âp

⎞
⎠S(j ) = 0,

j = 1,2, . . . ,q. (11b)

In Eq. (11), after applying the transformations (10), the
double primes in the new variables “t ,” “x,” and “y” are
dropped for convenience.

Equation (11) is the multicomponent LSRI system in (2 +
1)dimensions which is nonintegrable in general. By suitably
choosing the constants B

(p)
j ’s, B(j )

p ’s, C4, C
(j )
1 , j = 1,2, . . . ,q,

p = q + 1, . . . ,N , and γ1, along with the assumption that
there is no group velocity delay between the short-wave
components, we arrive at the following (q + 1)-component
(2+1)-dimensional LSRI system for the two-dimensional
propagation of N dispersive waves in weak Kerr-like nonlinear
media:

i
(
S

(j )
t + S(j )

y

) − S(j )
xx + LS(j ) = 0, j = 1,2, . . . ,q, (12a)

Lt = 2
q∑

j=1

|S(j )|2x. (12b)

In Eq. (12), the subscripts denote partial derivatives with
respect to those independent variables. As mentioned in
the Introduction, we have obtained a more general bright
M-soliton solution, with arbitrary M , of Eq. (12) [20]. In
Ref. [20], we have expressed the bright M-soliton solution
of (12) in Gram-determinant form and explicitly proved that
the general multisoliton solution indeed satisfies the bilinear
equations. We have also pointed out in the same work that,
for the two-short-wave-components case (q = 2), the bright
soliton solutions reported by Ohta et al. in Ref. [14] follow as
special cases of our general multisoliton solutions [20]. As the
(q + 1)-component LSRI system (12) admits the M-soliton
solution, for arbitrary M [20], the system can be integrable
[28,29]. A study on the other integrability aspects of Eq. (12)
is underway and will be published elsewhere.

III. HIROTA’S BILINEARIZATION METHOD FOR
THE (2 + 1)-DIMENSIONAL MULTICOMPONENT

LSRI SYSTEM

There are several efficient analytical tools to construct
various types of localized structures for nonlinear evolution
equations, which include the inverse scattering transform
method, the Hirota’s direct method, the Lie symmetry analysis,
the tanh method and so on. By performing the bilinearizing
transformations using Hirota’s direct method [28,30], we
construct soliton solutions of Eq. (12) in this paper. In
Refs. [31,32], an extension of Hirota’s bilinear formalism
(i.e., multilinear operator) that can encompass any degree of
multilinearity has been presented. Using this generalization
of Hirota’s method, propagation of a monochromatic laser
beam coupled to its second and third harmonics in a nonlinear
medium has been studied by V. Cao Long et al. [33,34].
Recently, a bilinearization procedure with a set of generalized
bilinear differential operators that differ from the standard
Hirota’s operators, having nice mathematical properties, has

been proposed [35]. Apart from this, in Ref. [36], it has been
pointed out that by employing the Lie symmetry approach
to the one-dimensional scalar nonlinear Schrödinger equation
and by performing a direct search various exact new interesting
solutions can be obtained. The Lie algebraic structure of
system (12), specifically for q = 1 has been discussed in
Ref. [37]. Indeed, it will be an interesting future study to
compute the Lie symmetries of the multicomponent system
(12) for q > 2. In this connection, we may also mention that in
the past Lie symmetries of certain (2+1)-dimensional systems
have been constructed by, first, finding the symmetries of a
given (2+1)-dimensional system and then reducing it to a
(1+1)-dimensional system, which on identifying its own Lie
symmetries can be reduced to ordinary differential equations.
In certain cases, the (2+1)-dimensional evolution equations
also lead to the identification of infinite-dimensional Kac-
Moody-Virasoro algebras [38]. Apart from the above one can
also construct the various interaction solutions of the present
system using the Wronskian technique as done in Ref. [39] for
the Korteweg-de Vries equation. The multicomponent system
(12) will admit a richer solution structure that may comprise
bright solitons, bright-dark solitons, dark solitons, dromions,
rational solutions, periodic solutions, elliptic function solu-
tions, and so on.

The present work specifically deals with the study of
interesting bright-dark (mixed) solitons of Eq. (12), compris-
ing m bright parts and n dark parts, such that m + n = q.
These solitons are usually referred to as “symbiotic” solitons
as the bright part cannot be supported in a stand-alone
fashion and exists only due to the presence of its dark
counterpart. These bright-dark solitons are of much theoretical
and experimental interest and significant attention has been
paid to investigate these intriguing vector solitons, as pointed
out in the Introduction. In the following, we will employ the
Hirota’s direct method to construct such coupled bright-dark
(mixed) soliton solutions for the system (12) which can find
application in various frontier areas like nonlinear optics, water
waves, and Bose-Einstein condensates.

To construct the mixed-type soliton solutions, we perform
the bilinearizing transformations, S(j ) = g(j )

f
, S(m+l) = h(l)

f
,

L = −2 ∂2

∂x2 (ln f ), j = 1,2, . . . ,m, and l = 1,2, . . . ,n, (m +
n = q), where g(j )’s and h(l)’s are arbitrary complex functions
of x, y, and t while f is a real function. The resulting bilinear
equations are

D1(g(j ) · f ) = 0, j = 1,2, . . . ,m, (13a)

D1(h(l) · f ) = 0, l = 1,2, . . . ,n, (13b)

D2(f · f ) = −2

⎛
⎝ m∑

j=1

g(j )g(j )∗ +
n∑

l=1

h(l)h(l)∗

⎞
⎠ , (13c)

where D1 = i(Dt + Dy) − D2
x and D2 = (DtDx − 2λ), D’s

are the standard Hirota’s bilinear operators [28], ∗ stands
for complex conjugation, and λ is a constant yet to be
determined. One can have bright solitons for the choice
λ = 0 in D2 [14,20] and the bright soliton collision dynamics
of system (12) has been discussed in Ref. [20]. However,
for nonvanishing “λ” values, the system can admit coupled
bright-dark- and dark-dark-type soliton solutions. In this paper,
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we focus only on mixed (bright-dark) solitons corresponding

to mixed-type boundary conditions, that is, S(j ),L
x,y,t→±∞−→ 0,

S(m+l) x,y,t→±∞−→ const, j = 1,2, . . . ,m,l = 1,2, . . . ,n.
This procedure can be very well applied to construct the

dark-dark soliton solutions also. Here, for convenience, we
consider the first “m” short-wave components to be composed
of bright parts of the mixed solitons and the remaining
n(≡ q − m) components to exhibit dark parts of the mixed
solitons. To construct the mixed soliton solutions we expand
the variables g(j )’s, h(l)’s, and f as power-series expansions
in a standard way [27,28]. After solving the resultant set
of equations recursively we can obtain the explicit forms of
g(j )’s, h(l)’s, and f and hence the multisoliton solutions can be
constructed.

