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Local and global epidemic outbreaks in populations moving in inhomogeneous environments
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We study disease spreading in a system of agents moving in a space where the force of infection is not
homogeneous. Agents are random walkers that additionally execute long-distance jumps, and the plane in which
they move is divided into two regions where the force of infection takes different values. We show the onset
of a local epidemic threshold and a global one and explain them in terms of mean-field approximations. We
also elucidate the critical role of the agent velocity, jump probability, and density parameters in achieving the
conditions for local and global outbreaks. Finally, we show that the results are independent of the specific
microscopic rules adopted for agent motion, since a similar behavior is also observed for the distribution of agent
velocity based on a truncated power law, which is a model often used to fit real data on motion patterns of animals
and humans.
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I. INTRODUCTION

Agent-based models are fundamental tools to study the
spreading of epidemic diseases [1–6]. In these models, agents
represent individuals which may contract the disease, and their
motion accounts for time-varying interactions responsible for
the contagion process. Several models have been developed,
where either a detailed description of the single individual’s
features or global assumptions on aggregated subgroups have
been proved to be effective for description of the relevant
phenomena [7]. In the existing models, individual motion may
either occur in a continuous space [8,9] or be constrained
over the links of a transportation network [1–3,10,11]. In the
latter case, referred to as metapopulation models, individuals
are structured into subpopulations localized at the network
nodes, among which they move according to given mobility
patterns. Metapopulation models, with their capability to
explicitly account for the heterogeneity of the population, the
social interactions among individuals, the complex mobility
patterns, and the behavioral response to the presence of the
disease, have become fundamental for prediction of the diffu-
sion scenarios of pandemic spreading and, consequently, for
definition of containment interventions [3,12–17]. Recently,
another mechanism to incorporate time-varying interactions
among the agents of an epidemic process, thus overcoming
the main limitation of static interactions of network-based ap-
proaches [18–23], has been proposed in [24], where infection
only propagates through packet transmission, so that the whole
epidemic process is driven by flows in the network.

One major finding in metapopulation models is that, besides
a standard local epidemic threshold regulating the onset of
outbreaks at the subpopulation level, the system also exhibits
a global invasion threshold, that is, even if the epidemic
starts to spread only over a subpopulation (i.e., a town),
eventually it will spread to a macroscopic fraction of the
population (i.e., a region, a nation, or worldwide) if the
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mobility rate of individuals is high enough [1]. The critical
mobility rate depends on the topological fluctuations of the
substrate network, whereby macroscopic outbreaks are favored
by heterogeneity in link distribution.

Metapopulation models restrict the motion to selected
locations modeled as the nodes of a graph. Instead, in this
work, we consider a population consisting of agents that
move in a continuous two-dimensional space and introduce
heterogeneity in the parameters that regulate the epidemic
spreading. In more detail, we assume that the force of infection
depends on the spatial coordinates of the plane. We consider
the space divided into two regions and let the force of
infection assume a different value in each of them. We show
that either local or global outbreaks may appear, depending
on the model parameters. The onset of a global epidemic
invasion threshold is usually found in metapopulation models,
where the population is fragmented in localized structures
connected by individual mobility. We show that a global
epidemic invasion threshold may also be revealed in agent-
based epidemic models with motion in a continuous space and
identify as a key element for the onset of this threshold a large
spatial heterogeneity of the force of infection.

Differently from metapopulation approaches, which de-
scribe individual flows among different cities, our model
accounts for epidemic spreading within a region with homoge-
neous density such as a large metropolitan area. In the proposed
interpretation of the model, our results lead to the conclusion
that an inhomogeneous distribution of the epidemic spreading
and its geographical confinement may also arise in areas with
homogeneous density.

