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Geophysical data contain stochastic noise that may mask their useful content. For example, ground roll (GR)
is a coherent noise that is present in seismic data. Thus, such data are usually a mixture of useful information
and useless coherent noise. The latter masks the relevant geologic information that seismic records contain,
and its removal has always been a problem of fundamental importance. We propose a denoising method based
on the curvelet transformation (CT), a multiscale transformation with strong directional character that provides
an optimal representation of objects that have discontinuities along their edges. An algorithm is presented for
processing and denoising of geophysical data. As an example, we apply the method to seismic images that are
contaminated with the GR noise. First, the coherence index (CI), which represents a measure of the amount of
energy contained in the most coherent modes of Karhunen-Lòeve transform for any given segment of the data,
is computed. The contaminated region of the data is then identified as the maximum region of the CI. After
demarcating the contaminated segment, the CT is used to eliminate the noise. The method removes the noise with
negligible distortion of the data’s noncontaminated region. It is also significantly more efficient computationallty
than the previous methods. The use of the method is demonstrated by its application to synthetic, as well as
actual, seismic data for hydrocarbon reservoirs.

DOI: 10.1103/PhysRevE.90.042810 PACS number(s): 89.90.+n, 05.45.Tp, 93.85.−q, 91.30.Dk

I. INTRODUCTION

An important task in geophysics is to delineate as much
information as possible about the structure of the interior
of rock. Since direct exploration by penetrating rock is
impractical, various types of data, such as seismological,
electromagnetic, and gravitational measurements, collectively
referred to as geophysical data, are used. Such data provide
much insight into the structure and properties of rock and
large-scale porous media, such as oil, gas, and geothermal
reservoirs and groundwater aquifers. Thus, a major task is
making inferences from such data [1]. The method of analysis
depends, however, on the volume of the data. If the number of
observations or data points is small, one usually uses them to
fit a number of parameters in the analytic solutions of the
equations of classical physics, such as the wave equation.
With the advent of new and precise instruments and rapidly
increasing computing power, however, it has become common
to have a massive amount of geophysical data that may contain
far more information about large-scale porous media than can
possibly be modeled by the analytic solutions. For example,
a typical reflection seismic marine survey ship can collect
about a trillion bits of information over a relatively short
time. In addition, the existing analytic solutions have been
derived based on the assumption that, at a large enough length
scale, any porous medium of interest may be represented by a
continuum to which the averaged equations of motions are
applicable. In reality, that is usually not the case, as rock
and large-scale porous media are heterogeneous over a wide
spectrum of distinct length scales [2], and modeling of any
phenomenon in them through averaged continuum mechanical
equations may be in error.
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Similar to many other types of data that contain a stochastic
component [3], accurate processing and analysis of geophys-
ical data is a complex task and fraught with difficulties. The
difficulties are due to the uncertainties associated with the
measurements, as well as various types of what is usually
referred to as noise. Consider, for example, seismic data, the
focus of the present paper, which play a fundamental role
in obtaining information about and insight into the structure
of rock [4] and its content. The sources of noise in seismic
data are usually divided into two categories. The first one
consists of noise due to the experimental, or measurement,
errors. Such errors comprise any unexpected perturbation of
the environment in which the data are recorded, such as, for
example, a geophone that may have malfunctioned, wind,
cable vibrations, etc. This type of noise imparts more coherent
energy into the data and can be misinterpreted as true data.

The second class of noise is due to modeling of un-
certainties. Consider, for example, seismic data, which are
often contaminated by random noises caused mainly by the
receiver’s equipments [5,6]. In seismic wave propagation,
the wave fronts [7] are formed by various components,
such as direct, reflected, converted, and transmitted waves,
which endow the wave front with abundant information
about important geologic features. Modeling of uncertainties
associated with seismic data is necessary because the physical
description and parametrization of rock is incomplete. The
incomplete description is caused by the inherent complexity
of wave propagation in rock, a highly heterogeneous medium.
As seismic data are very complex, they are usually separated
into distinct propagation modes that are somehow easier to
understand and use. The downside of such a decomposition
of the data is that, most of the actual data may consequently
be obliterated. For example, the ground roll, a coherent noise
that is present in land-based seismic data, is attenuated and
unravels the seismic reflections.
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Due to such difficulties, data denoising is an important
issue in the processing of geophysical data. There are many
denoising methods, most of which serve the same goal, namely,
eliminating random noise and useless signal components,
while protecting and/or recovering the original information
that may be lost by the denoising process, such as the signal’s
amplitudes and discontinuous contours or edges. In particular,
the goal in a high-quality processing of seismic data is having
a high signal-to-noise ratio (SNR), high resolution, and high
fidelity in which improving the SNR or the peak SNR (PSNR)
is the chief task. Collectively, the three desired features are
called 3-high guidelines.

