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A class of networks are those with both positive and negative links. In this manuscript, we studied the interplay
between positive and negative ties on mesoscopic level of these networks, i.e., their community structure. A
community is considered as a tightly interconnected group of actors; therefore, it does not borrow any assumption
from balance theory and merely uses the well-known assumption in the community detection literature. We found
that if one detects the communities based on only positive relations (by ignoring the negative ones), the majority
of negative relations are already placed between the communities. In other words, negative ties do not have a
major role in community formation of signed networks. Moreover, regarding the internal negative ties, we proved
that most unbalanced communities are maximally balanced, and hence they cannot be partitioned into k nonempty
sub-clusters with higher balancedness (k � 2). Furthermore, we showed that although the mediator triad + + −
(hostile-mediator-hostile) is underrepresented, it constitutes a considerable portion of triadic relations among
communities. Hence, mediator triads should not be ignored by community detection and clustering algorithms.
As a result, if one uses a clustering algorithm that operates merely based on social balance, mesoscopic structure
of signed networks significantly remains hidden.
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I. INTRODUCTION

In the past two decades, there have been increasing interests
toward the analysis of complex networks both empirically
and theoretically [1–3]. One of the important research lines
is to study networks from the structural point of view, trying
to answer, What do different types of networks look like?
This is an important issue, since it has been shown that
many dynamical properties depend on the network structure
[4–6]. This endeavor is constantly coevolving with the studies
on theoretical models of networks trying to describe the
observations and further predict new features [7,8]. Most of
these works have been carried out due to abundant large-scale
datasets gathered over the internet. They have attracted a lot
of studies mainly to justify the long standing debates on static
and/or dynamic patterns of relations [9–13].

There are a number of challenges related to signed net-
works. Discovering the community structure is one of these
problems that has been addressed in a number of research
works [14–16]. Another problem related to these networks is
to predict the sign of relations [17–19].

Generally speaking, there have been two trends toward
the analysis of signed networks. The first trend tries to
evaluate the long-standing social balance theory and to deduce
some new implications [10,20]. The social balance theory
has some predictions about the grouping of people based on
the analysis of network evolution toward a more balanced
structure [21]. The second trend, regardless of the balance
theory, tries to improve the inference tasks using the negative
relations [14,17]. For example, detecting the community of
densely interacting individuals is one of the issues studied
in such works [16]. The notion of community has been
introduced as a meaningful building block of networks [22].
Indeed, community structure acts as a bridge between local
and global understanding of network structure [23,24]. In
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signed networks, grouping the actors has been studied in both
community detection and social balance literature [15,25]. In
the former, the main objective is expressed as “dense positive”
and “negative free” relations inside groups. In the latter,
the objective is explicitly stated as minimizing the number
of negative (positive) links inside (between) the groups.
These two notions, despite their similarities, have fundamental
differences, which are investigated in this work. The main
motivation of our work is based on the recent work of Doreian
and Mrvar [25]. They suggested that the + + − relation among
groups of individuals is likely to be seen, and thus, it should
not be ignored while detecting the mesoscale structure of
networks.

As a connection to the above trends, our work starts with
the justification of community detection in signed networks
and shows that negative relations are not informative enough
to improve the detection task. In other words, one can
accomplish the task by considering only the positive relations.
Our study also deals with the justification of the balance
theory in mesoscopic level. Analogous to the local level,
this theory states that no matter how (internally balanced)
communities are identified, one must not see (or at least
rarely see) the + + − triadic relation among them. We
found that the observed triads are also underrepresented in
mesoscopic level consistent with this theory. However, they
form a considerable portion of social relations, which is far
more than the corresponding local level, and cannot be simply
ignored by clustering algorithms. Therefore, if the social
groups are identified based on balance theory, one would miss
a considerable amount of distinguishable groups by merging
them into one another. Our results shed new light on mesoscale
structure of signed networks.

II. PRELIMINARIES

A. Notations

Throughout the paper, the expressions “link,” “edge,” “tie,”
“relation,” and “interaction” are used interchangeably, unless
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we explicitly make a note. A signed graph G is determined
using triple (V,E,σ ). V is the set of nodes, E is the set of edges,
which is defined by pair (vi,vj ) of nodes [(vi,vj ) = (vj ,vi) for
undirected graph], and σ assigns either +1 or −1 to each
edge. In this work, we consider only undirected signed graphs
with values −1 and +1 for negative and positive relations,
respectively. Having k nonempty clusters in a network, let
us define the number of inconsistent or frustrated edges as
follows:

Fk(G,C) =
∑

Ci=Cj ,i<j

A−
ij +

∑
Ci �=Cj ,i<j

A+
ij , (1)

where G is a signed graph, C determines the cluster of nodes
(Ci = cluster to which node i belongs), k is the number
of nonempty clusters, and A+

ij = 1 if σij = 1, or A−
ij = 1 if

σij = −1, or both are zero otherwise. We denote the minimum
value of the above function under all possible clusterings as

Fk(G) = minCFk(G,C), (2)

where the number of clusters k is a constant value. When k is
tunable, one has:

F (G) = minC,kFk(G,C). (3)

In the literature, Eq. (2) is often considered as frustration index
[26], true frustration, or merely frustration [20,27]. However,
in this context, the frustration and its minimum are considered
separately. For k = 1, frustration of a subgraph is equal to
the number of negative edges, and thus F1(G,C) [or equally
F1(G)] is used to denote the number of negative edges inside
a subgraph. We use fk(G,C) as the ratio of Fk(G,C) to the
edge count m = |E| [similar for fk(G)]. Notations Fk,up(G)
and Fk,low(G) are used for the upper bound of Fk(G) and its
lower bound, respectively (Fk,low(G) � Fk(G) � Fk,up(G)).

