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Turing patterns in multiplex networks
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The theory of patterns formation for a reaction-diffusion system defined on a multiplex is developed by means
of a perturbative approach. The interlayer diffusion constants act as a small parameter in the expansion and the
unperturbed state coincides with the limiting setting where the multiplex layers are decoupled. The interaction
between adjacent layers can seed the instability of a homogeneous fixed point, yielding self-organized patterns
which are instead impeded in the limit of decoupled layers. Patterns on individual layers can also fade away due
to cross-talking between layers. Analytical results are compared to direct simulations.
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I. INTRODUCTION

Patterns are widespread in nature: regular forms and geome-
tries, like spirals, trees, and stripes, recur in different contexts.
Animals present magnificent and colorful patterns [1], which
often call for evolutionary explanations. Camouflage and
signaling are among the functions that patterns exert, acting
as key mediators of animal behavior and sociality. Spatial
motifs emerge in stirred chemical reactors [2], exemplifying
a spontaneous drive for self-organization which universally
permeates life in all its manifestations, from cells to large
organisms, or communities. In a seminal paper Alan Turing
set forth a theory by which patterns formation might arise
from the dynamical interplay between reaction and diffusion
in a chemical system [3]. Turing’s ideas provide a plausible and
general explanation of how a variety of patterns can emerge in
living systems. Under specific conditions, diffusion drives an
instability by perturbing a homogeneous stable fixed point, via
an activator-inhibitor mechanism. As the perturbation grows,
nonlinear reactions balance the diffusion terms, yielding the
asymptotic, spatially inhomogeneous, steady state. Usually,
reaction diffusion models are defined on a regular lattice, either
continuous or discrete. In many cases of interest, it is however
more natural to schematize the system as a complex network.
With reference to ecology, the nodes of the networks mimic
localized habitat patches, and the dispersal connection among
habitats results in the diffusive coupling between adjacent
nodes. In the brain a network of neuronal connections is
active, which provides the backbone for the propagation of the
cortical activity. The internet and the cyberworld in general
are other, quite obvious examples that require invoking the
concept of network. Building on the pioneering work of
Othmer and Scriven [4], Nakao and Mikhailov developed in [5]
the theory of Turing patterns formation on random undirected
(symmetric) network, highlighting the peculiarities that stem
from the embedding graph structure. More recently, the case of
directed, hence nonsymmetric, networks has been addressed
[6]. When the reactants can only diffuse along allowed routes,
the tracks that correspond to the reversal moves being formally
impeded, topology driven instabilities can develop also when
the system under scrutiny cannot experience a Turing-like (or
wave) instability if defined on a regular lattice or, equivalently,
on a continuous spatial support.

However, the conventional approach to network theory is
not general enough to ascertain the complexity that hides
behind real world applications. Self-organization may pro-
ceed across multiple, interlinked networks, by exploiting the
multifaceted nature of resources and organizational skills.
For this reason, multiplex networks in layers whose mutual
connections are between twin nodes, see Fig. 1, have been
introduced as a necessary leap forward in the modeling
effort [7–13]. These concepts are particularly relevant to
transportation systems [14,15], the learning organization in
the brain [16] and to understanding the emergent dynamics
in social communities [17]. In [18] the process of single
species diffusion on a multiplex network has been investigated,
as well as the spectrum of the associated Laplacian matrix
characterized in terms of its intra- and interlayer structure.

In this paper we build on these premises to derive a general
theory of patterns formation for multispecies reaction diffusion
systems on a multiplex. Cooperative interference between
adjacent layers manifests, yielding stratified patterns also when
the Turing-like instability on each individual layer is impeded.
Conversely, patterns can dissolve as a consequence of the
interlayer overlap. The analysis is carried out analytically
via a perturbative scheme which enables us to derive closed
analytical expressions for the critical coupling that determines
the aforementioned transitions. The adequacy of the analytical
predictions is confirmed by direct numerical simulations.