Depending on its variant features, noise in seismic data is
generally divided into three main classes. The first, based on
the features of the seismic section plane, consists of regular
and irregular noise, which are also called coherent noise and
random noise, respectively. The second class is based on the
spreading mechanism and includes noise in surface, refracted,
lateral, and tube waves, as well as multiple waves. Finally, one
also has low-frequency, high-frequency, and 50 Hz industrial
noise. Among these, elimination of the ground roll (GR) [8],
a low-frequency coherent noise, is a fundamental issue.

The GR is the signature of a surface wave, i.e., the Rayleigh
dispersive wave with low frequency and low phase and group
velocities [9]. As a component of surface wave, the GR
does not contain information on deeper subsurface structures
associated with, for example, oil reservoirs. An important
characteristic of the GR is that its amplitude may be stronger
than the waves carrying the relevant information that is due to
the reflections in geologic strata.

Over the last several decades, many methods have been pro-
posed for denoising geophysical data, and in particular seismic
data. One well-known method is based on the Karhunen-Loève
(KL) transformation (Principal Orthogonal Decomposition)
[10], which is [11] an optimal orthogonal transformation based
on statistical characteristics of the data and has been used
in pattern recognition, feature optimization, and denoising of
time series [12–14]. Its application to denoising of seismic
data and eliminating the GR has been described by Liu [8] and
Montagne and Vasconselos [15]. Another denoising method is
based on the use of Fourier transform. Canales [16] proposed a
scheme in two-dimensional (2D) frequency-spatial domain for
suppressing random noise in seismic data. A classical method
of denoising is the linear Radon transform [17] (see below) or
the so-called τ -p transform [18], which has the advantage
of being capable of distinguishing the primary reflection and
various types of noise, including random noise.

The aforementioned methods are most accurate for the data
collected over a single scale. If geophysical data represent a
system at multiple scales, which is almost always the case, then
one needs a multiresolution (MR) analysis method. Over the
last two decades such MR methods as wavelet transform [19]
have been developed and utilized for analyzing and denoising
geophysical data. Gendron [20] proposed an application of
Bayes’ Law of Probability to denoising of seismic data and
derived a “best” wavelet packet-basis strategy. Chanerley and
Alexander [21], and Corso et al. [22] used stationary wavelet
transform as an alternative denoising scheme to standard
band-pass filtering. Directional or geometric wavelets for data
processing have become an important research topic over the

last several years. Sahimi and co-workers proposed use of
wavelet transforms for phenomena associated with various
fluid flow and transport in large-scale porous media [23],
characterization of such porous media [24], and transport in
disordered solids [25].

Generalizations of wavelet transforms have also been
proposed and utilized in various applications. For example,
contourlets proposed by Do and Vetterli [26] can capture
directional details of smooth anisotropic contours that are
intrinsic geometric features of seismic data. Po and Do [27]
proposed a denoising scheme for oriented textures, taking
into account the dependence on distinct scales, directions, and
locations in the contourlet domain. Alternatively, the curvelet
transform (CT) [28,29] is a geometric multiscale transform that
allows an optimal sparse representation of objects with second-
order continuous differentiable singularities. They represent
edges and singularities along curves much more precisely
with needle-shaped elements, which own very high directional
sensitivity and are very efficient for smooth contour capturing.
For denoising of geophysical data, and in particular for seismic
discontinuity-preserving denoising, curvelets are superior to
2D standard wavelets [5]. Computationally, curvelets are
also more efficient as they use much fewer coefficients than
wavelets to represent edges or wave fronts for a given accuracy.

The first generation of the CT was based on a block ridgelet
transform [28]. Ridgelets, wedgelets, and other generalizations
of the WTS were studied extensively by Donoho and co-
workers [28–30]. Ridgelets are not, however, true ridge
functions that take on the form f (F · x), with F being a fixed
vector and x a variable one, both in d-dimensional space. As a
result, the geometry of the ridgelets was itself unclear, leading
to important limitations for the first-generation curvelets. More
advanced CT was then proposed [29], defined directly via
frequency partitioning without using the block ridgelet trans-
form, which makes it more efficient for data processing. Others
[5,6] used the CT to map multidimensional data onto almost
orthogonal localized multidimensional prototype waveforms
that varied in directional and spatial-temporal content. They
also proposed [5,6] a nonparametric transform-based recovery
method to exploit the compression of seismic data using CT.
Fast discrete CT has also been developed [31].