IV. MULTICOMPONENT MIXED-TYPE
ONE-SOLITON SOLUTION

The mixed one-soliton solution of (12) with m-bright
and n-dark parts can be obtained by restricting the power-
series expansions as g(j ) = χg

(j )
1 , h(l) = h

(l)
0 (1 + χ2h

(l)
2 ), f =

1 + χ2f2 and by solving the resulting equations after their
substitution into the bilinear equations (13) at various powers
of χ recursively. The mixed one-soliton solution can be
expressed in the following standard form:

S(j ) = Ajk1Rsech

(
η1R + R

2

)
eiη1I , j = 1,2, . . . ,m,

(14a)

S(m+l) = ρl ei(ζl+φl+π)

[
cos(φl) tanh

(
η1R + R

2

)

+ isin(φl)

]
, l = 1,2, . . . ,n, (14b)

L = −2k2
1Rsech2

(
η1R + R

2

)
. (14c)

The various quantities appearing in the above equations are
as follows:

eR = 1

4

⎛
⎝ m∑

j=1

∣∣α(j )
1

∣∣2

⎞
⎠

(
n∑

l=1

|ρl|2cos2(φl) − ω1Rk1R

)−1

,

Aj = α
(j )
1 e− R

2

(k1 + k∗
1 )

, (14d)

φl = tan−1

(
k1I − ml

k1R

)
,

η1R = k1R

[
x +

(
2k1I − ω1R

k1R

)
y +

(
ω1R

k1R

)
t

]
, (14e)

η1I = k1I x − (
k2

1R − k2
1I + ω1I

)
y + ω1I t,

ζl = (
m2

l − bl

)
t + bly + mlx. (14f)

In Eqs. (14) and in the following the suffixes R and I

of a particular quantity denote the real and imaginary parts
of that quantity, respectively. Also α

(j )
1 ’s, j = 1,2, . . . ,m,

ρl , ω1(= ω1R + iω1I ), and k1 = k1R + ik1I are complex pa-
rameters, while ml and bl , l = 1,2, . . . ,n, are real param-

eters. The above solution is nonsingular for the condition∑n
l=1 |ρl|2cos2(φl) > ω1Rk1R . The amplitude (peak value) of

the j th bright part of the mixed soliton is Ajk1R and that of
(m + l)-th dark part of the mixed soliton is ρl . The speed
of the soliton is ω1R/k1R . It can be noticed that both parts
of the soliton have the same central position R/2k1R , but
their phases differ. In fact, the phase of the dark component
has two contributions, one from the background carrier wave
and the other from φl . The quantity φl indeed determines the
darkness of the dark soliton. It is interesting to notice that
the bright and dark parts of the mixed soliton of the LSRI
system with more than two short-wave components display
several interesting features in contrast to the case of just two
short-wave components, as will be shown. To elucidate the
understanding of such behavior we present the explicit forms
of one-soliton solutions for the two- and three-short-wave
components and analyze them in the following subsections.
For brevity, in the following we refer to the mixed M-soliton
solution with m-bright parts and n-dark parts as the (mb-nd)
mixed M-soliton solution.

A. Two-short-wave-components (m = 1, n = 1) case

This case admits only a simple type of bright-dark pair
in which the bright part of a mixed soliton appears in the
first component and the dark part of the mixed soliton in the
remaining component or vice versa. The one-soliton solution
for this case can be expressed as

S(1) = (
√

|ρ1|2cos2(φ1) − ω1Rk1R)sech

(
η1R+ R

2

)
ei(η1I +θ),

(15a)

S(2) = ρ1 ei(ζ1+φ1+π)

[
cos(φ1) tanh

(
η1R + R

2

)
+ isin(φ1)

]
,

(15b)

L = −2k2
1Rsech2

(
η1R + R

2

)
, (15c)

where R
2 = ln[ |α(1)

1 |
2
√

|ρ1|2cos2(φ1)−ω1Rk1R

], φ1 = tan−1( k1I −m1
k1R

), θ =
tan−1( α

(1)
1I

α
(1)
1R

), ζ1 = (m2
1 − b1)t + b1y + m1x, and η1R and η1I are

given in Eqs. (14e) and (14f).
The amplitude of the bright part

(
√

|ρ1|2cos2(φ1) − ω1Rk1R) is independent of the parameter
α

(1)
1 , but it is influenced significantly by the background

carrier wave (ρ1). Such a mixed soliton at t = −3
and y = −1 is depicted in Fig. 1 for the parametric
choice k1 = −3 + i, ω1 = 1 + 0.7i, m1 = 1.4, ρ = 1 − i,
b1 = −0.2, α

(1)
1 = 1 + i.

B. Three-short-wave-components (q = 3) case

Next we consider Eq. (12) with q = 3. For this case the
mixed soliton can be split into bright and dark parts among
the three short-wave components in two different ways. One
corresponds to the (2b-1d) mixed-soliton case where bright
parts are in the S(1) and S(2) components while the dark part
of the mixed soliton appears in the S(3) component. The other
possibility is a (1b-2d) mixed-soliton case in which the bright
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FIG. 1. (Color online) Mixed one-soliton solution in the two-component LSRI system. |S(1)|2 solid curve; |S(2)|2 dashed curve.

part of the mixed soliton appears in the S(1) component while
the dark parts are split among the remaining components S(2)

and S(3).