II. THE THEORY OF TURING INSTABILITY
ON MONOLAYER NETWORKS

We begin the discussion by reviewing the theory of Turing
patterns on a monolayer network made of � nodes and
characterized by the �×� adjacency matrix W. Wij is equal to
1 if nodes i and j (with i �= j ) are connected, and 0 otherwise.
We here consider undirected networks, which implies that
the matrix W is symmetric. A two species reaction diffusion
system can be cast in the general form

dui

dt
= f (ui,vi) + Du

∑
j

Lijuj ,

dvi

dt
= g(ui,vi) + Dv

∑
j

Lij vj , (1)
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FIG. 1. (Color online) A schematic illustration of a two layer
multiplex network.

where ui and vi stand for the concentrations of the species
on node i. Lij = Wij − kiδij is the network Laplacian, where
ki = ∑

j Wij refers to the connectivity of node i and δij is the
Kronecker’s δ. Du and Dv denote the diffusion coefficients;
f (·,·) and g(·,·) are nonlinear functions of the concentrations
and specify the reaction dynamics of the activator, which
autocatalytically enhances its own production, and of the
inhibitor, which contrasts in turn with the activator growth.
Imagine that system (1) admits a homogeneous fixed point,
(û,v̂). This amounts to require f (û,v̂) = g(û,v̂) = 0. Assume
also that (û,v̂) is stable, i.e., tr(J) = fu + gv < 0 and det(J) =
fugv − fvgu > 0, where J is the Jacobian matrix associated
to system (1). As usual fu, fv , gu, and gv stands for the partial
derivatives of the reaction terms, evaluated at the equilibrium
point (û,v̂). Patterns (waves) arise when (û,v̂) becomes
unstable with respect to inhomogeneous perturbations. To
look for instabilities, one can introduce a small perturbation
(δui , δvi) to the fixed point and linearize around it. In
formulas, (

δu̇i

δv̇i

)
=

�∑
j=1

(Jδij + DLij )

(
δuj

δvj

)
, (2)

where D = (Du 0
0 Dv

).
Following [5] we introduce the eigenvalues and

eigenvectors of the Laplacian operator
∑�

j=1 Lij�
(α)
j =

�(α)�
(α)
i , α = 1, . . . ,� and expand [19] the inhomogeneous

perturbations δui and δvi as δui(t) = ∑�
α=1 cαeλαt�

(α)
i and

δvi(t) = ∑�
α=1 bαeλαt�

(α)
i . The constants cα and bα depend

on the initial conditions. By inserting the above expressions
in Eq. (2) one obtains � independent linear equations
for each different normal mode, yielding the eigenvalue
problem det(Jα − Iλα) = 0, where Jα ≡ J + D�(α) and I
stands for the 2×2 identity matrix. The eigenvalue with
the largest real part defines the so-called dispersion relation
and characterizes the response of the system (1) to external
perturbations. If the real part of λα ≡ λ(�(α)) is positive
the initial perturbation grows exponentially in the linear
regime of the evolution. Then, nonlinear effects become
important and the system settles down into a nonhomoge-
neous stationary configuration, characterized by a spontaneous
polarization into activators-rich and inhibitors-poor groups.
From here on we assume λα to label the (real) dispersion
relation.

III. PATTERNS FORMATION IN MULTIPLEX NETWORKS

Let us now turn to considering the reaction diffusion
dynamics on a multiplex composed by two distinct layers.
The analysis readily extends to an arbitrary number of
independent layers. For the sake of simplicity we will here
assume each layer to be characterized by an identical set
of � nodes; the associated connectivity can however differ
on each layer, as specified by the corresponding adjacency
matrix WK

ij , with i,j = 1, . . . ,� and K = 1,2. In principle the
adjacency matrix can be weighted. The species concentrations
are denoted by uK

i and vK
i where the index K identifies the

layer to which the individuals belong. Species are allowed
to diffuse on each layer, moving towards adjacent nodes
with diffusion constants respectively given by DK

u and DK
v .

Interlayer diffusion is also accommodated for, via Fickean
contributions which scale as the local concentration gradient,
D12

u and D12
v being the associated diffusion constants. We

hypothesize that reactions take place between individuals
sharing the same node i and layer K , and are formally
coded via the nonlinear functions f (uK

i ,vK
i ) and g(uK

i ,vK
i ).

Mathematically, the reaction-diffusion scheme (1) generalizes
to

u̇K
i = f

(
uK

i ,vK
i

) + DK
u

�∑
j=1

LK
ij u

K
j + D12

u

(
uK+1

i − uK
i

)
,

v̇K
i = g

(
uK

i ,vK
i

) + DK
v

�∑
j=1

LK
ij v

K
j + D12

v

(
vK+1

i − vK
i

)
(3)

with K = 1,2 and assuming K + 1 to be 1 for K = 2. Here
LK

ij = WK
ij − kK

i δij stands for the Laplacian matrix on the
layer K . If the interlayer diffusion is silenced, which implies
setting D12

u = D12
v = 0, the layers are decoupled. Working

in this limit, one recovers hence two independent pairs of
coupled reaction diffusion equations for, respectively, (u1

i ,v
1
i )

and (u2
i ,v

2
i ). Turing patterns can eventually set in for each of

the considered limiting reaction-diffusion systems as dictated
by their associated dispersion relations λK

α ≡ λ(�(αK )) with
K = 1,2, derived following the procedure outlined above.
We are here instead interested in the general setting where
the interlayer diffusion is accounted for. Can the system
develop self-organized patterns which result from a positive
interference between adjacent layers, when the instability is
prevented to occur on each isolated level? Conversely, can
patterns fade away when the diffusion between layers is
switched on?