Herrmann and co-workers [32–35] used the CT for image
recovery and processing, as well as denoising of seismic data.
Yarham et al. [34] used the CT to remove the GR from seismic
data by a two-step procedure. First, the major component of
GR was identified using a multiscale separation, directional or
frequency-altering method. Next, the GR was removed through
a block-coordinate relaxation method [36]. In another study,
Yarham and Herrmann [35] proposed a method for removal of
the GR from the data based on CT, showing that by using a
Bayesian separation method and the CT more coherent noise
can be removed. Neelmani et al. [37] discussed applications of
the CT, as well as a hybrid CT-WT for removing random and
coherent noise from 3D seismic data of carbonate reservoirs.
Three main steps are taken when applying the CT to eliminate
noise. One first decomposes the data or signal in the curvelet
space. Then the coefficients in angular sectors in the curvelet
space that correspond to the noise are identified and eliminated
(set to zero). Finally, one reconstructs the denoised data.
Olhede and Walden [38] used the maximal overlap discrete
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WT and Hilbert energy spectrum to analyze nonstationary
signals in time-frequency domain. They showed that their
decomposition method may be used to denoise signals with
Gaussian noise.

All the current variations of the CT have, however, the
serious drawback that the region to be filtered out must be
picked by hand, a procedure that not only is labor intensive, but
also relies on the judgment of the person performing the
denoising. All the aforementioned studies, as well as other
reports on the removal of the GR using multiscale transforms,
also apply their algorithms to the entire seismic image without
taking into account the actual location of the noise. Not only is
this inefficient computationally, in particular one must analyze
actual seismic data that are typically very voluminous, it may
also damage the valuable information contained in the image.

Such methods also share two main features. First, they
decompose the traces of the signal using a one-dimensional
spectral technique, such as Fourier, wavelet, or curvelet
transform. Second, they utilize an attenuation factor in order
to remove a part of the undesirable frequencies (or scales and
tones) in the transformed space. But the attenuation is always
done blindly and cannot guarantee that the truly useful data
are preserved. The attenuation is based on the assumption that
if the noise is concentrated in a given range of the frequencies
(scales), one should decrease the amplitude of the coefficients
that correspond to such frequencies (scales), which is more
often than not unjustified. Indeed, the attenuation is carried
out without complete knowledge of the data. Although some
may consider this as an advantage, we believe that a basic
understanding of general features of any set of seismic data is
essential to their correct and efficient processing.

Thus, in this paper we propose a significant improvement
of the CT method for removal of the coherent noise in which
the data segment to be filtered out is selected automatically
as an optimization process. To do so, we utilize the coherence
index (CI), which represents a measure of the amount of energy
contained in the most coherent modes for any given segment of
the data. The optimal segment is then one for which the CI is
maximum, thus ensuring that the CT removes the coherent
noise in a most efficient and accurate way. Furthermore,
introducing a quantitative criterion for selecting the optimal
segment to be filtered out has the considerable advantage of
yielding an automatic, unsupervised scheme for demarcating
and efficiently removing the coherent noise. We focus on the
demarcating the noisy region by using the K-L transform, and
then applying the CT filtering algorithm to the noisy region.
Thus, the new algorithm employs the advantages of the CT that
have been reported by others, while imposing an intelligent
selection criterion. We emphasize that although our main
motivation here concerns the suppression of coherent noise in
seismic data, we wish to emphasize that the proposed method
is applicable to other problems and types of data in which one
seeks to identify and eventually remove coherent structures
embedded in a complex pattern. In particular, the proposed
optimized CT filter yields an image processing technique that
is highly suitable for images in which the undesired coherent
features degrade the quality of the information that can be
extracted from the image.

The rest of this paper is organized as follows. In Sec. II
we briefly describe the CT and discuss its main properties.

Section III presents the proposed optimized CT procedure for
selecting the noise-contaminated region. The application to 2D
synthetic and actual seismic results are presented and discussed
in Sec. IV, and the computational efficiency of the method is
discussed in Sec. V. The paper is summarized in Sec. VI.

II. CURVELET TRANSFORMS

A classical problem in image processing is the reconstruc-
tion of images from indirect noisy measurements, that is,
recovering an object f ∈ L2(R2) from a data base y of the
form

y(u) = K[f (u)] + z(u), (1)

where K is a linear operator defined by K[f (u)] =∫
k(u,x)f (x) dx, with f (x) being the object of interest. K

can be, for example, a Radon transform [17,39], a collection
of the line integrals,

K[f (u)] = R[f (u)] =
∫

Lθ,t

f (x) dx, (2)

where the line is defined by Lθ,t = x1 sin θ + x2 cos θ = t .
Here z(u) is the noisy part that may be stochastic or
deterministic.

In a manner similar to the fact that it was recognized
that Fourier methods are not suitable for all purposes and,
in particular, for image processing and multiscale systems
and, consequently, the WTs were introduced for analyzing
such systems, development of alternatives to the wavelet
analysis has also attracted considerable attention. This has
been motivated by many problems in which one must study
interesting phenomena that occur along curves or sheets, such
as edges in a 2D image. Although wavelets are suitable for
dealing with images in which interesting phenomena, such as
singularities, are associated with exceptional points, they are
ill-suited for detecting, organizing, or providing a compact
representation of intermediate dimensional structures. Thus,
there have been vigorous research efforts for developing better
adapted alternatives to the wavelets by combining ideas from
geometry and traditional multiscale analysis [5,6]. A special
member of this emerging family of multiscale geometric
transforms is the CT, which was developed in an attempt
to overcome inherent limitations of the traditional multiscale
representations, such as those with the wavelets.