II. MODEL

We consider N moving agents distributed in a planar
space � = {(y1,y2) ∈ R2 : 0 � y1 � L,0 � y2 � L}, with
periodic boundary conditions. Agents are represented as
point particles, and their positions and velocities at time
t are indicated as yi(t) = (yi1(t),yi2(t)) ∈ � and vi(t) ≡
(vi(t) cos θi(t),vi(t) sin θi(t)), i = 1, . . . ,N . The velocity
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modulus of agents is constant in time and equal for all
individuals, i.e., vi(t) = v,∀i = 1, . . . ,N , and ∀t . At time
t = 0, the N particles are distributed in random positions
in the plane. At each time step, agents stochastically change
their heading θi(t). Thus, positions and headings of agents are
updated according to the rule

yi1(t + �t) = yi1(t) + v cos θi(t)�t,
(1)

yi2(t + �t) = yi2(t) + v sin θi(t)�t,

θi(t + �t) = ξi(t + �t) ,

where �t is the simulation step, and ξi are N independent
identically distributed (i.i.d.) random variables drawn from
a uniform probability distribution in the interval [−π,π ]. In
addition, to account for the realistic phenomenon of travels
with time scales shorter than those related to the disease
dynamics, we introduce the possibility of agents performing
long-distance jumps. This aspect is modeled by defining a
parameter pj ∈ [0,1] that quantifies the probability of an
agent’s performing a jump to a random position in the plane. In
summary, at each time step, each agent evolves either following
Eqs. (1) with probability 1 − pj or performing a jump with
probability pj . In the latter case, the agent position is updated
to a random point in �.

The proposed motion model is used to provide a simplified
version of the mobility patterns observed in animals and
humans. It captures an essential feature, that is, the dominance
of frequent short-motion steps combined with less frequent,
wider-motion steps. More realistic motion rules [25–28] have
also been applied in the studies executed in this paper,
obtaining very similar results. In particular, velocity moduli
vi(t) are i.i.d. realizations of a random variable v with a trun-
cated power-law probability density function with exponent
β = 1.59. Realizations vi(t) of the random variable v are
constrained between vmin = 0.1/�t , to avoid the singularity
of the probability density function close to 0, and vmax =
c
√

2L/�t , to model an upper bound on the agent velocity.
The parameter c is a constant that is varied to account for
different motion patterns.

Epidemic spreading is modeled according to the SIR model,
which partitions the N agents into three disjoint compartments:
susceptible (S), infective (I), and recovered (R). We indicate
as NS(t), NI (t), and NR(t), respectively, the number of agents
in the three compartments at time t , with the total number of
agents NS(t) + NI (t) + NR(t) = N , which remains constant
in time. A small fraction of agents is set to the infective state at
t = 0 to provide the seed of the infection, while all the others
start from the susceptible state.

The process through which the disease spreads can be sum-
marized as follows. An interaction radius defines the network
of contacts: at each time step t each agent interacts only
with the agents located within a disk-shaped neighborhood
of radius D [8]. Without loss of generality, we set D = 1 in
the remainder of the paper. The probability of infection of
agent i depends on its position in space yi and on the number
of infected individuals in its neighborhood Ni

r , through the
per-contact force of infection λ(yi). Notably, if agent i is
in the S state at time t , and exactly one of its neighbors
is in the I state, i.e., Ni

r = 1, then agent i will move into

FIG. 1. Framework for the study of an epidemic in a population
of agents moving into an inhomogeneous space. The D disk
(representing the interaction area) is shown for only one agent. Dashed
lines are drawn between neighboring agents.

the I state with probability λ(yi) and remain in the S state
with probability 1 − λ(yi). On the other hand, if Ni

r > 1,
then its probability of being infected is 1 − (1 − λ(yi))N

i
r .

Moreover, each infected agent will permanently move into the
R (recovered) state with probability μ. This sets the average
duration time of the infection as τ = 1/μ. Figure 1 shows the
modeling framework adopted in this paper, where the space is
partitioned into two regions, each corresponding to a different
force of infection. Notably, λ(yi) = λc if yi ∈ �c, where �c is a
square �c = {(y1,y2) ∈ R2 : 0 � y1 � Lc,0 � y2 � Lc} with
Lc � L, and λ(yi) = λe if yi ∈ �\�c. Hence, we consider λc

and λe as model parameters. As agents move on the plane, the
force of infection associated with each agent takes one of the
two values, λc or λe, depending on the agent position at time
t . To execute our analysis, two further parameters are taken
into account: the agent density on the planar space, that is,
ρ = N/L2; and the ratio of the areas in which the plane is
partitioned, that is, γ = L2

c/L
2.