To answer to these questions we adapt the above
linear stability analysis to the present context. Lineariz-
ing around the stable homogeneous fixed point (û, v̂)
returns (

δu̇
δv̇

)
= J̃

(
δu
δv

)
(4)

with

J̃ =
(

fuI2� + Lu + D12
u I fvI2�

guI2� gvI2� + Lv + D12
v I

)

and where we have introduced the compact vector notation x =
(x1

1 , . . . ,x
1
�,x2

1 , . . . ,x2
�)T , for x = u,v. Also, I = (−I� I�

I� −I�
),
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where I� denotes the �×�-identity matrix. The multiplex
Laplacian for the species u reads

Lu =
(

D1
uL1 0
0 D2

uL2

)
.

A similar operator, Lv , is associated to species v. Notice
that Lu + D12

u I is the supra-Laplacian introduced in [18].
Analogous consideration holds for the term that controls
the migration of v across the multiplex. Studying the 4�

eigenvalues λ of matrix J̃ ultimately returns the condition for
the dynamical instability which anticipates the emergence of
Turing-like patterns. If the real part of at least one of the λi , with
i = 1, . . . ,4� is positive, the initial perturbation grows expo-
nentially in the linear regime of the evolution. Nonlinear effects
become then important and the system eventually attains a
nonhomogeneous stationary configuration. Unfortunately, in
the multiplex version of the linear calculation, and for a
generic choice of the diffusion constants, one cannot introduce
a basis to expand the perturbations which diagonalizes the
supra-Laplacian operators. In practice, one cannot project the
full 4�×4� eigenvalue problem into a subspace of reduced
dimensionality, as it is instead the case when the problem
is defined on a single layer. Moreover, it is not possible to
exactly relate the spectrum of the multiplex matrix J̃ to
those obtained when the layers are decoupled. Analytical
insight can be gained through an apt perturbative algorithm
which enables us to trace the modifications on the dispersion
relation, as due to the diffusive coupling among layers. To
this end we work in the limit of a weakly coupled multiplex,
the intradiffusion constants being instead assumed order 1.
Without losing generality we set ε ≡ D12

v � 1, and assume
D12

u to be at most O(ε). We hence write J̃ = J̃ 0 + εD0

where

J̃ 0 =
(

fuI2� + Lu fvI2�

guI2� gvI2� + Lv

)

and

D0 =
(

D12
u

D12
v

L1 0

0 L2

)
.

The spectrum of J̃ 0 is obtained as the union of the
spectra of the two submatrices which define the condition
for the instability on each of the layers taken independently.
To study the deformation of the spectra produced by a
small positive perturbation ε, we refer to a straightforward
extension of the Bauer-Fike theorem [20]. We here give a
general derivation of the result which will be then exploited
with reference to the specific problem under investigation.
Consider a matrix A0 under the assumption that the eigenvalues
of A0, (λ(0)

m )m, all have multiplicity 1 [21]. The associated
eigenvectors (v(0)

m )m are thus linearly independent and form
a basis for the underlying vector space R� (or C�). Intro-
duce now A = A0 + εA1, A1 representing the perturbation
rescaled by ε. We will denote with λ(ε) and [vm(ε)]m the
eigenvalues and eigenvectors of matrix A. Let us introduce
the matrices �(ε) = diag(λ1(ε),λ2(ε), . . . λ�(ε)) and V (ε) =
[v1(ε) v2(ε) · · · v�(ε)] and expand them into powers of ε

as

�(ε) =
∑
l�0

�lε
l and V (ε) =

∑
l�0

Vlε
l, (5)

where �0 stands for the eigenvalues of the unperturbed
matrix; V0 (respectively U0, to be used later) stands for the
matrix whose columns (resp. rows) are the right (respectively
left) eigenvectors of J̃ 0. Inserting formulas (5) into the
perturbed system (A0 + εA1)V = V � and collecting together
the terms of same order in ε beyond the trivial zeroth order
contribution, we get A0Vl + A1Vl−1 = ∑l

k=0 Vl−k�k, ∀l � 1.
Left mutiplying the previous equation by U0 and setting
Cl = U0Vl yields

�0Cl − Cl�0 = −U0A1Vl−1 + C0�l +
l−1∑
k=1

Cl−k�k, (6)

which can be solved (see the Appendix) to give
(�l)ii = (U0A1Vl−1)ii [(�l)ij = 0 for i �= j ] and (Cl)ij =
(−U0A1Vl−1)ij +

∑l−1
k=1(Cl−k�k)ij

λ
(0)
i −λ

(0)
j

[(Cl)ii = 0].