Given a specific clustering C, we define balancedness of
graph G as follows:

Bk(G) = 1 − fk(G). (4)

Generally, we use the term balanced when a given subgraph
S (i.e., an extracted community) has no negative edges
[B1(S) = 1], and unbalanced when B1(S) < 1. Note that a
graph may have higher balancedness for k > 1, which is
denoted explicitly throughout the paper.

B. Correlation clustering problem

In this problem, one seeks to find a clustering of nodes
that minimizes inconsistent relations. This is equivalent to
minimization of Fk(G,C) considering k either as a constant
value [28] or a tunable parameter [29]. We should mention that
the maximization of consistent edges has also been considered
in the above works, which has different implications from the
algorithmic point of view.

III. RELATED WORKS

In this section, we introduce some of the research lines
related to the clustering of signed networks. Conceptually,
they could be divided into two categories, where (1) positive
links between clusters are penalized, or (2) instead of this
punishment, internal density of clusters is rewarded.
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-
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FIG. 1. (Color online) Different types of triadic signed relations
between three actors. In structural balance, triads A and C are
balanced, and B and D are unbalanced. In general structural balance,
only triad B is unbalanced and the others are balanced.

A. Structural balance and clustering

The origin of structural balance theory is the seminal
work of Heider [30], which has been further developed as
a mathematical framework by Cartwright and Harary [31]. In
the local level, the structural balance theory states that a triadic
relation is balanced, if and only if, it has one or three positive
ties.1 As shown in Fig. 1, triads A and C are balanced, and
B and D are unbalanced. In the global level, the structural
balance theory states that a graph is structurally balanced
(SB), if and only if it can be partitioned into two clusters
with no inconsistent edges (known as structure theorem), or
equivalently, when every cycle is positive. Inconsistent edges
are negative ones inside and positive ones between the clusters.
A cycle is positive (or balanced), if and only if it has an even
number of negative links.

Davis [32] argued that a social network may have multiple
hostile groups, implying that triad D is also balanced. In the
global level, a graph is k-balanced, if and only if it can be
partitioned into k-clusters with no inconsistent edge. The term
structural balance is used for k = 2 and weak- or general-
structural balance (GSB) for k � 2.

To measure the balancedness of networks, a number of
research works have provided some metrics that specify the
distance of a graph from GSB [33]. In this context, there are
two well-known classes of metrics. The first class is based on
counting all unbalanced l-cycles (cycles of length l), which
can only be used for SB. The second class is based on
counting the minimum number of inconsistent edges under
all possible k-clusterings [=Fk(G)]. In this work, we base
our investigations on the second class, and thus, it is briefly
discussed in the following. This metric is equal to the minimum
number of edges that their deletion (or sign flipping) results in
a k-balanced graph, which is equivalent to distance of a graph
from being k-balanced.2

The problem of finding a partition that corresponds to Fk(G)
is NP-hard [29], even for k = 2 [20]. If we set k = 2, the
optimal solution is the best two-clustering of a graph where
the number of inconsistent edges is equal to the distance
of a graph from SB [=F2(G)]. Iacono et al. proposed a
graph-theoretic approach to approximate F2(G), which has
been originally stated as “distance from monotonicity” for
biological networks [27]; note that monotonicity has the same
mathematical implication as SB. The algorithm has been
further applied to social networks, validating that their distance

1In the structural balance theory balanced and unbalanced are used
only for k = 2.

2This equivalence holds for k > 2 with the same proof provided by
Zaslavsky [26].
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FIG. 2. (Color online) “+ + −” relation (hostile-mediator-
hostile) between three clusters. The value of F (G) is reduced by P 1,
if mediator cluster M is merged into the closest friend C1.

from SB is significantly lower than those of sign-shuffled
counterparts [20,34]. Another achievement of Ref. [27] is a
scalable algorithm that calculates a lower bound for F2(G),
which determines, at most, how far is the proposed solution
from the optimal value. For k > 2, Chiang et al. [35] proposed
a scalable k-clustering algorithm by transforming an objective
function similar to Fk(G,C) (along with some other objectives)
into weighted kernel k means. In this paper, we only use
the two-clustering algorithm of Iacono et al., together with
a theorem that extends our results to k > 2.

B. Relaxed structural balance and generalized block modeling

In contrast to the implications of GSB, Doreian and Mrvar
[25] argued that real-world networks are not completely
balanced. Accordingly, it has been shown that in online social
networks with 17%–23% negative ties, at least 7%–14% of
edges are inconsistent with SB [20]. As a result, Doreian and
Mrvar proposed the relaxed structural balance (RSB) theory
stating that positive interactions between two clusters are also
valid. This relaxation is mainly due to intermediary processes
in social networks, implying that it is likely to find a mediator
group with positive relations toward two hostile groups
[Fig. 2 (left)].

Based on GSB, positive edges between clusters are pun-
ished. Hence, as depicted in Fig. 2 (right), a mediator cluster is
merged into one of the hostile clusters with which it has more
positive connection P 1, decreasing the frustration from F (G)
to F (G) − P 1. Accordingly, Doreian and Mrvar argued that,
based on GSB, blocks (cluster-cluster relations) of positive
ties are not allowed in off-diagonal positions of the relation
matrix (as shown in Fig. 3). In Fig. 3, one can see the result
of fitting a generalized block model (GB-model) [36] on
hostile-mediator-hostile triad (mediator triad for short) based
on GSB and RSB. However, in order to fit the relaxed model to
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FIG. 3. (Color online) (a) Result of fitting a GB model based
on general structural balance, which merges C1 and M to get a
lower frustration. (b) Result of fitting a GB model based on relaxed
structural balance, which allows off-diagonal positive blocks similar
to the output of signed community detection methods, if one restricts
the clusters to be internally cohesive.

data, Fk(G,C) is still used in Ref. [25] as the objective function.
This means one should take care of each off-diagonal positive
block a priori to refrain the optimization process, which tries
to minimize Fk(G,C), from merging mediator clusters into
hostile parties.