III. RESULTS

To illustrate the system behavior, we first set the system
parameters as N = 10 000, ρ = 3, v = 0.1, μ = 0.15, and
γ = 1/9 and execute a set of simulations to study the steady-
state fraction of recovered individuals R∞ as a function of
λc and λe, for three values of pj (namely, pj = 0, pj = 0.1,
and pj = 1). In all the simulations in this paper we have set
�t = 1. Results are shown in Fig. 2. The major effect of the
introduction of random jumps [Figs. 2(b) and 2(c)] on the
steady-state fraction of recovered individuals is observed when
a strong inhomogeneity exists between the two regions, that
is, when λc and λe differ for several order of magnitudes. In
particular, when the force of infection in �c is much larger than
in the rest of the plane, the presence of jumps imposes a great
variability on R∞. Notably, for pj = 0 only a small fraction of
the population contracts the disease, for pj = 0.1 the fraction
becomes more significant, and for pj = 1 the epidemic spreads
over almost all the individuals. Similarly, differences emerge
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FIG. 2. (Color online) Steady-state fraction of recovered individuals R∞ as a function of the parameters λc and λe. We have considered a
system with N = 10 000, ρ = 3, D = 1, v = 0.1, μ = 0.15, γ = 1/9, and different values of pj : (a) pj = 0, (b) pj = 0.1, and (c) pj = 1.
The floor represents theoretical expectations. In (a) the left (red) floor region corresponds to the occurrence of condition (5) in �c; the right
(cyan) region, in �\�c; and the top (dark-blue) region, in both �c and �\�c. In (b) and (c) the dark floor area corresponds to condition (4) being
satisfied (epidemic outbreak), while the white floor area corresponds to condition (4) not being satisfied (no epidemic outbreak). Simulations
start with 1% of the agents set to the infective state. Results are averages over 50 runs.

when λc is very small, λe is large, and pj is varied from 0 to
1. However, in this case variations are quite secondary, since
the region characterized by a strong force of infection (that is,
now �\�c) is larger than in the previous case (in fact, since
γ = 1/9, �c constitutes a small fraction of the entire plane).

To further elucidate the system behavior, we derive a
mean-field approximation under the homogeneous mixing
(HM) hypothesis, whereby each individual has the same
probability of contacting any other. To this aim, we define
s(t) = NS(t)/N , i(t) = NI (t)/N , and r(t) = NR(t)/N as the
fractions of susceptible, infected, and recovered individuals at
time t . Under the HM hypothesis, we calculate the probability
of not being infected p̄cont and, then, the contagion probability
as pcont = 1 − p̄cont. The probability p̄cont that an agent is not
infected by any of its neighbors is p̄cont = (1 − λci(t))a for
agents located in �c, while it is p̄cont = (1 − λei(t))a for agents
located in �\�c, where a = πD2ρ is the average number of
neighbors. The fraction of susceptible individuals that enter the
infected group at time t + 1 is γ s(t)[1 − (1 − λci(t))a] + (1 −
γ )s(t)[1 − (1 − λei(t))a]. The first summand is the fraction of
susceptible individuals in �c [that is, s(t)L2

c/L
2] multiplied

by the contagion probability in that region. The second term
is the fraction of susceptible individuals in �\�c [that is,
s(t)(1 − L2

c/L
2)] multiplied by the contagion probability in

that region. Thus, the fraction i(t + 1) of infected individuals
at time t + 1 is computed by considering that it is decreased by
μi(t) and increased by the fraction of susceptible individuals
that become infected. The fraction of recovered individuals
r(t + 1) is obtained by considering that the increase in
recovered individuals at time t + 1 is proportional to the
number of infected individuals that recover, i.e., to μi(t), while
the fraction of susceptible individuals s(t + 1) is computed
from the conservation of the number of agents. Therefore, the
complete mean-field model is

i(t + 1) = i(t) + γ s(t)[1 − (1 − λci(t))a]