1. (2b-1d) mixed one-soliton solution

The one-soliton solution for this case where the bright
parts appear in the S(1) and S(2) components while the third
component S(3) comprises the dark part of the mixed soliton
can be written from (14) as

S(j ) = Ajk1Rsech

(
η1R + R

2

)
eiη1I , j = 1,2, (16a)

S(3) = ρ1 ei(ζ1+φ1+π)

[
cos(φ1) tanh

(
η1R + R

2

)
+ isin(φ1)

]
,

(16b)

where Aj = ( α
(j )
1

2k1R
)e− R

2 , j = 1,2, ζ1 = (m2
1 − b1)t + b1y +

m1x, R = ln [
|α(1)

1 |2+|α(2)
1 |2

4(|ρ1 |2cos2(φ1)−ω1Rk1R )
], φ1 = tan−1( k1I −m1

k1R
), and η1R

and η1I are as defined in Eq. (14). L takes the same form
as in Eq. (15c) with the above redefinition of R. Here
one can observe that the α

(j )
1 parameters appear explicitly

in the amplitude of the bright soliton. The (2b-1d) one-
soliton solution is characterized by 12 real parameters α

(1)
1R ,

α
(1)
1I , α

(2)
1R , α

(2)
1I , k1R,k1I , ω1R,ω1I , ρ1R,ρ1I , m1, and b1 and

is restricted by the condition |ρ1|2cos2(φ1) > ω1Rk1R for
nonsingular solutions. Such a (2b-1d) bright one-soliton is
shown in Fig. 2(a) at t = −3 and y = −1 for the parameters
k1 = 2 − 2i, ω1 = −1 − i, m1 = 3, ρ1 = 1 − i, b1 = −0.2,
α

(1)
1 = 1.8 + i, and α

(2)
1 = 1. One can also tune the intensity

of bright parts without altering the depth of the dark part of the
mixed soliton by suitably choosing the α

(1)
1 parameter as can be

evidenced from Fig. 2(b), which is drawn for same parameter
value as that of Fig. 2(a) except for α

(1)
1 = 1 + i. The soliton

appearing in the long-wave component looks similar in both
the cases and so we do not present it here.

2. (1b-2d) mixed one-soliton solution

This case corresponds to the appearance of the bright part
of the mixed soliton in the S(1) component while its dark part
appears in the S(2) and S(3) components. The corresponding
mixed one-soliton solution is

S(1) =
√

|ρ1|2cos2(φ1) + |ρ2|2cos2(φ2) − ω1Rk1R

× sech

(
η1R + R

2

)
ei(η1I +θ1), (17a)

S(1+l) = ρl ei(ζl+φl+π)

[
cos(φl) tanh

(
η1R + R

2

)
+ isin(φl)

]
,

l = 1,2, (17b)

L = −2k2
1Rsech2

(
η1R + R

2

)
, (17c)

where R = ln( |α(1)
1 |2

(k1+k∗
1 )2 ) − ln(|ρ1|2cos2(φ1) + |ρ2|2cos2(φ2)

− ω1Rk1R), ζl = (m2
l − bl)t + bly + mlx, φl = tan−1( k1I −ml

k1R
),

l = 1,2, θ1 = tan−1( α1I

α1R
), and η1R and η1I are as in

Eq. (14). This solution is characterized by five complex
parameters α

(1)
1 , k1, ρ1, ρ2, and ω1 and four real

parameters bl and ml , l = 1,2, along with the condition
|ρ1|2cos2(φ1) + |ρ2|2cos2(φ2) > ω1Rk1R . It can be observed
from the above solution that, in contrast to the (2b-1d) case,
here the amplitudes of the bright and dark parts cannot be
controlled by the α parameters. For illustrative purpose,

(a)
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(b)
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0.0
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2.0

x
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FIG. 2. (Color online) Altering the intensity of bright soliton without affecting the dark soliton of (2b-1d) mixed one-soliton in the
three-component LSRI system by tuning the α

(j )
1 parameter. |S(1)|2, solid curve; |S(2)|2, dashed curve; |S(3)|2, dot-dashed curve.
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FIG. 3. (Color online) (1b-2d) mixed one-soliton solution in the three-component LSRI system.

in Fig. 3 we have shown the (1b-2d) mixed one-soliton
solution for the parameters k1 = 1 − i, ω1 = −1 − i, m1 = 2,

m2 = −2, ρ1 = 1 − i, ρ2 = 1 + i, b1 = −0.2, b2 = 0.2, and
α

(1)
1 = 0.2 − 0.01i at t = −3 and y = −1.

V. MULTICOMPONENT MIXED-TYPE TWO-SOLITON SOLUTIONS

It is a straightforward but lengthy procedure to construct the two-soliton solution. We obtain the mixed two-soliton solution
of system (12) by restricting the power-series expansion for g(j )’s, h(l)’s, and f as g(j ) = χg

(j )
1 + χ3g

(j )
3 , h(l) = h

(l)
0 (1 + χ2h

(l)
2 +

χ4h
(l)
4 ), f = 1 + χ2f2 + χ4f4, j = 1,2, . . . ,m,l = 1,2, . . . ,n, and following the standard procedure [27]. The explicit form of

a (mb-nd) mixed two-soliton solution is given as follows:

S(j ) = 1

D

(
α

(j )
1 eη1 + α

(j )
2 eη2 + eη1+η∗

1+η2+δ1j + eη2+η∗
2+η1+δ2j

)
, j = 1,2, . . . ,m, (18a)

S(l+m) = 1

D

[
ρl eiζl

(
1 + eη1+η∗

1+Q
(l)
11 + eη1+η∗

2+Q
(l)
12 + eη2+η∗

1+Q
(l)
21 + eη2+η∗

2+Q
(l)
22 + eη1+η∗

1+η2+η∗
2+Q

(l)
3
)]

, l = 1,2, . . . ,n, (18b)