C. Community detection in signed networks

In the community detection literature, mainly started after
the seminal work of Girvan and Newman [22], there has been
a different perspective toward the group identification. As the
main assumption, a community is a group of nodes that have
more connections inside than to the rest of the network. This
intuition has been the basis of almost all community detection
algorithms [37,38]. Regarding this, modularity function has
been introduced that gives a better score to a cluster with denser
relations than a null model [39]. The formulation of modularity
allows for straightforward extension to signed networks [15].
The intuition is that the group of nodes should have more (less)
positive (negative) intradensity relative to the null model. This
intuition could be formulated by subtracting the modularity
score of negative subgraph G− from positive subgraph G+ as
follow:

Q(G,C) = αQ(G+,C) − (1 − α)Q(G−,C), (5)

where 0 � α � 1 is the relative importance of positive ties
compared to negative ones. A similar work has been carried
out for Hamiltonian function of Potts model, which borrows
the idea of modularity by incorporating an arbitrary null model
with a resolution parameter [16]. As a summary, these methods
reward (punish) the density of intra-positive (intra-negative)
relations and punish (reward) their sparseness relative to the
null model. Another work extends the community detection
based on random walks [14], with the intuition that a random
walker is more likely to be trapped inside a community. In the
main step of the algorithm, the nodes are sorted according
to their distance from a sink node. This step ignores the
information of negative ties, which are only used as a cut
criterion on the sorted list.

In all of these extensions, there is no explicit punishment
strategy for positive edges between the communities, which
makes them applicable to nonsigned (or sparsely signed)
networks. As a connection to generalized block modeling,
these algorithms work with dense diagonal blocks (relations
inside a cluster) and sparse off-diagonal blocks (relations
between clusters) for positive relations and the reverse for
the negative ones. Figure 3 shows a toy example where signed
community detection and RSB produce the same clustering
that is different from the one produced by GSB.

IV. COMMUNITY VERSUS CLUSTER

In this section, we try to pinpoint some implications of
the algorithms that try to optimize Fk(G,C) against those
that are frequently used for community detection. The main
differences are illustrated in Fig. 4. In all cases, detected
clusters result in F2(G) = 0 as the optimal solution. In
Fig. 4(a), the output of clustering algorithms is consistent
with the notion of community, which is also produced by
relaxed GB-modeling. However, in Fig. 4(b), members of each
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(a) C2CC1(b) (c)
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FIG. 4. (Color online) All three two-clusterings result in
F2(G,C) = 0. (a) Cluster and community are consistent with each
other. (b) Clusters are not communities. (c) Two distinguishable
communities get clustered into C1.

cluster are disconnected, and thus, despite their similar role in
the network, they cannot be considered as a social group of
interacting individuals. Also, in Fig. 4(c) two distinguishable
communities are grouped together missing an obvious pattern
of relations. These cases [Figs. 4(a)–4(c)], as well as the
mediator triads, are the main shortcomings of clustering
algorithms in social networks. Trying to relate these two
notions, a community is a cluster of nodes that is internally
well-connected. One of the aims of this work is to investigate
the frequency of such cases in real networks. We show that
the case as shown in Fig. 4(c), as well as mediator triads, are
frequent enough that cannot be ignored when one deals with
large-scale social networks.

V. METHODS

A. Extracting communities

We want to extract groups of densely interconnected nodes
that are consistent with the notion of community. To this
end, we use InfoMap [38,40], which is proved to be one of
the most accurate community detectors [41]. It confidently
extracts the communities from large-scale networks that have
heterogeneous group sizes [6,42]. We used the open source
code provided in Ref. [43] utilizing the hierarchical mode
that refines a few big communities into smaller ones, and
leaves other communities intact. As studied by Lancichinetti
and Fortunato [42], if a group of nodes is well-separated
from the environment, it could be accurately detected by
InfoMap. However, if the density among some groups passes
a threshold, InfoMap mistakenly considers them as a single
community. Indeed, this problem happens for all methods
that merely consider the structure of a network. In the case
of InfoMap, we are confident about the internal density of
detected communities relative to the environment [44], and as
the only problem, there might be more than one group in a
single community. Nevertheless, as we illustrate in the results,
this problem does not significantly affect the outcome, and the
conclusion drawn from the results remains valid.

B. Computing the distance from structural balance

As we mentioned in Sec. III A, for graph G, the distance
from SB is F2(G), which is equal to the minimum inconsistent
edges under all two-clusterings. Although the computation of
this value is NP-hard, the scalable algorithm of Iacono et al.
[27] outputs a two-clustering, which is an upper bound for
F2(G), as well as a lower bound for F2(G). Thus, we always
know, at most, how far is the suboptimal solution from an

optimal one. Same as Ref. [27], quantity F2,low(G)/F2,up(G)
is used to measure the precision of a solution. Considering the
following inequality:

F2,low(G)

F2,up(G)
� F2(G)

F2,up(G)
� 1, (6)

if F2,up(G) = F2,low(G), an optimal solution is found. We
propose a theorem that generalizes our results to k-clustering
for k > 2:

Theorem 1. If F1(G) � F2(G), then F1(G) � Fk(G) for
every k > 2; where every cluster is nonempty.