At a conceptual level, the CT is a multiscale pyramid
with many directions and positions at each length scale,
and needle-shaped elements over fine scales. The pyramid
is nonstandard, however, in that the curvelets have geometric
features that distinguish them from the wavelets. For example,
curvelets follow a parabolic scaling relation according to which
at scale 2j each element has an envelope aligned along a
“ridge” of length 2−j/2 and width 2−j . Roughly speaking,
the data acquisition geometry separates the curvelet expansion
of an object into two pieces,

f =
∑

n∈good data

〈f,ϕn〉ϕn +
∑

n/∈HTD

〈f,ϕn〉ϕn, (3)

where ϕn is called the mother curvelet (see below). The first
term on the right side represents that part of the image or
data that is not affected by the noise and can be recovered
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easily, while the second part, the HTD, represents the part
for which it is hard to distinguish between the true signal or
data and the noise and, thus, cannot be recovered accurately.
The important point is that one can probably reconstruct the
recoverable part with an accuracy similar to what one would
achieve if one had the complete data. It can be shown [5,6] that
for some statistical models that allow for discontinuities in the
object to be recovered, there are simple algorithms based on the
shrinkage of the curvelet biorthogonal decompositions, which
achieve optimal statistical rates of convergence. That is, there
are no other estimating procedure that, in an asymptotic sense,
yield a fundamentally better reconstruction. But, to realize
this potential, and deploy this “technology” to a wide range
of problems, one would need a fast and accurate discrete CT
operating on digital data, which we now describe.

A. Continuous-time curvelet transforms

In this paper we study 2D systems with a spatial variable x,
with ω being the frequency domain variable, and r and θ

the polar coordinates in that frequency domain. We begin
with a pair of windows W (r) and V (t), which we call the
radial window and the angular window, respectively. Both are
smooth, nonnegative, and real-valued functions, with W taking
on positive real arguments and supported in r ∈ (1/2,2) and
V taking real arguments and supported in t ∈ [−1,1]. The two
windows satisfy the admissibility conditions [5,6],

∞∑
j=−∞

W 2(2j r) = 1, with r ∈
(

3

4
,
3

2

)
(4)

and
∞∑

l=−∞
V 2(t − l) = 1, with t ∈

(
−1

2
,
1

2

)
. (5)

Then, for each j we introduce a frequency window Uj , defined
in the Fourier domain by

Uj (r,θ ) = 2−3j/4W (2−j r)V

(
2[j/2]θ

2π

)
, (6)

where [·] represents the integer part of the number. Thus,
the support of Uj is a polar wedge defined by the support
of W and V , the radial and angular windows, applied with
scale-dependent window widths in each direction. To obtain
real-valued curvelets, we work with the symmetric version of
Eq. (4), namely, Uj (r,θ ) + Uj (r,θ + π ).

We then define the waveform ϕi(x) by means of its
Fourier transform, ϕ̂i(ω) = Uj (ω), with the understanding that
Uj (ω1,ω2) = U (ω) represents the window defined in the polar
coordinate system. In a manner similar to the wavelets, one
may think of ϕi(x) as the mother curvelet in the sense that all the
curvelets at scale 2−j are obtained by rotation and translation of
ϕi(x). We then introduce an equispaced sequence of rotation
angles, θl = 2π × 2−[j/2], with l = 0, 1, . . . , such that θl =
0 < 2. Note that the spacing between consecutive angles is
scale dependent. We also introduce a sequence of translation
parameters, k = (k1,k2) ∈ Z2. With the given notations, the
curvelets are defined as a function of x = (x1,x2) at scale 2−j ,
orientation θl , and position x

(j,l)
k = R−1

θl
(k1 × 2−j ,k2 × 2−j/2)

by [5,6,29]

ϕj,l,k(x) = ϕj

[
Rθl

(
x − x(j,l)

k

)]
, (7)

where Rθl
represents a rotation by θ radians, and R−1

θl
its

inverse, as well as its transpose,

Rθ =
(

cos θ sin θ

− sin θ cos θ

)
, R−1

θ = RT
θ = R−θ . (8)