L = −2
∂2

∂x2
( ln(D)), (18c)

where

D = 1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη2+η∗
1+δ∗

0 + eη2+η∗
2+R2 + eη1+η∗

1+η2+η∗
2+R3 , (18d)

ηj = kjx − (
ik2

j + ωj

)
y + ωj t, j = 1,2, (18e)

eδ1j = (k1 − k2)
(
α

(j )
1 κ21 − α

(j )
2 κ11

)
(k1 + k∗

1 )(k2 + k∗
1 )

, eδ2j = (k2 − k1)
(
α

(j )
2 κ12 − α

(j )
1 κ22

)
(k2 + k∗

2 )(k1 + k∗
2 )

, (18f)

eQ
(l)
ij = − (ki − ibl)

(k∗
j + ibl)

μij , i,j = 1,2, eQ
(l)
3 =

[
(k1 − ibl)(k2 − ibl)

(k∗
1 + ibl)(k∗

2 + ibl)

]
eR3 , (18g)

eR1 = μ11, eR2 = μ22, eδ0 = μ12, eδ∗
0 = μ21, eR3 = |k1 − k2|2(κ11κ22 − κ12κ21)

(k1 + k∗
1 )|k1 + k∗

2 |2(k2 + k∗
2 )

, (18h)

κip =
m∑

j=1

(
α

(j )
i α(j )∗

p

) (
n∑

l=1

|ρl|2(ki + k∗
p)

(ki − iml)(k∗
p + iml)

− (ωi + ω∗
p)

)−1

, μip = κip

(ki + k∗
p)

, (18i)

ζl = (
m2

l − bl

)
t + bly + mlx, i,p = 1,2; j = 1,2, . . . ,m; l = 1,2, . . . ,n. (18j)

We discuss below the two- and three-short-wave-components cases to bring out certain interesting features of the
multicomponent LSRI system with q > 2.

A. Two-short-wave-components case (m = 1,n = 1)

For this case, the mixed two-soliton solution with its bright part appearing in the S(1) component and the dark part appearing
in the S(2) component can be obtained by putting m = 1 and n = 1 in Eq. (18). The resulting (1b-1d) mixed two-soliton solution
is characterized by seven complex parameters (α(1)

1 ,α
(1)
2 ,k1,k2,ω1,ω2 and ρ1) and two real parameters (b1 and m1). This mixed

two-soliton solution is restricted by the conditions

|ρ1|2(ki + k∗
p) > (ωi + ω∗

p)(ki − im1)(k∗
p + im1), i,p = 1,2, (19)

as in the case of the one-soliton solution.
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B. Three-short-wave-components case (m = 2,n = 1)

1. (2b-1d) mixed two-soliton solution

First, we write the mixed two-soliton solution with its bright
parts in the first two short-wave components S(1) and S(2)

while the dark part appears in the third component S(3). For
brevity, we mention the straightforward procedure to write the
soliton solution from Eq. (18) instead of presenting the explicit
cumbersome expressions. The explicit forms of bright part of
the mixed solitons appearing in S(1) and S(2) can be obtained
by putting j = 1 and j = 2, respectively, into Eq. (18a). The
dark part of the mixed soliton solution in the S(3) component
results from Eq. (18b) for l = 1. In a similar manner, the
various quantities appearing in the (2b-1d) mixed two-soliton
solution can also be obtained by choosing m = 2 and n = 1
in the expressions for μip and κip. The two-soliton solution
in this case is characterized by 20 real parameters with the
conditions

|ρ1|2(ki + k∗
p) > (ωi + ω∗

p)(ki − im1)(k∗
p + im1),

i,p = 1,2. (20)

2. (1b-2d) mixed two-soliton solution

Another possible split for the three-short-wave-components
case is to have the bright part of the mixed two-soliton solution
in one component (say, S(1)) and the other two components
(S(2) and S(3)) comprise dark parts. The obtained (1b-2d) mixed
two-soliton solution can be deduced from Eq. (18) by putting
m = 1 and n = 2. This mixed-type two-soliton solution is
characterized by 16 real parameters and is restricted by the
conditions

2∑
l=1

|ρl|2(ki + k∗
l )

(ki − iml)(k∗
l + iml)

> (ωi + ω∗
p), i,p = 1,2, (21)

for obtaining nonsingular solutions.
We wish to remark that our above analysis can be extended

in a straightforward way to construct three- as well as
multisoliton solutions. We have indeed obtained the mixed
three-soliton solution, but we desist from presenting the
solution here due to its cumbersome expression. Also, from
the three-soliton solution we identify that the soliton collision
is pair-wise and there is no multiparticle effect. Hence a
detailed analysis of two-soliton collision is necessary as the
higher-order soliton interactions can be analyzed in terms of
two-soliton collision.

VI. SOLITON INTERACTION

The multicomponent mixed-type two-soliton solution pre-
sented in the preceding section contains all the information
regarding the dynamics of two solitons in the (2 + 1)-
dimensional multicomponent LSRI system. To elucidate the
understanding of the collision of mixed solitons, we present the
detailed asymptotic analysis of the two- and three-components
cases separately in this section. In particular, we study the
interaction of solitons in the x-y plane. A similar approach
can also be very well applied to study the collision dynamics
in the x-t plane.

We choose the soliton parameters as k1R > 0,k2R >

0,k1I > k2I ,
k2R

k1R
> |ω2R

ω1R
|, k2Rk2I

k1Rk1I
> |ω2R

ω1R
|, without loss of gen-

erality. For this choice, we find that for a fixed “t” if the
soliton, say, s1, is localized along the straight line η1R =
k1Rx + (2k1Rk1I − ω1R)y + ω1Rt � 0, then η2R will tend to
±∞ as (x,y) → ±∞. Similarly, if the soliton, say, s2, is
localized along the straight line η2R = k2Rx + (2k2Rk2I −
ω2R)y + ω2Rt � 0, then η1R → ±∞.