Proof. The proof is through induction. Suppose the theorem
holds for k = 2, . . . ,k − 1 and there exists a k-clustering
that results in Fk(G) < F1(G). Consider A+

C,C ′ (A−
C,C ′) as the

number of positive (negative) links between clusters C and
C ′. In such k-clustering, links from each C toward every other
C ′ must satisfy A−

C,C ′ � A+
C,C ′ . Otherwise, by merging C into

such C ′, inequality Fk−1(G) < Fk(G) is reached, implying the
Fk(G) < F1(G) < Fk(G) contradiction. With this restriction,
if there is no C1 satisfying A−

C1,C ′ > A+
C1,C ′ for some C ′,

the Fk(G) = F1(G) contradiction is reached via merging all
clusters into one cluster. Otherwise, we select such C1 and
merge all other clusters into C2. Consequently, we find a
two-clustering that satisfies A−

C1,C2
> A+

C1,C2
, and therefore,

results in the F2(G) < F1(G) � F2(G) contradiction. The
proof is complete with this. �

Reminding that F1(G) is the number of negative edges in
graph G, theorem 1 states that if an optimal two-clustering
has worse frustration than a one-clustering, then every k-
clustering is also worse than one-clustering, and thus, it is
maximally balanced. As a result, if we get F1(G) � F2,low(G)
from Iacono algorithm, which signifies F1(G) � F2(G), we
conclude that inconsistent edges in G cannot be reduced (or
equally, balancedness cannot be increased) via k-clustering for
k � 2. Thus, G is optimally clustered into one cluster.

VI. DATASETS

We used two widely studied online signed networks known
as Slashdot and Epinions [17], which have been frequently
used as benchmarks for studying signed social relations.3

These datasets have special characteristics that make them
suitable for the analysis of social relations. For example, all
the links have been explicitly established by the users, either
positive (for friendship or trust) or negative (for enmity or
distrust). Hence, the links neither have been inferred indirectly
nor been asked from a person, which may introduce biasedness
into data.

Data preprocessing

We performed some preprocessings on the datasets prepar-
ing them for our purpose:

(1) In order to get an undirected network, reciprocal links
with inconsistent signs were omitted, and the remaining links
were considered as undirected [inconsistent relations were
0.7% (0.4%) of relations in Epinions (Slashdot)].

3All datasets are publicly available at http://snap.stanford.edu. For
more detailed statistics refer to http://konect.uni-koblenz.de/
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TABLE I. Basic statistics of datasets after preprocessing. Average members is the mean of community sizes.

Node Edge Negative edge Community Average members

Slashdot 68 409 327 490 69 682 (21.27%) 4598 14.88
Epinions 76 653 220 932 13 921 (6.30%) 6032 12.71

(2) Only the largest connected component of each network
was considered (90% of nodes in Epinions and nearly 100%
of nodes in Slashdot).

(3) Nodes incident to zero positive edges were removed as
they, trivially, belong to an isolated cluster.

(4) After detecting communities, we kept only those of
size 3 to 2000 with all connections between them; the reason
is provided in the following.

Table I summarizes the properties of networks after the
above operations. The community size is lower bounded to 3,
which is the minimum trivial group size. We did not consider
megascale communities of size larger than 2000 (4 out of
10 000 communities that have 3000, 5000, 8000, and 10 000
nodes), because either they are a composition of many highly
interconnected sub-communities, or they have no community
structure at all. As a result, they cannot be counted as reliable
social communities. Indeed, the size of these communities is
significantly far from 150, which is the expected upper-limit
for human community [5]. In addition, the significantly high
f1(G) of the largest community in each network fortifies this
conjecture. Nonetheless, we further analyze them along with
the other unbalanced communities in Sec. VIII, and found
similar results for the role of negative edges that lie inside them.

VII. INTERPLAY BETWEEN DENSE POSITIVE
AND NEGATIVE TIES

We discussed that the community detection problem in
signed networks is to find groups of densely connected positive
ties that are as balanced as possible. First, one needs to get an
image of interplay between dense positive ties and those with
negative sign. To this end, we first detect the communities from
positive subgraph of preprocessed networks using InfoMap. In
other words, we exclude the negative subgraph and ignore the
information given by negative ties. Next, we bring the negative
ties back to the network, noting that the communities have been
detected beforehand. Considering only the communities of size
3 to 2000 and the connections between them, we find that more
than 98% of communities are completely balanced, meaning
they contain no negative relations (lower bounding the size
to 10 also gives similar results). Knowing that unbalanced

TABLE II. Community statistics of studied online social net-
works. Solved negative ties are links that lie between communities.
Average frustration is the mean of f1(G) over communities.

Slashdot Epinions

Count percentage Count percentage

Balanced communities 4543 98.80% 5952 98.67%
Solved negative ties 68 794 98.73% 13 737 98.67%
Average frustration 0.08% 0.05%

communities are mostly the bigger ones, we also find that more
than 98% of negative ties lie between communities (see Table II
for more detailed statistics). These results are interesting, since
we based our community detection merely on positive ties and
ignored the negative ones. One immediate conclusion is that
negative ties naturally lie between densely connected positive
ties, and thus, both objectives “densely connected positive ties
inside cluster” and “negative ties between clusters” could be
reasonably satisfied without considering the latter. In other
words, positive ties have the major role in detecting the
community structure in signed networks, whereas negative
ties have a minor effect. These results, somehow, legitimize
the idea behind FEC algorithm [14], which scores the nodes
regardless of negative ties; however, this may not be the case
for other types of networks. This observation is consistent with
the findings of Leskovec et al. that are based on the analysis of
triads [10]. In particular, they concluded that negative ties tend
to act like bridges in signed social networks. Nevertheless,
due to relatively low amount of negative ties (around 21%
in Slashdot and 6% in Epinions after preprocessing), it
may not be a significant observation and could be highly
probable in random counterparts of observed networks; this
issue is investigated in Sec. VII A. Moreover, unbalanced
communities, which are mostly the big ones, are analyzed
separately in Sec. VIII to investigate the role of negative ties
inside them.