+ (1 − γ )s(t)[1 − (1 − λei(t))a] − μi(t),

r(t + 1) = r(t) + μi(t),

s(t + 1) = 1 − i(t + 1) − r(t + 1), (2)

with γ = L2
c/L

2.

We observe that the mean-field model, (2), is derived from
basic principles of contact dynamics in epidemic processes.
An alternate approach to the definition of a mean-field model
can be grounded on the microscopic description of the agent
dynamics, following the so-called individual-based modeling
approach [29]. In this framework, blinking networks [30–33]
can be a valuable modeling tool to describe the contact
network. In the limit of high mobility (pj → 1 or, according
to the terminology of blinking network, in the fast-switching
hypothesis) the contact network is annealed into an averaged
one that has its links weighted according to their activation
probability, given in our case by p = πD2/L2 [34]. However,
the relationship between deterministic models and descriptions
at the individual level is far from being trivial, as discussed
in [29].

From Eqs. (2), if the fraction of infected individuals at t = 0
is small, we can approximate i(1) as

i(1) = i(0) + γ s(0)πD2ρλci(0) + (1 − γ )s(0)λei(0)

− μi(0) + O(i(0)) (3)

The condition for epidemic spreading is that the density of
infected individuals increases over time, that is, i(1) > i(0).
Thus, an epidemic outbreak occurs if

γ λc + (1 − γ )λe

μ
>

1

πD2ρ
. (4)

We observe from Eq. (4) that the occurrence of an epidemic
outbreak is favored by an increase in the density or in
the interaction radius, since both factors contribute to the
increase in the average node degree in the contact network,
〈k〉 = πD2ρ. The parameter λc is weighted by γ , which is
the ratio between the area of �c and that of the total space
[analogously, λe is weighted by (1 − γ ), which is the ratio
between the area of �\�c and that of �]. This implies that
increasing the force of infection in only one of the two regions
may not result in a global disease outbreak.

We expect that the HM hypothesis holds when the time
scale of motion, dictated by pj and v, is much shorter
than that of the epidemic spreading process. In fact, when
pj = 1 the threshold condition [Eq. (4)] of the HM-based
model accurately captures the system behavior. This can be
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observed in Fig. 2(c), where the floor, representing theoretical
expectations from the HM model, is in agreement with the
numerical results. More precisely, the dark floor area indicates
that condition (4) is satisfied, and, in correspondence to this, a
macroscopic outbreak occurs. Thus, Eq. (4) clearly represents
a global invasion threshold, that is, according to the definition
in [1], a threshold for the onset of an epidemic involving the
entire population.

Setting pj = 0 drives the system far from the HM hy-
pothesis. The large difference between λc and λe and the
low mobility have the effect of splitting the populations into
two parts, one confined in �c and the other in �\�c, with
distinct behaviors and a low level of mixing between them.
Under these conditions the system behavior is governed by
local epidemic thresholds, and as a consequence, the epidemic
has different effects on the two subpopulations: the former
undergoes an outbreak that involves the whole subpopulation
(in �c the size of the population is γN ), and the latter is almost
unaffected by the disease. To explain this behavior, we consider
the limit case of zero mobility (v → 0 and pj = 0), whereby
the agents remain confined either in �c or in �\�c, and study
the system behavior in each of the two regions, separately.
Under these assumptions, each region is characterized by a
contact network that is a random geometric graph with average
node degree 〈k〉 = πD2ρ and has a unique giant component
for 〈k〉 � ln(Nh), with h = {c,e}, and where Nc = γN and
Ne = (1 − γ )N are the subpopulation sizes in �c and �\�c,
respectively [35]. The condition for an outbreak involving the
whole subpopulation in any of the two zones is that a giant
component appears and that