A. Two-short-wave-components case

A careful analysis of the asymptotic forms of the mixed
two-soliton solution for the two-short-wave-components case
shows that the intensities of the bright and dark parts of
the solitons before and after collision remain unaltered. There
occurs only a position shift in the bright and dark parts of the
two colliding solitons. The asymptotic forms of the solitons in
these regions are given below.

(i) Before collision (x,y → −∞)
Soliton s1

S
(1)−
1 � A1−

1 sech

(
η1R + R1

2

)
eiη1I , (22a)

S
(2)−
1 � ρ1e

i(ζ1+φ
(1)
1 +π)

[
cos

(
φ

(1)
1

)
tanh

(
η1R + R1

2

)

+ isin
(
φ

(1)
1

)]
, (22b)

L � −2k1Rsech2

(
η1R + R1

2

)
. (22c)

Soliton s2

S
(1)−
2 � A2−

1 sech

(
η2R + R3 − R1

2

)
eiη2I , (22d)

S
(2)−
2 � ρ1e

i(ζ1+φ
(2)
1 +2φ

(1)
1 )

[
cos(φ(2)

1 )tanh

(
η2R + R3 − R1

2

)

+ isin
(
φ

(2)
1

)]
, (22e)

L � −2k2Rsech2

(
η2R + R3 − R1

2

)
. (22f)

(ii) After collision (x,y → +∞)
Soliton s1

S
(1)+
1 � A1+

1 sech

(
η1R + R3 − R2

2

)
eiη1I , (22g)

S
(2)+
1 � ρ1e

i(ζ1+φ
(1)
1 +2φ

(2)
1 )

[
cos

(
φ

(1)
1

)
tanh

(
η1R + R3 − R2

2

)

+ isin
(
φ

(1)
1

)]
, (22h)

L � −2k1Rsech2

(
η1R + R3 − R2

2

)
. (22i)

Soliton s2

S
(1)+
2 � A2+

1 sech

(
η2R + R2

2

)
eiη2I , (22j)
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FIG. 4. (Color online) Elastic collision of (1b-1d) mixed solitons in the two-component LSRI system.

S
(2)+
2 � ρ1e

i(ζ1+φ
(2)
1 +π)

[
cos

(
φ

(2)
1

)
tanh

(
η2R + R2

2

)

+ isin
(
φ

(2)
1

)]
, (22k)

L � −2k2Rsech2

(
η2R + R2

2

)
, (22l)

where ηj ,α
(1)
j ,j = 1,2, R1, R2, R3, δ11, and δ21 are defined in

Eq. (18), φ
(l)
1 = tan−1( klI −m1

klR
), l = 1,2.

The amplitudes of the bright parts of the solitons s1 and
s2 before interaction (A1−

1 ,A2−
1 ) and their amplitudes after

interaction (A1+
1 ,A2+

1 ) are given by A1−
1 = α

(1)
1 e

− R1
2

2 , A2−
1 =

e
δ11− R1+R3

2

2 , A1+
1 = e

δ21− R2+R3
2

2 , and A2+
1 = α

(1)
2 e

− R2
2

2 . Here and in
the following, the superscript (subscript) of A’s denotes the
soliton (component) number and − (+) represents the soliton
before (after) collision. On substitution of the corresponding
expressions for R’s and δ’s we find that the intensities of the
bright parts of the solitons s1 and s2 are same before and after
collision. Similarly, we find that the amplitudes of the dark
part of the mixed solitons that appear in the S(2) component
before and after interaction are same and are equal to ρ1.
The two colliding solitons s1 and s2 that appear in the bright
component (S(1)) also experience a position shift of opposite
sense whose magnitude is given by

|�| =
∣∣∣∣R3 − R2 − R1

2

∣∣∣∣ ≡
∣∣∣∣ln

(
NN∗

D1D
∗
1

)∣∣∣∣ , (23a)

where

N = (k1 − k2)[(k1 − k2)ρρ∗

+(ω1 − ω2)(k1 − im1)(k2 − im1)], (23b)

D1 = (k1 + k∗
2 )[(k1 + k∗

2 )ρρ∗

− (ω1 + ω∗
2)(k1 − im1)(k∗

2 + im1)], (23c)

and the superscript * represents the complex conjugation. Note
that we require k1 	= k2 in the above Eqs. (23) for the solitons
to undergo collision. Additionally, the dark soliton s1 (s2)
experiences a phase shift 2φ

(2)
1 − π (−2φ

(1)
1 + π ).

Thus the mixed solitons in the short-wave components
undergo elastic collision. The solitons in the long-wave
component also undergo elastic collision with a mere position
shift of magnitude |�|. The elastic collision of solitons in
the two-component LSRI system is shown in Fig. 4 for the

parametric choice k1 = 1 − i, k2 = 1.5 + 0.75i, ω1 = −1 −
2i, ω2 = −0.75 + i, m1 = 2, ρ1 = 2, b1 = 7, α

(1)
1 = 0.3 + i,

and α
(1)
2 = 0.05 − i at t = −1.

We note that in certain nonlinear integrable dynamical
systems “soliton resonance,” that is, two solitons can fuse
together after collision or a single soliton can be split into
two solitons, can occur when the shift due to collision of
solitons becomes infinity [40]. In the present two-short-wave-
components case, this corresponds to |�| → ∞, which is
possible for either |N |2 = 0 or |D1|2 = 0. But a careful
analysis of the expression (23) along with a consideration
of the nonsingularity condition (19) into account shows that
both |N |2 and |D1|2 are positive definite, which ensures that
|�| is always a finite quantity. Thus it seems that the present
solution does not admit the soliton resonance phenomenon.
However, it will be of future interest to look for some special
Wronskian-type solutions of Eq. (12) and to look for the
possibility of such soliton resonance.

B. Three-short-wave-components case

This case can admit two types of soliton collisions, as
mentioned in Sec. V B. The collision scenario depends on the
splitting of mixed solitons into bright and dark parts among the
components and displays interesting dynamical behavior. To
illustrate this, we discuss the soliton collision for this (2b-1d)
case in detail.