A curvelet coefficient is then simply the inner product of an
element f ∈ L2(R2) and a curvelet ϕj,l,k ,

c(j,l,k) = 〈f,ϕj,l,k〉 =
∫

f (x)ϕj,l,k(x) dx, (9)

where the overline represents complex conjugate. Since digital
CTs operate in the frequency domain, it is useful to apply
Plancherel’s theorem (according to which the integral of a
function’s squared modulus is equal to the integral of the
squared modulus of its frequency spectrum) and express the
inner product as an integral over the frequency plane,

c(j,l,k) := 1

(2π )2

∫
f̂ (ω)ϕ̂j,l,k(ω) dω

= 1

(2π )2

∫
f̂ (ω)Uj (Rθlω) exp

(
i
〈
xj,l

k ,ω
〉)

dω, (10)

where the hat sign indicates the Fourier transform of the
function. As in the theory of wavelets, we also have coarse-
scale elements. We introduce the low-pass window W0 obeying

|W0(r)|2 +
∑
j=0

|W (2−j r)|2 = 1, (11)

and for (k1,k2) ∈ Z define the coarse-scale curvelets as

ϕj0,k(x) = ϕj0 (x − 2−j0 k), ϕ̂j0 (ω) = 2−j0W0(2−j0 |ω|).
(12)

Hence, coarse-scale curvelets are nondirectional. The com-
plete CT consists of the fine-scale directional curvelets
(ϕj,l,k)j=j0,l,k and of the coarse-scale isotropic “father”
wavelets (�j0,k)k . It is the behavior of the fine-scale directional
elements that is of interest here.

B. Curvelet filter for noise removal

In general, the contaminated region of the data or image
may have any shape, such as, for example, a square, rectangle,
or any other polygon. But, as already mentioned, due to its
dispersive nature the GR noise in a seismic image typically
appears as a fanlike coherent structure (see Figs. 1 and
9 below). For the purpose of using CT we need at least
a quadrangle region. So we need at least four points in
the original image in order to demarcate a quadrilateral
contaminated region to be denoised. In this study, we assume
for simplicity that the noisy section has a square shape, but,
in general, if the contaminated region is not a square, we
can shift and/or stretch the sides of the polygon to convert it
to a square sector. The data points inside the polygon are
then mapped onto the corresponding locations in the new
rectangular domain, with the mapping carried out via a cubic
convolution interpolation technique [40].

042810-4



COHERENCE INDEX AND CURVELET TRANSFORMATION . . . PHYSICAL REVIEW E 90, 042810 (2014)

FIG. 1. A typical synthetic seismic image containing ground-roll
noise [15].

The space-time localization of the GR allows the possibility
of applying the CT to suppress the noise, leaving intact the
uncontaminated region. In order to demarcate the noisy region,
we begin from a point in the left-upper section of the image and
enlarge the alignment region, both vertically and horizontally.
This is done by adding more pixels to the rows and columns of
the matrix that we use in the KL transform (see below). Next,
we use the horizontal lines to demarcate the noisy region.
The process is repeated by starting from the four corners in
the original image. Once the region contaminated by the GR
has been demarcated, we map each sector onto a horizontal
rectangular region by shifting and stretching along the time
axis. We then use the CT to denoise the demarcated region,
i.e., set the corresponding curvelet coefficients to zero, and
then reconstruct (transform) it back to the original image. To
implement the procedure on a computer, a rectangular area
of seismic image is used as the initial noisy region, and then
expand the its dimensions. Figure 1 presents a set of data, and
Fig. 2 shows the rectangular area.

Suppose we have chosen l sectors to demarcate the different
wave trains in the contaminated region of the original data, and
let {θ1, . . . ,θN } be the set of the parameters characterizing
the respective alignment functions that define the sectors.
Let us denote by Âk, k = 1, . . . ,l the matrix representing
the kth transformed sector obtained from linear mapping of
the respective original sector, as discussed above. For each
transformed sector Âk we compute its KL transform. For the
data matrix A the KL transform is defined as the m × n matrix
� (with m and n being the dimensions of the seismic image),
given by

� = UTA, (13)

where the columns of U are the eigenvectors of � = AAT,

U = (u1 u2 · · · um), (14)

FIG. 2. (Color online) Demarcating the noisy region. Points A
and B1 are the starting points, and B2 is the final point, which in this
study is set to be the lower-right corner of the seismic image. We use
l,k instead of I,J throughout the paper.

The original data are recovered by the inverse KL transform,

A = U�. (15)

We then calculate a coherence index Ck for that sector, defined
as the relative energy contained in its first KL mode:

Ck = λk
1∑rk

i=1 λk
i

, (16)

where λk
i are the eigenvalues of the correlation matrix 	̂k =

ÂkÂ
T
k , with rk being the rank of Âk . As defined, Ck represents

the relative weight of the most coherent mode in the KL
expansion of the transformed sector Âk . Note that a quantity
analogous to the CI was presented in Ref. [15] for the KL filter.