λh

μ
>

1

πD2ρ
, (5)

where Eq. (5) is derived taking into account the expression
for the epidemic threshold in a random network with 〈k〉 =
πD2ρ [36]. When Eq. (5) holds in �c, the epidemic will
involve a fraction of the population equal to γ , that is, R∞ = γ ,
whereas, when Eq. (5) holds in �\�c, a steady-state fraction
of recovered individuals R∞ = (1 − γ ) will be achieved.
The theoretical prediction expressed in Eq. (5) is validated
in Fig. 2(a). The floor colors indicate the occurrence of
condition (5) in �c [left (red) floor square], in �\�c [right
(cyan) floor square], or in both areas [top (dark-blue) floor
square]. Even though condition (5) is derived under the
hypothesis that agents are confined in �c or in �\�c in the
absence of mobility, we find that the theoretical predictions
also hold in the case of low mobility [v = 0.1 in Fig. 2(a).
This is further illustrated in Fig. 3, where the system is
simulated for a large value of λc (λc = 1) and a small value
of λe (λe = 10−2), that is, in a region of the parameter space
which corresponds to the left (red) floor square in Fig. 2(a).
Figure 3 illustrates simulation results for two density values:
ρ = 3, which is greater than the threshold required to obtain
a giant component in �c, that is, ρ > ln(γN )/πD2 = 2.23,
and ρ = 0.3, which is below the threshold. The system clearly
exhibits a global invasion threshold: when pj is increased from
0 to 1, a transition between a regime characterized by local
outbreaks and one characterized by a global invasion occurs.
For pj = 0 we observe the absence of outbreaks for ρ = 0.3
and an outbreak involving only a fraction of the population

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

p
j

R
∞

 

 

ρ=0.3
ρ=3

FIG. 3. (Color online) Steady-state fraction of recovered individ-
uals R∞ as a function of pj for a system of N = 10 000 agents with
λc = 1 and λe = 10−2, ρ = 3 [solid (blue) line] and ρ = 0.3 [dashed
(red) line], D = 1, v = 0.1, μ = 0.05ρ, and γ = 1/9. The system
is started with a random 1% of the agents set in the infective state.
Results are averages over 50 runs.

approximately equal to R∞ 
 γ for ρ = 3, which indicates
that the epidemic is almost confined in �c and does not spread
through the rest of the plane. When pj is increased, the system
transitions towards a regime over the global invasion threshold,
and for both densities, the epidemic outbreak involves the
entire population.

We further show the presence of two distinct regimes,
obtained by varying the modulus v of the agent velocity
according to a purely random walker model (that is, letting
pj = 0). Numerical results are illustrated in Fig. 4, which
highlights the role of v in driving the system from a non-HM
condition, obtained for a low velocity, to an HM condition,
obtained for a high one. We observe that the role of v is
analogous to that of pj , yet they act on the system in different
ways. In fact, increasing v implies a higher mobility for all
the agents, whereas increasing pj involves a higher fraction of
agents that are likely to perform long-distance motion steps.
The latter mechanism seems more effective in driving the
system towards a HM condition, since it suffices that a few
individuals gain the ability to jump, whereas a very high
value of v for all agents is required when the purely random
walker model is used. For low v, that is, in the case where
the characteristic time of motion is no longer smaller than that
of the epidemic process and mixing is not homogeneous, the
behavior is ruled by the condition in Eq. (5). We also observe
that, when mixing is not homogeneous, the number of contacts
decreases and the epidemic threshold increases. Therefore, the
threshold condition valid under the HM hypothesis [Eq. (4)]
represents a lower bound for the epidemic spreading under
nonfast motion.