1. (2b-1d) soliton collisions

The asymptotic forms of solitons (s1 and s2) before and after
collision can be deduced from the exact two-soliton solutions
(18) by putting m = 2 and n = 1.

(i) Before collision (x,y → −∞)
Soliton s1

S
(j )−
1 � A1−

j sech

(
η1R + R1

2

)
eiη1I , j = 1,2, (24a)

S
(3)−
1 � ρ1e

i(ζ1+φ
(1)
1 +π)

[
cos

(
φ

(1)
1

)
tanh

(
η1R + R1

2

)

+isin
(
φ

(1)
1

)]
, (24b)

L � −2k1Rsech2

(
η1R + R1

2

)
. (24c)
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Soliton s2

S
(j )−
2 � A2−

j sech

(
η2R + R3 − R1

2

)
eiη2I , j = 1,2,

(24d)

S
(3)−
2 � ρ1e

i(ζ1+φ
(2)
1 +2φ

(1)
1 )

[
cos

(
φ

(2)
1

)
tanh

(
η2R + R3 − R1

2

)

+isin
(
φ

(2)
1

)]
, (24e)

L � −2k2Rsech2

(
η2R + R3 − R1

2

)
. (24f)

(ii) After collision (x,y → +∞)
Soliton s1

S
(j )+
1 � A1+

j sech

(
η1R + R3 − R2

2

)
eiη1I , j = 1,2,

(24g)

S
(3)+
1 � ρ1e

i(ζ1+φ
(1)
1 +2φ

(2)
1 )

[
cos

(
φ

(1)
1

)
tanh

(
η1R + R3 − R2

2

)

+ isin
(
φ

(1)
1

)]
, (24h)

L � −2k1Rsech2

(
η1R + R3 − R2

2

)
. (24i)

Soliton s2

S
(j )+
2 � A2+

j sech

(
η2R + R2

2

)
eiη2I , j = 1,2, (24j)

S
(3)+
2 � ρ1e

i(ζ1+φ
(2)
1 +π)

[
cos

(
φ

(2)
1

)
tanh

(
η2R + R2

2

)

+ isin
(
φ

(2)
1

)]
, (24k)

L � −2k2Rsech2

(
η2R + R2

2

)
. (24l)

The various quantities appearing in the above equations can
be obtained from Eq. (18) by putting m = 2 and n = 1. Here
φ

(l)
1 = tan−1( klI −ml

klR
), l = 1,2. We find that the amplitudes of

the bright parts of the two solitons s1 and s2 before and after
interaction are related through the relation

Al+
j = T

j

l Al−
j , j = 1,2, l = 1,2, (25a)

where A1−
j = α

(j )
1
2 e−R1/2, A2−

j = 1
2eδ1j − R1+R3

2 and the transition

amplitudes T
j

l ’s are defined as

T
j

1 =
(

k2 − k1

k∗
2 − k∗

1

) (
k∗

1 + k2

k1 + k∗
2

)1/2

⎛
⎜⎝

(
α

(j )
2

α
(j )
1

)
λ1 − 1

√
1 − λ1λ2

⎞
⎟⎠ , (25b)

T
j

2 =
(

k1 − k2

k∗
1 − k∗

2

) (
k∗

1 + k2

k1 + k∗
2

)1/2

⎛
⎜⎝

√
1 − λ1λ2(

α
(j )
1

α
(j )
2

)
λ2 − 1

⎞
⎟⎠ , j = 1,2,

(25c)

FIG. 5. (Color online) Energy-exchanging collision of the (2b-1d) mixed two-soliton solution in the three-component LSRI system.
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FIG. 6. (Color online) Energy-sharing collision with complete suppression of soliton s2 after collision in the S(1) component of (2b-1d)
mixed two-soliton solutions in the three-short-wave LSRI system.

in which λ1 = κ12
κ22

and λ2 = κ21
κ11

. Here the κip’s can be obtained
from Eq. (18) by making m = 2 and n = 1. This shows
that the intensities of the bright parts of the mixed solitons
before and after collision differ in general. The transition
amplitudes T

j

l ’s, l,j = 1,2, become unimodular only for
the choice |α(1)

1 |/|α(1)
2 | = |α(2)

1 |/|α(2)
2 |. On the other hand,

the intensities of the dark parts of the two solitons s1 and
s2 appearing in the third component remain unaltered after
collision. Both bright and dark parts of the mixed solitons
s1 and s2 experience a position shift of same magnitude but
of different signs. The position shift experienced by soliton
s1 (and s2) is �1 = R3−R2−R1

2 (and �2 = −�1), where R1,
R2, and R3 are defined in Eq. (18) and the dark solitons s1

and s2 experience phase shifts 2φ
(2)
1 − π and −2φ

(1)
1 + π ,

respectively. This shows that the bright components exhibit
energy-exchanging collisions characterized by an intensity
redistribution (energy sharing) among the bright parts of the
mixed solitons appearing in first two components and an
amplitude-dependent position shift, whereas the dark parts of
the two solitons undergo mere elastic collision accompanied
by the same position shift as that of bright parts. Such a
collision scenario is depicted in Fig. 5 for the parametric
choice k1 = 2 − i, k2 = 1.5 − i, ω1 = 1 + i, ω2 = −1 + i,
m1 = 0.7, ρ1 = 4, b1 = 2, α(1)

1 = 1.2 + 0.2i, α(1)
2 = −1 + 2i,

α
(2)
1 = 0.25 + 0.25i, and α

(2)
2 = −1 + i at t = 0. In Fig. 5,

the intensity of soliton s1 is suppressed (enhanced) in the S(1)

(S(2)) component and the reverse occurs for soliton s2. But the
solitons appearing in S(3) and L components undergo elastic
collision only.