Next, we introduce an overall CI, C(θ1, . . . ,θN ), for the
entire demarcated region, defined as the arithmetic average of
CI of all the sectors:

C(θ1, . . . ,θN ) = 1

l

l∑
k=1

Ck. (17)

As the name suggests, the CI is a measure of the amount of
coherent energy contained in the selected demarcated region
given by the parameters {θi}Ni=1. Thus, the higher C, the larger
is the energy contained in the most coherent modes in a given
region. For the purpose of removing the coherent noise, it is,
therefore, mostly favorable to pick the region with the largest
possible C. Thus, we propose the following criterion to select
the optimal region to be filtered: vary the parameters {θi} over
some appropriate range and then choose the values θ∗

i that
maximize C; that is,

C(θ∗
1 , . . . ,θ∗

N ) = max{θi }C(θ1, . . . ,θN ). (18)
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Once we have selected the optimal region, given by the
parameters {θi}Ni=1, we simply apply the CT filter to the region,
the procedure for which is described next.

By definition, the coherence CI is defined as the amount of
coherent energy contained in a given region. The energy E of a
database is defined as the sum of the eigenvalues of symmetric
matrix 	:

E =
∑

i

λi . (19)

Thus, λi and Ei = λi/E as the energy and relative energy
captured by ui , the ith eigenvector. Next, consider the
covariance matrix of A, defined by

cov(X) = 〈[X − 〈X〉][X − 〈X〉]T〉. (20)

If we compare the covariance matrix defined by Eq. (20)
with the matrix � = AAT, we see that they are very similar,
implying that � is a covariance-like matrix as well. This allows
us to interpret λi as the variance of ui . Therefore, larger λi and,
thus, larger Ei indicate higher coherence in the KL mode of
ui . As a result, the higher the coherence energy, the larger CI
will be in the selected region.

C. Denoising

In this section we describe in some detail the denoising
methodology. Elimination of the coherent noise, such the GR
noise, consists of three main steps: (1) decomposition of the
data in the curvelet space, (2) identification and removal of the
GR coefficients in the angular sectors in the curvelet space,
and (3) reconstruction of the data after the coherent noise is
removed.

(1) Curvelet analysis and decomposition of the data. The
seismic data are decomposed in the curvelet space. This is
accomplished by applying the fast discrete CT, as already
mentioned, which consists, roughly speaking, of computing
the following inner products in the Fourier domain. Based on
Plancherel’s theorem we have

Cj,l,k = 〈f,ϕj,l,k〉 = 〈f̂ ,ϕ̂j,l,k〉. (21)

(2) Identification and removal of the GR noise. Next, we
identify and erase (set to zero) the curvelet coefficients of the
angular sections that correspond to the GR noise. Following
Eq. (1), we split the curvelet decomposition of the signal or
data f into two parts,

f =
∑

j

∑
l∈GR

∑
k

〈f,ϕj,l,k〉ϕj,l,k +
∑

j

∑
l /∈GR

∑
k

〈f,ϕj,l,k〉ϕj,l,k.

(22)
We emphasize that the selection of the GR coefficients is done
only by the l index, the angular coefficients. The GR in the
seismic image is formed by almost vertical lines. Therefore,
the GR in the curvelet space is represented by the directional
components near the horizontal direction.

(3) Reconstruction of the data. After erasing the GR
coefficients from the second term of Eq. (18), one obtains
the denoised signal. We note that this process is performed
without any artificial attenuation (no leakage and excellent
localization), while the angular coefficients corresponding to
the GR are completely removed from the seismic image.

III. RESULTS AND DISCUSSION

We used two synthetic and two actual sets of seismic data
with distinct noise content in order to test the accuracy of
the method. The first sample data were taken from Ref. [15],
which had been provided by the Brazilian petroleum company
PETROBARS. The second synthetic image was provided by
Geokinetics, a geophysical service company. The real seismic
data were provided by the National Iranian Oil Company
and Geokinetics. A seismic section consists of several traces,
where a trace is the recorded signal from a single geophone
(receiver). Standard imaging techniques are used to generate
seismic images from a set of traces. Usually, a Ricker wavelet,
sometimes referred to as the “Mexican hat” wavelet,

ψ(x) = 2

π1/4
√

3σ

(
1 − x2

σ 2

)
exp

(
− x2

2σ 2

)
,

which is essentially the second Hermite function, is used
to generate the synthetic traces and seismic sections. Then,
coherent noise, mimicking the GR noise, with a lower
frequency range is added to the traces in order to create noisy
images. In a seismic image, the horizontal axis represents the
distance between the seismic source (the device for generating
seismic energy) and the receiver. The vertical axis corresponds
to time. A seismic image can be displayed by gray, colored, or
wiggle modes, and here we use a gray mode to show seismic
images. The gray levels in the images change linearly from
black to white, as the amplitude of the seismic signal varies
from minimum to maximum. Owing to its dispersive nature,
the GR in a seismic image appears as a fanlike structure, which
is visible in Figs. 1, 5, 8, and 10.