We execute a further set of simulations to ascertain that
the system behavior is not dependent on specific features of
the motion model. Figure 5 shows the fraction of recovered
individuals R∞ as a function of λc and λe for the motion rule
based on a truncated power-law distribution of agent velocities.
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FIG. 4. (Color online) Steady-state fraction of recovered individ-
uals R∞ as a function of v for a system of N = 10 000 agents with
λc = 1 and λe = 10−2, ρ = 3 [solid (blue) line] and ρ = 0.3 [dashed
(red) line], D = 1, pj = 0, μ = 0.05ρ, and γ = 1/9. The system
is started with a random 1% of the agents set in the infective state.
Results are averages over 50 runs.

To account for different mixing levels we let the parameter c

in the expression of the maximum velocity vmax = c
√

2L/�t

assume the values c = 0.01 [Fig. 5(a)], c = 0.1 [Fig. 5(b)],
and c = 1 [Fig. 5(c)]. Numerical results illustrated in Fig. 5 are
qualitatively similar to those in Fig. 2, since, for low mixing
[Fig. 5(a)], outbreaks involve only one of the two regions
�c or �\�c. On the other hand, under homogeneous mixing
[Fig. 5(c)], a global outbreak occurs when Eq. (4) holds. For
intermediate values of the parameter c [Fig. 5(b)], the outbreak
for small λe and large λc involves a significant percentage of
the population but is not global. The major difference between
the two motion rules comes from the comparison of Figs. 2(c)
and 5(c), which shows that the transition to a global outbreak
regime for low values of λe is sharper for the motion rule based
on the combination of random walk and long-distance jumps.

In fact, this model, although not capturing all the features
of realistic motion patterns, allows us to study the system
behavior under the ideal mixing hypothesis.

We now study the effect of targeted immunization strate-
gies. Differently from most of the work presented in the
literature, where a subset of individuals is selected to be
immunized [36], here we study the effect of immunizing all the
individuals that are located in a limited portion of the space.
More specifically, we study the effect of a reduction of the
force of infection λc in �c. In this case, the effectiveness of
the immunization strategy depends on the force of infection
in the uncontrolled region (that is, on λe) and on the agent
mobility: (i) for high λe and high mobility [Figs. 2(c) and 5(c)],
decreasing λc has no effect on R∞; (ii) for high λe and low
mobility [Figs. 2(a) and 5(a)], reducing λc yields a reduction in
the percentage of R∞ only by an amount equal to the targeted
fraction of the population, γ ; (iii) for low λe and high mobility
[Figs. 2(c) and 5(c)], reducing λc yields a total recovery of the
population; and (iv) for low λe and low mobility [Figs. 2(a)
and 5(a)], reducing λc controls the local outbreak, that is, R∞
goes from R∞ = γ for high λc to R∞ = 0 for low λc. Thus,
if the force of infection in the uncontrolled region is high, few
benefits can be gained from the disease control strategy when
mobility is low. On the other hand, if the force of infection in
the uncontrolled region is low, a larger benefit is achieved when
the mobility is high. Therefore, the disease control strategy is
particularly effective when the individual mobility is high and
the force of infection is highly heterogeneous. In this case,
the area to be targeted is clearly defined. On the contrary,
reducing the mobility (quarantine) has a general positive effect
on epidemic control, but this appears not always to be suitable,
since the global epidemic threshold is given by a small fraction
(pj 
 10−2 in Fig. 3) of individuals performing long-distance
jumps.

Finally, we briefly comment on models with temporary
immunity, that is, SIRS models, which are appropriate to
model endemic diseases such as influenza [37]. In this case,
the immunity which is acquired after the infection is not
permanent, and individuals move back to the susceptible class
when the immunity vanishes. Temporary immunity is studied
by introducing a further transition from the R to the S state