A. How significant are the observed statistics?

In order to show the significance of observed statistics in
signed networks, first we should define a proper null model to
estimate the probability of desired statistics being as extreme
as the observed ones. If the estimated probability is small
enough, one can conclude that the observed statistics cannot
be due to the chance and depend on the characteristics that
have been randomized in the null model. We want to show that
this significance is due to the particular position of negative
edges between dense positive regions. In order to achieve
this goal, we proposed null model Mr (G) that is sampled
by perturbing r percent of negative links on graph G while
keeping the structure of the network fixed. In particular, for a
given graph G, we select r percent of negative edges uniformly
at random and flip their sign to positive, then randomly select
the same amount from positive edges and flip their sign
to negative. In this setting, the relative number of negative
edges and the structure of networks generated from Mr (G)
resemble the observed one, and only, the position of r percent
of negative edges is randomly shuffled. This null model has
been previously used in Refs. [20] and [10] for r = 100. The
complete procedure of acquiring a sample statistic from Mr (G)
is as follows:

(1) Perturb r percent of negative ties.
(2) Apply InfoMap on the positive subgraph.
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FIG. 5. (Color online) Observed statistics (dashed blue line) in Slashdot dataset as compared to those of 200 realizations from Mr (G) for
different values of r . In all cases, p-value is less than 0.001.

(3) Bring the negative ties back.
(4) Measure the desired statistic.
In Figs. 5 and 6, the observed statistics are plotted in dashed

blue line along with 200 realizations of Mr (G) for r = 30,
50, and 100 on Slashdot and Epinions networks, respectively.
Due to the sufficient number of samples (far more than 30),
z test could be confidently used for computing the p-value.
This probability is very small (p � 0.001) for all statistics in
both networks compared to the null models with r = 30%,
50%, and 100%. Consequently, it could be concluded that the
ratio of balanced communities and solved negative ties are
significantly higher, and average frustration [average of f1(G)
over communities] is significantly lower than being created
by chance. Furthermore, since we merely flipped the sign of
negative ties, observed phenomenon is due to the topological

position of negative ties implying that negative ties almost
entirely lie between dense positive ties.

B. Are considerable parts of the networks isolated
from negative ties?

One of the plausible causes for the observed statistics would
be the isolation of major parts of the networks from negative
ties, which can lead to numerous balanced communities.
However, over 91% of balanced communities in both networks
are incident to at least one negative edge, and the average
percentage of external negative ties is around 28% for balanced
communities. Although, this is 5–10% lower than that of
unbalanced communities, it is sufficient enough to reject the
major parts of networks are free from negative ties hypothesis.

FIG. 6. (Color online) Observed statistics (dashed blue line) in Epinions dataset as compared to those of 200 realizations from Mr (G) for
different values of r . In all cases, p-value is less than 0.001.
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C. Effect of InfoMap on the observed statistics

As we discussed in Sec. V A, InfoMap may merge highly
interconnected communities into each other. First, 98% of
communities are balanced and more than 85% of nodes in
unbalanced communities are incident to only positive edges,
thus by further partitioning these communities, the 98%
statistics, if not increasing, would not considerably decrease.
Second, by separating mistakenly glued communities, the
number of inter-negative (or -positive) ties does not decrease,
which is a trivial case. Finally, the average frustration also
follows the first case, and thus, it does not considerably
increase. Consequently, the three main reported statistics are
valid and do not considerably depend on InfoMap algorithm.

VIII. ANALYSIS OF UNBALANCED COMMUNITIES

So far, we have shown that over 98% of communities are
balanced, which means they have no internal negative ties.
On the other hand, unbalanced communities, which are less
than 2% of total communities, are mostly the bigger ones in
terms of the number of nodes and ties, and thus, they should
be analyzed to find the role of negative ties lying inside them.

Table IV shows the major unbalanced communities in-
cluding those of size larger than 2000. Considering only
communities smaller than 2000 nodes, they have far less
negative ties compared to positive ones [f1(G)]. However, this
does not mean negative ties are useless from signed community
detection or k-clustering point of view. In order to measure the
usefulness of these negative edges for extraction of balanced
clusters, we propose a simple information-theoretic measure
that is based on structural balance theory.

How informative are negative ties?

From the structural balance perspective, at one extreme,
negative edges inside community S are in the most informative
position, if there exists an optimal two-clustering for S that
results in two equally sized clusters. From another point
of view, one can argue that by ignoring negative ties, two
maximally balanced, equally sized clusters are mistakenly
considered as a single community. At the other extreme,
negative ties are in the less-informative position, if the

Community detected By InfoMap

+1

+1

+1

+1

+1

(a)

(b)
+1

+1

-1

+1

+1

2-clustered By Iacono Alg.

FIG. 7. (Color online) (a) Information of negative edge is equal
to −log2(1) = 0, which also means F1(G) � F2(G). (b) Information
of negative edges is equal to −log2( 4

5 ) = 0.322.

TABLE III. Result of applying two-clustering algorithm of
Iacono on unbalanced communities of InfoMap. Percentages are
based on total number of unbalanced communities.