We first applied the method to the synthetic data and image
shown in Fig. 1. We began from a point in the x-y plane at the
image’s top left side, and for each choice of k and l in Eqs. (14)
and (15) we applied the procedure described in the previous
section, in order to compute CI(k,l) for the corresponding
region. In Fig. 3 we show the energy surface CI(k,l), indicating
that it possesses a sharp peak, hence demonstrating that the
criterion based on CI is indeed quite discriminating with
respect to the positioning of the lines demarcating the region
contaminated by the coherent GR noise. The global maximum

FIG. 3. (Color online) Normalized coherence index (CI), calcu-
lated by the KL transform. Higher CI corresponds to the coherent
noise region.
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FIG. 4. (a) The demarcated region of the data shown in Fig. 1, corresponding to the maximum of CI in Fig. 3. (b) The denoised image of
part of the data shown in (a), using the curvelet transform. (c) The noise removed from the image in (a).

of CI in Fig. 3 is located at k = 80 and l = 40. To confirm
the position of the global maximum of CI, we carried out
the same procedure for the other three corners of the image
and computed the corresponding CIs. To do so, one needs the
coordinates of the four corners of the rectangle that represents
the noisy region. If we repeat the KL transform starting from
the end of the image matrix, we obtain a new pair (k,l)
that corresponds to another corner of the noisy region. Since
we need only the coordinates of two corners in a rectangle
to demarcate it, the KL transform is repeated only for the
lower right side of the image. Indeed, one may assume that,
macroscopically, the GR region in the seismic image has a
triangular shape. However, if the image is inspected at finer
scales, the GR region appears as one made of almost vertical
lines. The directional character of the curvelet transform (CT)
allows sharp erasing of such sectors. Here, for simplicity, we
assumed a rectangular shape for the noisy zone, but in general
linear mapping can be used to transform the identified region
into a rectangular one.

Figure 4(a) presents the demarcated region that we identi-
fied in the synthetic data of Fig. 1 using Fig. 3. One clearly sees
that the GR wave trains appear mostly as horizontal events.
After locating the most coherent region, we used the CT to
remove the GR noise from the demarcated region. In Fig. 4(b)
we present the result. Figure 4(b) indicates clearly that by
removing only the GR noise from the demarcated region, the
main horizontal events corresponding to the noise have been
greatly suppressed. Since we have a new image with much less
GR noise, we can again apply the algorithm to identify and
treat a larger noisy area of the image for large seismic images
with a various level of coherent noise. Figure 4(c) depicts the
amount of data that has been taken out as the noise from the
original image. In fact, Fig. 4(c) is obtained by subtracting
Fig. 4(b) from Fig. 4(a).

To demonstrate the difference between our proposed algo-
rithm and other methods that also utilize the CT, we present
another example in Fig. 5. Figure 5(a) indicates that the seismic
image is polluted with a high amount of coherent GR noise.
We therefore used the CT to denoise the entire image, as

FIG. 5. (a) Synthetic seismic data with GR noise (courtesy of Geokinetics). (b) The denoised image of the data in (a). In this case we used
the CT to denoise the entire image, but, as shown in the figure, some of the useful data have also been removed from the image. (c) The data
removed from the image in (a). (d) The denoised image using the proposed method. In this image only the coherent sections, corresponding to
the high values of the CI, have been denoised.
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FIG. 6. (Color online) The computed coherence index CI for the
seismic data of Fig. 5(a).

other researchers have done in the past. The denoised image
is shown in Fig. 5(b), while the removed noisy data are shown
in Fig. 5(c). Although the goal is removing only the GR from
the entire image, the CT has also removed some of the useful
information from the seismic image. This becomes clear if we
compare Figs. 5(a), 5(b), and 5(c). The CT, as has been applied
in the past, has removed some useful details and information
from the right side of the image, whereas the coherent GR
noise exists mostly on the image’s left side.

Next, we applied our proposed algorithm to denoise
Fig. 5(a). First, the corresponding CI for the image was
computed. The result is displayed in Fig. 6. As Fig. 6 indicates,
the maximum CI is linked with the upper left side of the
image, occurring at l = 80 and k = 14. We then denoised the
demarcated region; the denoised image is shown in Fig. 5(d).
In fact, only the upper left side of the image has been
denoised, while the rest of the image has remained intact.
Comparing Figs. 5(b) and 5(d), it is obvious that there is
valuable information preserved in Fig. 5(d).

FIG. 7. Actual seismic data for an oil reservoir in southern Iran
with GR noise.

FIG. 8. (Color online) The computed coherence index CI for the
seismic data of Fig. 7.