By performing an analysis similar to that of two-short-
wave-components case we could not identify any resonant
interaction. Additionally, we point out an interesting energy-

sharing collision with complete suppression of intensity of a
particular soliton after collision completely as demonstrated
for soliton s2 in a particular component (say, S(1)) in Fig. 6,
with commensurate changes in soliton s1 as well as for
the solitons in the other short-wave component S(2). The
parameters are chosen as k1 = 1 − 2i, k2 = 1.5 + i, ω1 =
−1 − i, ω2 = −0.75 + i, m1 = 0.7, ρ1 = 0.5, b1 = 2, α

(1)
1 =

0.5, α(1)
2 = 0.02, α(2)

1 = 0.7, and α
(2)
2 = 1 at t = −3. We do not

present the collision of dark solitons as it is a standard elastic
collision. Note that it is also possible to completely suppress
the intensity of a particular soliton in a given component
before interaction and can have two solitons after interaction.
However, the physical mechanism behind such fascinating
collisions differs from that of standard soliton resonance,
as pointed out before. In fact, this is due to an intensity
redistribution among the components accompanied by finite
amplitude-dependent position shift.

2. (1b-2d) soliton collisions

Next we consider the collision scenario in the three-
component LSRI system where the two colliding mixed
solitons (say, s1 and s2) are composed of one bright part and two
dark parts and appear, respectively, in the S(1) and (S(2),S(3))
components. A careful asymptotic analysis of Eq. (18) with
m = 1 and n = 2 shows that the amplitudes of the bright parts
of the mixed solitons before and after collision are given by

(
A1−

1 ,A2−
1 ,A1+

1 ,A2+
1

)
=

(
α

(1)
1

2
e− R1

2 ,
1

2
eδ11−( R1+R3

2 ),
1

2
eδ21−( R2+R3

2 ),
α

(1)
2

2
e− R2

2

)
. (26)

FIG. 7. (Color online) Elastic collision of (1b-2d) mixed two-soliton solution in the three-component LSRI system.
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FIG. 8. (Color online) Mixed two-soliton bound states in the two-component LSRI system. Top panel: With beating effects; bottom panel:
suppression of beating by tuning the α

(j )
1 parameters.

Substitution of the expressions for various quantities from
Eq. (18) with m = 1 in Eq. (26) shows that the intensities
of the bright parts of the two mixed solitons are same
before and after interaction, i.e., |Aj+

1 |2 = |Aj−
1 |2, j = 1,2.

Similarly, the amplitudes of the dark parts of the two mixed
solitons before and after collision in the S(2) (S(3)) component
are same and are equal to ρ1 (ρ2). This clearly indicates

that the intensities of the dark parts of the colliding mixed
solitons are unaltered during collision. Thus for the (1b-2d)
case from the above expressions we observe that both the
bright and dark parts of the mixed solitons undergo standard
elastic collision of solitons accompanied by position shifts
of magnitude |(R3 − R2 − R1)/2|, where R1, R2, and R3 are
defined in Eq. (18). The phase shifts of the dark solitons

FIG. 9. (Color online) Mixed two-soliton bound state for ω1 = ω2 = 0 (top panel) and their transition to colliding solitons for ω1 = 1 + i,
ω2 = −1 + i (bottom panel) in two-component LSRI system. Other parameters are given in the text.
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FIG. 10. (Color online) (2b-1d) mixed two-soliton bound states in the three-component LSRI system for ω1 = ω2 = 0 and their transition
to colliding solitons for ωj 	= 0 is given in Fig. 5.

s1 and s2 are 2φ
(2)
1 − π and −2φ

(1)
1 + π , respectively. Such

an elastic collision behavior is shown in Fig. 7 for k1 =
1 − 2i, k2 = 1.5 + i, ω1 = −1 − i, ω2 = −2 + i, m1 = −2,
m2 = 0.5, ρ1 = 4, ρ2 = 4, b1 = 1, b2 = 2, α(1)

1 = 0.5 − i, and
α

(1)
2 = 1.4 + i at t = −3. We do not present the plot for the

long-wave component in Fig. 7 as it exhibits the collision
process same as that of the S(1) component except for different
amplitudes.

Our analysis reveals the interesting fact that the energy-
exchanging collision of mixed solitons can be realized only in
the bright parts of the mixed solitons in the three-component
LSRI system and is possible only if the bright parts of the
mixed solitons appear at least in two components.

The above analysis can be extended straightforwardly to
the arbitrary N -short-wave-components case where the bright
parts of the mixed soliton appear in m components and the
remaining (N − m) components admit dark parts. It can be
shown that the shape-changing (energy-exchanging) collision
is possible only if the bright parts of the mixed solitons appear
at least in two short-wave components, i.e., m � 2.

VII. SOLITON BOUND STATES

Soliton bound states are another interesting class of mul-
tisoliton solutions. Soliton bound states can be viewed as
composite solitons moving with a common speed. Two-soliton
bound states in the (2 + 1)-dimensional two-component LSRI
system (12) with q = 2 can be obtained from Eq. (18) for
the choice ω1R

k1R
= ω2R

k2R
and k1I = k2I , m = 1, n = 1, and the

corresponding solution reads as

S(1) = 1

D1

(
e

l1+δ21
2 cosh(η̂2R + iδ̂21)

+ e
l2+δ11

2 cosh(η̂1R + iδ̂11)
)
eiη1I , (27a)

S(2) = ρ1e
iζ1

D1

[
e

Q
(1)
3
2 cosh

(
N1 − i

Q
(1)
3I

2

)
+ e

Q
(1)
11 +Q

(1)
22

2

× cosh(N2 + iQ̂11) + e
Q

(1)
12 +Q

(1)
21

2 cosh(N3 + iQ̂12)

]
,

(27b)
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D1 = e
R3
2 cosh

(
η1R + η2R + R3

2

)

+ e
R1+R2

2 cosh

(
η1R − η2R + R1 − R2

2

)

+ e
δ0+ δ∗0

2 cos(δ0I ),

where η1R = k1R[x + (2k1I − ω1R

k1R
)y + ω1R

k1R
t], η2R =

η1R( k2R

k1R
), el1 = α

(1)
1 , el2 = α

(1)
2 , δ̂21 = δ21I −l1I

2 , δ̂11 = δ11I −l2I

2 ,

Q̂11 = Q
(1)
11I −Q

(1)
22I

2 , Q̂12 = Q
(1)
12I −Q

(1)
21I

2 , η̂1R = η1R + δ11R−l2R

2 ,

η̂2R = η2R + δ21R−l1R

2 , N1 = η1R + η2R + Q
(1)
3R

2 , N2 =
η1R − η2R + Q

(1)
11R−Q

(1)
22R

2 , N3 = η1I − η2I + Q
(1)
12I −Q

(1)
21I

2 ,
ηjI = kjI x − (k2

jR − k2
jI + ωjI )y + ωjI t , j = 1,2, and

all the other quantities found in the above expressions can
be deduced from the corresponding quantities appearing in
Eq. (18) by putting m = 1 and n = 1. The suffixes R and I

appearing in the various quantities in Eq. (27) denote real and
imaginary parts, respectively.