Unbalanced Optimal Zero
communities two-clustering information

Slashdot 56 55 (98%) 48 (86%)
Epinions 83 81 (98%) 77 (93%)

minimum number of inconsistent ties is achieved by putting
S into one cluster. In other words, the same community is
achieved with or without considering the negative edges. With
this intuition in mind, we define the information of negative
ties as follows:

I (G) = −log2 (ratio of nodes in larger partition), (7)

where larger partition is obtained from an optimal two-
clustering, which has F2(G) inconsistent ties. Whenever
F1(G) � F2(G) (no improvement upon one-clustering), the
two-clustering is set to one-clustering. This measure is
illustrated in Fig. 7 for some toy graphs.

As shown in Table III and detailed in Table IV, for the
five largest unbalanced communities, by applying Iacono
algorithm we find an optimal two-clustering for 136 out of 139
unbalanced communities. The information of 125 unbalanced
communities is zero, for which an optimal solution has been
found. Using theorem 1, this means unbalanced communities
cannot reach a higher balancedness by being further partitioned
into k nonempty clusters, and thus, they are inseparable from
GSB point of view. Moreover, for those with I (G) > 0 (11
of 139), separated clusters are relatively very small, and also
they are, internally, highly disconnected. This indicates there
is no significant subcommunity that can be separated from the
original one.

In this section, we showed that negative ties inside un-
balanced communities are not effectively informative from
community detection or the k-clustering point of view.
However, the established results are from two widely studied
social networks and should be further investigated on other
large-scale ones.

IX. RELATION BETWEEN INFOMAP
AND SIGNED MODULARITY

We argued in Sec. III C that the objective of signed
modularity is in line with the community detection literature.
Therefore, in the absence of negative ties, the goal is the
same for both InfoMap and modularity. However, there still
remain some major problems. First, as our experiments show,
nonsigned modularity (α = 1) is incapable of distinguishing
communities effectively. In particular, the output is mostly
made of a few megascale communities of size 2000 to 20 000,
which cannot be reliably considered as single community
(especially for Epinions). Second, modularity suffers from
the well-known resolution limit, stating that it is expected
to have trivially distinct communities being grouped even in
medium-scale networks [45].

In agreement with our results, by sliding the parameter
α from 1 to 0.5 (increasing the effect of negative ties with
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TABLE IV. Detailed statistics of the five largest unbalanced communities in Slashdot and Epinions networks. Bold communities have sizes
larger than 2 000, which were excluded from preprocessed networks (C1 in Slashdot, C1-2-4 in Epinions). Optimal two-clustering is achieved
for those communities that have F2,low(G)

F2,up(G) = 1.

Slashdot

Edge Node f1(Ci) f2,up(Ci) f2,low(Ci)
F2,low(Ci )
F2,up(Ci ) Larger Partition I (G)

C1 33 552 5378 8.57% 7.97% 7.94% 0.9955 99.00% 0.015
C2 16 156 1705 1.46% 1.40% 1.40% 1 99.65% 0.005
C3 6485 1204 5.97% 4.61% 4.61% 1 98.50% 0.022
C4 4700 1320 2.55% 2.49% 2.49% 1 99.92% 0.001
C5 3896 1095 0.49% 0.49% 0.49% 1 100% 0

Epinions

Edge Node f1(Ci) f2,up(Ci) f2,low(Ci)
F2,low(Ci )
F2,up(Ci ) Larger Partition I (G)

C1 114 989 10 568 11.40% 8.54% 8.50% 0.9949 97.56% 0.036
C2 66 314 8312 5.93% 5.15% 5.14% 0.9988 99.01% 0.014
C3 36 931 1033 0.05% 0.05% 0.05% 1 100% 0
C4 12 366 2981 0.31% 0.31% 0.31% 1 100% 0
C5 6346 1043 0.77% 0.77% 0.77% 1 100% 0

respect to the density of positive ties), the percentage of solved
negative ties (those placed between communities) remains
almost constant around 88% in Slashdot. That is, signed
modularity is incapable of effectively reducing the internal
negative ties. However, in the case of Epinions, this percentage
goes from 71% to 82%, which means 11% of negative ties
manage to break the communities apart and get placed between
them. Nonetheless, we argue that these negative ties are not
informative in a general sense. The motivation is that the less
an algorithm is capable of distinguishing the communities, the
more information it gets from negative ties. In other words,
the usefulness of negative ties depends on the performance
of a detector. This is intuitively correct, since one can build
detector D as

D =
{

One-clustering m−
m

< x

Signed modularity o.w.
, (8)

which puts all the nodes in one community until a certain ratio
of negative ties is reached (x), and uses the signed modularity
afterward. In this case, even if negative ties are truly placed
between dense positive ones, they are still useful for detector
D, since by exceeding x, the percentage of solved negative ties
increases. This example suggests that the presence of megas-
cale communities along with the resolution limit of modularity
refrains us from saying that negative ties are informative for
Epinions. However, if one can find a detector P (i.e., InfoMap),
which is more powerful than detector D (i.e., modularity),
and the output of P places almost all negative ties between
communities, one can confidently state that the negative ties
are not informative for the detection task (“more powerful”
qualitatively refers to a detector that finds more cohesive
groups, and wrongly clusters distinct communities due to
having more interconnections). Furthermore, if one can find a
detector M that is more powerful than P , the statement is still
valid, since detector M further splits the communities of P ,
rather than clustering them together.

Knowing that InfoMap is more powerful than modularity
in nonsigned mode (see Refs. [42,44,46,47]), we consider the

objective function of detector P as follows:

L(G,C) = αL(G+,C) − (1 − α)L(G−,C), (9)

where L(G,C) is the generalization of InfoMap’s objective
function. Note that there is still no exact formulation for α < 1,
nonetheless, we suppose it will be devised in the future, and
will outperform modularity for α < 1.