The above expressions allow us to assess the effect of the
interlayer coupling on the stability of the system. Select the
eigenvalue with the largest real part λmax

0 of the unperturbed
matrices J̃ 0. For sufficiently small ε, such that the relative
ranking of the eigenvalues is preserved, we have at the leading
order correction

λmax(ε) = λmax
0 + ε(U0D0V0)kk + O(ε2), (7)

where k is the index which refer to the largest unperturbed
eigenvalue λmax

0 . Higher order corrections can be also com-
puted as follows the general procedure outlined above. To
illustrate how interlayer couplings interfere with the ability of
the system to self-organize in collective patterns, we apply the
above analysis to a specific case study, the Brusselator model.
This is a two species reaction-diffusion model whose local
reaction terms are given by f (u,v) = 1 − (b + 1)u + cu2v

and g(u,v) = bu − cu2v, where b and c act as constant
parameters.

Suppose now that for ε = 0 the system is stable, namely
that λmax

0 < 0, as depicted in the main panel of Fig. 2. No
patterns can hence develop on any of the networks that
define the layers of the multiplex [22]. For an appropriate
choice of the parameters of the model, λmax grows as a
function of the interlayer diffusion D12

v (=ε) and becomes
eventually positive, signaling the presence of an instability
which is specifically sensitive to the multiplex topology. The
circles in Fig. 2 are computed by numerically calculating
the eigenvalues of the matrix J̃ for different choices of the
diffusion constant D12

v . The dashed line refers to the linear
approximation (7) and returns a quite reasonable estimate
for the critical value of the interlayer diffusion D12

v,crit for which
the multiplex instability sets in, D12

v,crit � −λmax
0 /(U0D0V0)kk .

The solid line is obtained by accounting for the next-to-leading
order corrections in the perturbative calculation. In the upper
inset of Fig. 2 the dispersion relation is plotted versus �K

α ,
the eigenvalues of the Laplacian operators L1 and L2, for
two choices of the interlayer diffusion. When D12

v = 0 the
two dispersion relations (circles, respectively red and blue
online), each associated to one of the independent layers, are
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FIG. 2. (Color online) Main: λmax is plotted vs D12
v , starting from

a condition for which the instability cannot occur when D12
v = 0.

Circles refer to a direct numerical computation of λmax. The dashed
(respectively solid) line represents the analytical solution as obtained
at the first (respectively second) perturbative order. Upper inset: the
dispersion relation λ is plotted versus the eigenvalues of the (single
layer) Laplacian operators, L1 and L2. The circles (respectively red
and blue online) stand for D12

u = D12
v = 0, while the squares (green

online) are analytically calculated from (5), at the second order, for
D12

u = 0 and D12
v = 0.5. The two layers of the multiplex have been

generated as Watts-Strogatz (WD) [23] networks with probability
of rewiring p respectively equal to 0.4 and 0.6. The parameters
are b = 8, c = 17, D1

u = D2
u = 1, D1

v = 4, D2
v = 5. Lower inset:

asymptotic concentration of species u as function of the nodes index
i. The first (blue online) � = 100 nodes refer to the network with
p = 0.4, the other � (red online) to p = 0.6.

negative as they both fall below the horizontal dashed line. For
D12

v = 0.5 the curves lift, while preserving almost unaltered
their characteristic profile (square, green online). In particular,
the upper branch of the multiplex dispersion relation takes
positive values within a bounded domain in �α , so implying
the instability. To confirm the validity of the theoretical
predictions we integrated numerically the reaction-diffusion
system (3), assuming the Brusselator reaction terms, and for
a choice of the parameters that yield the multiplex instability
exemplified in the main plot of Fig. 2. As expected, the homo-
geneous fixed point (dashed line) gets destabilized: the external
perturbation imposed at time zero is self-consistently amplified
and yields the asymptotic patterns displayed in lower inset
of Fig. 2.