FIG. 5. (Color online) Steady-state fraction of recovered individuals R∞ as a function of the parameters λc and λe for agents with velocities
drawn from a truncated power-law distribution. We have considered a system with N = 10 000, ρ = 3, D = 1, v = 0.1, μ = 0.15, γ = 1/9,
and different values of pj : (a) c = 0.01, (b) c = 0.1, and (c) c = 1. The floor represents theoretical expectations. In (a) the left (red) floor
region corresponds to the occurrence of condition (5) in �c; the right (cyan) region, in �\�c; and the top (dark-blue) region, in both �c and
�\�c. In (b) and (c) the dark floor area corresponds to condition (4) being satisfied (epidemic outbreak); the white area, to condition (4) not
being satisfied (no epidemic outbreak). Simulations start with 1% of the agents set to the infective state. Results are averages over 50 runs.
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FIG. 6. (Color online) Comparison of the trend of the fraction
i(t) of infected individuals in the SIR [solid (blue) line] and SIRS
[dashed (red) line] models with λc = 0.1, λe = 10−2, ρ = 2, μ =
0.01, γ = 1/9, and α = 0.01. The system is started with 1% of the
agents set in the infective state.

governed by a rate α, also known as the loss-of-immunity
rate [37]. The average immunity period is defined as 1/α

(immunity becomes permanent for α = 0). Under the HM
hypothesis, the mean-field approximation for the SIRS model
reads

i(t + 1) = i(t) + γ s(t)[1 − (1 − λci(t))a]

+ (1 − γ )s(t)[1 − (1 − λei(t))a] − μi(t),

r(t + 1) = r(t) + μi(t) − αr(t),

s(t + 1) = 1 − i(t + 1) − r(t + 1). (6)

Model (6) is similar to Eq. (2), except for the presence
of the term −αr(t), accounting for the fraction of recovered
individuals which move back to the susceptible state. Using
the same line of argument adopted for the SIR model, it can be
found that the threshold is given, also in this case, by Eq. (4).
This finding is supported by other studies on SIRS models
that obtained the same result [37]. However, for the SIRS
model an endemic state with a nonzero steady-state value of
infected individuals is asymptotically reached. An example
is illustrated in Fig. 6, which compares the trends of the

fraction i(t) of infected individuals in the SIR and the SIRS
models. During the first part of the simulation the fractions
of infected individuals in the two models grow following
similar trends, whereas the steady-state values are different:
i(t) asymptotically vanishes in the SIR model, whereas it
approaches a nonzero level in the SIRS model. The effect
of the motion parameters such as pj and v is analogous to
what is observed in the SIR model.

IV. CONCLUSIONS

We have studied epidemic spreading in a population of
agents moving in a heterogeneous space. In particular, we have
considered a network of agents that move on a plane divided
into two regions, each characterized by a different force of
infection. Epidemic spreading in this system undergoes two
regimes: one in which outbreaks are restricted to only one
of the two regions and one in which the epidemic spreads
through the whole population. We have derived a mean-field
model from which the conditions that govern the onset of
the epidemic in both regimes were found. The role of key
parameters has also been elucidated. The force of infection,
the probability of recovery, the ratio of the areas of the two
regions, and the agent density determine the condition for
the onset of the epidemic, computed under the hypothesis of
HM. On the other hand, mobility parameters such as the agent
velocity and the jump probability regulate agent mixing, and
it has been found that an increased degree of mobility drives
the system towards a regime in which macroscopic outbreaks
appear. The threshold derived under the HM hypothesis is a
lower bound for the epidemic threshold under large time scales
of motion (that is, when mixing is no more homogeneous),
since in this case the number of contacts decreases and the
epidemic threshold increases.

Our model is of interest for the study of epidemic spreading
in areas with a homogeneous agent density and for applications
such as epidemic routing, an approach for sparse and/or highly
mobile networks, where packets are routed from agent to agent
with a mechanism analogous to infection spreading. Supposing
that communications from the external world to agents are
restricted to a portion of the available space, which corresponds
to �c in our model, then our results indicate that even if the
strength of infection in �c is increased to its maximum (λc = 1,
that is, a perfect communication without packet losses), this
may not suffice to achieve a macroscopic outbreak and so, in
terms of the envisaged application, to implement an effective
routing strategy.
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