According to the results, for α = 1, detector P places
almost all of negative ties between communities, and thus they
have no contribution to L(G−,C), as it only punishes internal
negative ties. In addition, we showed in Sec. VIII A that
the remaining internal negative ties are incapable of ripping
the unbalanced communities apart, mainly because they are
supported by a large number of positive ties. Therefore, even if
a general objective L(G,C) is proposed, it cannot considerably
improve upon L(G+,C) for α < 1. Moreover, as we previously
argued, this statement also holds for even more powerful
detectors than P .

It could be concluded that, in the case of Epinions,
information of negative ties is helpful for signed modularity,
which is also the case for weaker methods like detector D.
However, by the use of nonsigned InfoMap, which performs
at least as well as modularity, together with the information
analysis of internal negative ties, one can conclude that
negative ties are not considerably informative for community
detection in Slashdot and Epinions.

X. COMMUNITY-COMMUNITY INTERACTIONS

As discussed in Sec. IV, one should let positively related
communities be separated from each other. This is the main
goal of all community detection methods for nonsigned net-
works, which have been extended to be fit for signed networks.
However, from the GSB perspective, this discrimination is
not allowed and has been questioned by Doreian and Mrvar
[25]. As a result, they proposed RSB that allows positive
relationships between two clusters. In particular, RSB was
successfully applied on some small-scale networks that a
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TABLE V. Statistics of community networks. Each node repre-
sents a balanced community and each link is positive (negative) if
F (i,j ) = 1 [E(i,j ) = 1]. For each community, friendship (enmity)
is the percentage of positive (negative) degree to total degree.
A community is friendly if its friendship is larger than 80%. A
community is aggressive if its enmity is larger than 50% (similar
thresholds do not considerably change the results).

Slashdot Epinions

Friendly relations 66% 79%
Enmity relations 29% 19%
Average no. neighbors 58 28
Average friendship 69% 77%
Average enmity 28% 22%
Friendly communities 31% 58%
Aggressive communities 12% 12%

complete scenario of their relations was known. However,
this assertion, to the best of our knowledge, has not yet been
examined on large-scale networks. Indeed, in this work we try
to answer the question, “Are mediator triads frequent enough
in signed networks to be considered in clustering algorithms?”

First, we should provide a connection between the output
of InfoMap and GB modeling. The GB model does not impose
any restrictions on built-in structure of each cluster and leaves
it to the algorithm to find a suitable type or to the researcher
to prespecify it based on his or her knowledge [36]. However,
for large-scale datasets, like those analyzed in this work, this
cannot be efficiently done mainly due to the lack of data about
the history of individuals. This leaves us with only one option,
to use the general assumption that social clusters are likely to
be densely connected [9,23,24]. This assumption is a special
case in GB modeling known as complete block, which is used
for detection of cohesive subgroups [36]. With this restriction,
we are allowed to investigate the mediator clusters in social
networks based on the output of InfoMap and further probe
the community-community relations.

Let us define some quantities to investigate community-
community interactions quantitatively:

F (i,j ) =
{

1 all interedges are positive
0 o.w. , (10)

E(i,j ) =
{

1 all interedges are negative
0 o.w. , (11)

where (i,j ) is a pair of communities. Less than 6% (2%) of
community-community relations are ignored due to partial
negative-positive ties in Slashdot (Epinions).

As depicted in Table V, more than 66% (in Slashdot) and
79% (In Epinions) of community-community relations are
friendship, and on average, a balanced community is friends
with around 69% (in Slashdot) and 77% (In Epinions) of its
neighbor communities. On the other hand, less than 12% of
communities are mostly enemies with their neighbors.

In Fig. 8, the Slashdot network of balanced communities is
visualized using Gephi.4 It is worth mentioning that the work of

4Gephi is an open source software for visualizing large-scale graphs:
https://gephi.org/

FIG. 8. (Color online) Constructed community network of Slash-
dot. All communities are internally balanced. The size of each com-
munity is proportional to the number of its members. Communities
with higher ratio of negative relations are closer to yellow color
(lighter gray). Some of the larger aggressive communities, which are
the enemies of the majority of their neighbors, have been placed on
the top of the network. These communities indicate a meaningful
group of people that are allies, and troll the neighbor communities.

Kunegis et al. [48] investigated the Slashdot trolls individually
(users that are the enemy of most of their neighbors). In the
mesoscopic level, our result in Fig. 8 shows some of the major
trolling communities unearthing a novel view of Slashdot. The
k-clustering algorithms on social networks merely distinguish
the aggressive groups. However, low amounts of these clusters
indicates that clustering algorithms, even in optimal case,
could miss detecting a considerable amount of distinguishable
and positively related groups by merging them into one
another, similar to Fig. 4(c). Therefore, clustering based on
social balance hides a major part of the mesoscopic structure.

Mediator triads should not be overlooked

The relaxation of Doreian and Mrvar could be justified
only if the mediator triad appears frequently enough in the
mesoscopic level of social relations. In particular, RSB does
not claim that the frequency of mediator triads, relative to
a null model, is either underrepresented or overrepresented.
Nonetheless, it legitimizes the absolute presence of such
relations. Therefore, if there is a considerable amount of such
relations, even underrepresented, the RSB should be utilized
instead of GSB.

TABLE VI. Total number of triads and percentage of negative
links in the original Slashdot and Epinions networks and the
constructed community network. M and K stand for 106 and 103,
respectively.