We then applied the proposed method to actual seismic
data, shown in Fig. 7. The corresponding computed CI is
shown in Fig. 8. Carrying out the procedure for denoising using
the computed CI, the image yields the demarcated, denoised,
and removed data images shown in Figs. 9(a), 5(b), and 9(c).
Figure 9(b) shows the filtered image after removing the GR
from the demarcated region. The computed CI indicates that
the coherent GR noise exists in the entire image, and, thus, we
denoised the entire image. If one wishes to filter out the GR
noise further, one may consider successively lower values of
the CI. Iterating the scheme too many times is not, however,
recommended, as it would begin to degrade the relevant data
as well.

For all the previous images we used one-half of the
seismic shot to demonstrate the applicability of the CI for
demarcating the coherent noise region. The assumption behind
the procedure is that the coherent noise begins from one side
of the rectangle and propagates to another side. Figure 10
presents a single of a second actual seismic shot that contains
the GR noise. As Fig. 10 indicates, the assumption is not
applicable in this case, since the noise begins from the middle
of the upper side of the image and propagates towards the two
vertical sides, as well as the lower side of the image. In this
case we split the image in two halves and computed the CI for
both sides separately. We concatenate the two resulting CIs.
The overall CI for the data shown in Fig. 10 is presented in
Fig. 11. We then applied the CT to remove the noise from the
demarcated region of the image, which is at the center of upper
part. Figure 12(a) shows the denoised region inside the image.
Next, we repeat the procedure for the purpose of denoising the
other parts of the image. The demarcated region for the new
image [Fig. 12(a)] is located at the center of the lower part of
the image. The denoised result using the CT is displayed in
Fig. 12(b).

IV. COMPUTATIONAL EFFICIENCY

To demonstrate the computational efficiency of the method,
we compare the denoised data obtained with the traditional CT
and our proposed CT denoising algorithm. The data used are
the real seismic data for a hydrocarbon reservoir in southern
Iran. For a given noisy image, the results demonstrate that
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FIG. 9. (a) The demarcated region of the data shown in Fig. 7, corresponding to the maximum of CI in Fig. 8. (b) The denoised image of
part of data shown in (a), using the curvelet transform method. (c) The data removed from (a).

our proposed CT method has significant advantages over the
traditional scheme based on the CT, not only in terms of the
visual effects, but also in terms of the computation time.

All the analysis were performed using Matlab (R2012a).
In particular, all the results presented in this paper were
obtained on a 1.70 GHz Asus notebook computer with
2.00 GB of memory. When denoising the real seismic data,
the computation time for the conventional CT was 114 CPU
sec, whereas the our proposed algorithm took only 19 CPU
sec to denoise the same image. Moreover, we note that the
proposed algorithm preserves the fragile seismic textures with
higher precision than any other method. The conventional
CT took 59 CPU sec to denoise the synthetic seismic data,
whereas the corresponding time for the proposed algorithm
was 14 CPU sec. At this point we do not have enough synthetic

FIG. 10. Actual seismic data, one shot with the GR noise, for a
shallow oil reservoir (courtesy of Geokinetics).

and real data to formulate more precisely the effect of the
image size on the performance of our proposed algorithm.
But, it is clear that, in general, we can state unconditionally
that the computation time for the proposed algorithm is much
less than that of the conventional CT. Moreover, we believe
that the improvement in the computational efficiency with 3D
seismic data and, more importantly, with 4D seismic data (3D
seismic data collected repeatedly over a period of time) will
be even better than what we report here, which we hope to
demonstrate in a future paper.

V. SUMMARY

A new algorithm based on the curvelet transform was intro-
duced for processing geophysical data that are contaminated
with coherent noise. A great advantage of the algorithm is its
local nature, meaning that only the contaminated segment of
the data is processed for denoising, hence allowing the removal
of the coherent noise without distorting the rest of the data. The
method uses an optimization process whereby the region of the
coherent noise is selected, so as to maximize an appropriately
defined coherence index. As an application, we applied the
method to removing the ground roll, a coherent noise, from
2D seismic images. Both synthetic and real seismic data were
analyzed.

FIG. 11. (Color online) The computed coherence index CI for the
entire image shown in Fig. 10.
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FIG. 12. (a) Demarcating and denoising, (a) upper part and (b) lower part of the image for the seismic data shown in Fig. 10.

The only input that the method requires is the alignment
functions to be used in the computations, as well as the
number of cycles that one wishes to repeat the procedure
in order to make sure that all or most of the coherent noise
has been removed from the selected region. These may vary,
depending on the specific application. Once the choices are
made, however, the denoising task proceeds in an automated
fashion. The image-processing technique described in this
study is also relevant for other applications, where coherent
structures embedded in a complex spatiotemporal pattern need
to be identified in an refined manner.

The main theme of this paper was to introduce an algorithm
based on the CT for processing of geophysical data, but the
same procedure can be used along with wavelet and contourlet

transformations, and even a scheme that combines the wavelet
and curvelet transforms, in denoising of geophysical data,
each of which has its own advantages for application to real
data.
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