The two-soliton bound state is shown in Fig. 8 (top
panel) for the choice k1 = 1 + i, k2 = 2 + i, ω1 = −2 − i,
ω2 = −4 + 7i, m1 = 0.7,t = −1, α

(1)
1 = 1 + i, α

(1)
2 = 0.5 +

i, ρ1 = 4, and b1 = 2. The bound-state solitons display beating
effects due to the oscillatory terms in Eq. (27). The beating
effects can be suppressed completely by tuning the α

(j )
1

parameters. This is shown in the bottom panel of Fig. 8, where
the parameters are chosen to be the same as that of the plots
in the top panel except for α

(1)
1 , which is now fixed as 0.02. It

should be noticed that although the α parameters do not have
any observable effects on single-soliton propagation in the
two-short-wave-components case, as discussed in Sec. IV A,
they can display significant effects while considering bound-
state soliton propagation.

Now it is of interest to investigate the influence of the
ωj ,j = 1,2, parameters on the bound-state soliton dynamics
which arise due to the higher-dimensional nature of the system.
In this connection, we assume ω1 = ω2 = 0 and we choose
k1I = k2I . This will result in a bound state in the x-y plane
which is stationary in time. Such a two-soliton bound state with
breathing oscillations in the x-y plane is shown in the top panel
of Fig. 9 for ω1 = ω2 = 0, k1 = 2 − i, k2 = 1.5 − i, m1 = 0.7,
ρ1 = 4, b1 = 2, α(1)

1 = 1.2 + 0.2i, and α
(1)
2 = 1 + 2i at t = 0.

But when ω1 and ω2 begin to differ and become nonzero,
they make the two solitons undergo collision in the x-y plane.
Thus, due to the presence of the ωj parameters and the higher
dimensionality of the system, there occurs a transition from
bound states to interacting solitons, which is shown in the
bottom panel of Fig. 9. This also shows that the presence of
ωj parameters results in a wide range of parameters for which
the soliton collision can take place.

The dramatic change in the nature of soliton propagation
in the x-y plane due to the presence of ωj parameters
resulting from the higher-dimensional nature of the system
(12) can exhibit additional features if we consider three-
short-wave-components case. Soliton bound states in x-y
plane for ω1 = ω2 = 0, k1 = 2 − i, k2 = 1.5 − i, m1 = 0.7,
ρ1 = 4, b1 = 2, α

(1)
1 = 1.2 + 0.2i, α

(1)
2 = −1 + 2i, α

(2)
1 =

0.25 + 0.25i, and α
(2)
2 = −1 + i at t = 0 is shown in Fig. 10.

For the same parameters, with nonzero ωj values, collision of
solitons occurs and this is depicted in Fig. 5 for ω1 = 1 + i

and ω2 = −1 + i. Interestingly, the presence of a second
short-wave component now induces the fascinating collision
involving energy exchange among the solitons in short-wave
components. Also, the α parameters can be tuned appropriately
to suppress the beating effects of the bound soliton states.

VIII. CONCLUSION

In this paper, we have derived the multicomponent LSRI
system for the propagation of weak nonlinear dispersive
waves in (2 + 1) dimensions. Then we consider the integrable
multicomponent LSRI system in (2+1) dimensions and obtain
mixed (bright-dark) one- and two-soliton solutions using
Hirota’s method. Our study shows that the bright and dark
parts of the mixed solitons in the two short-wave components
behave like scalar bright and dark solitons. But in the three-
short-wave-components case different types of splitting of
the mixed soliton into bright and dark parts are possible,
which makes their dynamics interesting. Study of the collision
dynamics of the mixed solitons shows that their collision in
the two-short-wave-components case and in the three-short-
wave-components case with two dark parts and one bright
part are elastic. However, in the three-short-wave-components
case where the two colliding mixed solitons are split into two
bright parts and one dark part, the bright parts undergo energy-
exchanging collision characterized by intensity redistribution
(energy sharing) and an amplitude-dependent position shift.
This collision process is also influenced by the soliton
parameters of the dark part. The dark parts of the mixed
solitons undergo only elastic collision.

Finally, we have considered the soliton bound states.
To elucidate the understanding, we explicitly presented the
two-soliton bound-state expression for m = 1 and n = 1.
Interestingly, we find that the α parameters which do not show
any significant effect on the one-soliton propagation display
interesting effects on the bound states. Particularly, they can
be profitably used in suppressing the beating effects. Another
important observation that follows from our above study is
that the presence of ωj parameters can alter significantly
the dynamics of solitons. Specifically, in the absence of ωj

parameters, which can result due to the higher-dimensional
nature of the system, there occurs bound-state solitons in
the x-y plane. But when the ωj ’s are brought into the
picture the solitons exhibit collision behavior. Physically,
this means that, due to the presence of ωj parameters, the
attractive force between the bound solitons vanishes and the
solitons pass through each other. It has also been shown
that for the three-short-wave-components and one-long-wave-
component cases, for nonzero values of ωj ,j = 1,2, one can
have energy-exchanging collision for the bright parts of the
mixed solitons in the x-y plane, whereas in the absence
of ωj ’s there occurs only a stationary bound soliton in the
x-y plane.
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