Local Mesoscopic

No. Triads Negative ties No. Triads Negative ties

Slashdot 0.6M 23.60% 284K 30.40%
Epinions 4.8M 16.80% 35K 20.20%
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TABLE VII. Percentage and z scores of each triad type in the local and mesoscopic levels compared to M100(G). Statistics for the + + −
triad, which is the only unbalanced triad in GSB (excluding k = 2), are shown in bold.

Slashdot Epinions

Local Mesoscopic Local Mesoscopic

Real Random z score Real Random z score Real Random z score Real Random z score

+++ 73 44.6 90 38.2 33.7 16 82.6 57.6 149 66.3 50.7 24
++ − 11.2 41.3 −232 33.7 44.2 −105 8.3 34.9 −261 20.8 38.6 −45
+ − − 13.6 12.7 5 21.9 19.3 13 7.9 7 14 11 9.8 4
− − − 2.1 1.3 23 6.2 2.8 58 1.1 0.5 93 1.9 0.8 17

In the local level, as shown in Table VII, the + + − triad
is the only one that is considerably underrepresented, which
is 11% (in Slashdot) and 8% (in Epinions) of triads in real
networks against 41% (in Slashdot) and 35% (in Epinions)
of triads in randomized counterparts. This observation is con-
sistent with the previous findings in favor of GSB (excluding
k = 2) [10,49].

In the mesoscopic level, we conduct a similar experiment
on the network of balanced communities. To this end, we
consider each community as a node, and connect a pair of
communities with +1(−1) edge, if they were friend (enemy).
As summarized in Table VI, the community network has
similar percentage of negative edges compared to the local
level network. This makes the comparison of two levels more
meaningful.

As depicted in Table VII, the ratio of mediator triads is 34%
(in Slashdot) and 21% (in Epinions), which is by far higher
than 11% (in Slashdot) and 8% (in Epinions) in local level. As
listed in the z-score column, mediator triads are also underrep-
resented according to randomized networks. This means even
if this type of triad is a less desirable relation between groups
of individuals, nonetheless, this is a notable pattern among
them. Hence, as suggested by Doreian and Mrvar, ignoring
the intermediary processes leads to merging or even splitting a
considerable amount of mediators into hostile parties. In other
words, if one has low amount of mediator triads close to that
of a k-balanced network, ignoring the mediator triads does
not conceal the true mesoscopic structure. However, observed
frequencies suggest that although mesoscopic structures are
driven away from mediator triads (according to corresponding
z scores), the considerable amount of these relations refrain us
from simply ignoring them. Moreover, explicitly established
relations between users leave no room for the assumption that
the mediator triads are mainly due to noise.

In conclusion, although the mediator triad is
underrepresented in social networks, it should not be
overlooked. In particular, the implication of GSB remains
valid in the sense that social dynamics drive the relations
away from the mediator triad. Nonetheless, the relaxation of
Doreian and Mrvar is still necessary to account for mediator
triads, which are still surviving the social dynamics, as a
remarkable aspect of social relations.

XI. CONCLUSION

In this work, we investigated the mesoscopic level of online
signed social networks. First, we observed that communities

(extracted based on merely positive edges) in signed social
networks are highly balanced. This indicates that negative
edges mostly lie between dense positive clusters. Also, when
negative edges lie inside the communities, they have either no
or weak divisive power. In other words, negative edges do not
have a significant effect on the community structure of signed
networks, and it is mainly determined by positive relations.
Furthermore, we showed that this salient characteristic is
almost impossible to be created by randomly placed negative
edges. This assertion is consistent with the previous studies
both on the local level, where it was shown that the clustering
coefficient of positive subgraph is much higher than that
of negative subgraph [10], and the global level, where it
was demonstrated that social networks are highly balanced
compared to sign-shuffled ones [20]. This role of negative
ties partially explains why sign prediction models that are
based on machine learning techniques can perform highly
accurately, despite the fact that they utilize the information
of merely adjacent nodes [17,18]. Our second observation
was that the + + − mediator triad between communities is
underrepresented consistent with GSB; however, it is highly
frequent compared to the triad of the same type between users.
Hence, mediator triads cannot be simply ignored as they still
survived the social dynamics and form a considerable portion
of social relations. As a result, if one only tries to minimize
Fk(G,C) regardless of the mediator triads, many intermediary
clusters are lost by merging or splitting them into hostile par-
ties, and hence, major parts of the mesoscopic structure remain
hidden. Consequently, the routes of RSB-based GB modeling
and signed community detection seem to be more consistent
with the structure of networks similar to Slashdot and Epinions.

XII. FUTURE WORKS

There are some interesting issues that can be investigated
in future works, including:

(i) In this work, we measured the informativeness of
negative edges for each community separately. It is fruitful
to have a procedure that measures this information in a
network as a whole. Although signed modularity can do this
work, its major shortcomings make it an unreliable measure
for real-world networks [45,50,51]. Nonetheless, along with
Fk(G,C), it can be a baseline for future measures.

(ii) An improvement in accuracy of the link prediction is
likely to be achieved by augmenting the (nontrivial) statistics
of InfoMap communities into machine learning methods.
Noting that a successful work has been carried out by
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extracting clusters [detected via minimizing Fk(G,C)] and
further applying collaborative filtering methods [19].

(iii) We showed when negative ties lie between dense
positive ties, their informativeness vanishes for the task of
community detection. On the contrary, as demonstrated in
Ref. [17], they are really useful for inferring hidden links

due to this apparent pattern. Roughly, the less the usefulness
of negative ties for community detection, the more their
usefulness for link prediction. Thus, an interesting task would
be a quantitative analysis of interplay between the information
of negative ties in the local level (for link inference) and that
of the mesoscopic level (for community detection).
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