Interestingly, the dual scenario is also possible. Assign
the parameters so that the system is unstable (on at least
one of the layers), in the decoupled setting D12

v = 0. Hence,
λmax

0 > 0, as displayed in the main panel of Fig. 3. Patterns
can therefore develop on one of the networks that define the
multiplex (see unperturbed dispersion relation as plotted in
the inset of Fig. 3). The instability is eventually lost for a
sufficiently large value of the interlayer diffusion constant
D12 = D12

u = D12
v . In other words, the interference between

layers can dissolve the patterns. The perturbative calculation
that we have developed provides, also in this case, accurate
estimates of λmax as a function of D12. The two branches of

0 0.05 0.1 0.15 0.2

D12
-0.2

-0.15

-0.1

-0.05

0

0.05

λm
ax

0 1 2 3 4 5 6

Λ(αΚ )

-2.5

-2

-1.5

-1

-0.5

0

0.5

λ

FIG. 3. (Color online) Main: λmax is plotted vs D12 ≡ D12
v =

D12
u , starting from the value D12 = 0 for which the instability can

occur. Circles refer to a direct numerical computation of λmax. The
dashed (respectively solid) line represents the analytical solution as
obtained at the first (respectively second) perturbative order. Inset:
the dispersion relation λ is plotted vs the eigenvalues of the (single
layer) Laplacian operators, L1 and L2. The circles (respectively
red and blue online) stand for D12

u = D12
v = 0, while the squares

(green online) are analytically calculated from (5), at the second
order, for D12

u = D12
v = 0.2. The two layers of the multiplex have

been generated as Watts-Strogatz (WD) networks with probability
of rewiring p respectively equal to 0.4 and 0.6. The parameters are
b = 8, c = 16.2, D1

u = D2
u = 1, D1

v = 4, D2
v = 5.

the dispersion relation shift downward as shown in the inset
of Fig. 3.

IV. CONCLUSION

Summing up, we have developed a consistent theory of
patterns formation for a reaction diffusion system defined upon
a stratified multiplex network. The analysis has been here
carried out for a two species model, defined on a two layer
multiplex. The methodology employed, as well as our main
conclusions, readily extend to the general framework where
s species are mutually interacting, while diffusing across a
K level multiplex whose layers can have arbitrary network
topologies. The interference among layers can instigate collec-
tive patterns, which are instead lacking in the corresponding
uncoupled scenario. Patterns can also evaporate due to the
couplings among distinct levels. Conditions for the critical
strength of the coupling constant are given and tested by
direct numerical inspection. The hierarchical organization of
the embedding space plays therefore a role of paramount
importance, so far unappreciated, in seeding the patterns
that we see in nature. It is also worth emphasizing that
novel control strategies could be in principle devised which
exploit the mechanisms here characterized. These potentially
interest a plethora of key applications, which range from the
control of the epidemic spreading, to the prevention of the
failure of electric networks, passing through wildlife habitat
restorations.
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APPENDIX: DETAILS ON THE
ANALYTICAL DERIVATION

Equation (6) contains two unknowns, namely Cl and �l .
To obtain the close analytical solution which is reported in the
main body of the paper we observe that Eq. (6) can be cast in
the compact form

[�0,X] = Y, (A1)

where X and Y are �×� matrices and [·,·] stands for the
matrix commutator. In practice, given Y ∈ R�×�, one needs
to find the X ∈ R�×� solution of (A1). Since �0 is a diagonal
matrix, the codomain of the operator [�0,·] is formed by all the
matrices with zero diagonal. To self-consistently solve (A1)
it is therefore necessary to impose that Y has zero diagonal
elements. Hence, matrix X will have its diagonal elements
undetermined.

Because of the above remark one can solve Eq. (6) by
setting �l so to cancel the diagonal terms on its right hand

side, that is,

(�l)ij=
{

(U0A1Vl−1)ii − ∑l−1
k=1(Cl−k�k)ii if i = j

0 otherwise.

(A2)

Then Cl is readily found to match

(Cl)ij =
{

(−U0A1Vl−1)ij +
∑l−1

k=1(Cl−k�k)ij
λ

(0)
i −λ

(0)
j

if i �= j

0 otherwise.
(A3)

This latter expression allows us to simplify (A2). In fact,

(Cl−k�k)ii =
∑

h

(Cl−k)ih(�k)hi = 0,

and thus the approximated eigenvalues are given by

(�l)ij =
{

(U0A1Vl−1)ii if i = j

0 otherwise,
(A4)

Observe that the previous formulas take a simpler form for
l = 1 when they reduce to

λ
(1)
i = (U0A1V0)ii and

(C1)ij = − (U0A1V0)ij

λ
(0)
i − λ

(0)
j

for i �= j . (A5)
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