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Walk-based measure of balance in signed networks: Detecting lack of balance in social networks
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There is a longstanding belief that in social networks with simultaneous friendly and hostile interactions
(signed networks) there is a general tendency to a global balance. Balance represents a state of the network with
a lack of contentious situations. Here we introduce a method to quantify the degree of balance of any signed
(social) network. It accounts for the contribution of all signed cycles in the network and gives, in agreement with
empirical evidence, more weight to the shorter cycles than to the longer ones. We found that, contrary to what is
generally believed, many signed social networks, in particular very large directed online social networks, are in
general very poorly balanced. We also show that unbalanced states can be changed by tuning the weights of the
social interactions among the agents in the network.
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I. INTRODUCTION

Social networks represent a large proportion of the complex
socioeconomic organization of modern society. They represent
social entities, such as countries, corporations, or people,
interconnected through a wide range of social ties, which
include political treaties, commercial trade, friendship, and
collaboration [1,2]. In recent years a different dimension of
social networks has emerged with the development of online
social communities, which contribute and share contents on
the World Wide Web [3–6]. In many of these scenarios
the interactions among the social entities go beyond the
simple connected-disconnected networks, e.g., friend–not
friend relationship, to include antagonistic relations among
the connected entities. These are the cases in which social
entities can display, for instance, ally-enemy, friend-foe, or
trust-distrust relationships. In these cases the social system
must be represented as a signed network in which the edges
of the network can be either positive (+) to denote ally,
friendship, and trust or negative (−) to denote enemy, foe,
and distrust [7–14].

The origin of the study of signed networks can be traced
back to the work of Heider [15], who formulated a theory
of social balance to understand the causes of tensions and
conflicts in networks where friendship and animosity relations
coexist. The use of signed networks was then proposed by
Cartwright and Harary [16] to model the existence of balance
and unbalance in such social systems. The lack of balance
in a signed network is produced by the existence of groups of
individuals cyclically connected where the number of negative
edges is odd [16–20]. For instance, a triad in which Bob and
Sue are friends with Mike but are unfriendly with each other
is believed to be destabilized by the attempts of Bob (Sue) to
strengthen his (her) relation with Mike by suggesting he (she)
breaks with Sue (Bob). This unpleasant situation is believed to
catalyze a change in the social relations to produce a balanced
state in the network.

A signed network is balanced if and only if all its cycles are
positive, where the sign of a cycle is the product of the signs
of its edges. This black-and-white consideration of network

balance has been widely studied and documented in social
systems for many years. Only recently, has grayscale, in which
the quantitative determination of how unbalanced a social
network is, been considered in the literature [8–10]. Some of
these approaches consider only triads to account for balance,
which excludes the contribution to unbalance of longer cycles
[8], or do not provide local information about individual
contributions to balance [9]. A method for computing the
degree of unbalance of a signed network was proposed by
Facchetti et al. [10] by using ground-state calculations in large-
scale Ising spin glasses. Using their approach for undirected
versions of three online social networks, they concluded that
“currently available networks are indeed extremely balanced”
[10]. This conclusion agrees very well with Heider’s balance
theory. In previous work, Leskovec et al. [8] analyzed the
statistical significance of all possible triads in the same online
social networks. Their results contrast very much with those
of Facchetti et al. [10], as they found that the abundance of
certain signed triads does not follow Heider’s theory and is
more in line with Davis’s weaker notion of balance [21],
which states that only the triangles with two positive edges
(“the enemy of my enemy is my friend”) are implausible in
real social networks, but all other triangles are permissible.
When the more realistic directed versions of these networks
were considered by Leskovec et al. [8] they concluded that
“many of basic predictions of balance theory no longer apply.”
On the one hand, Leskovec et al. [8] considered only signed
triads, which are arguably the most important fragments in
determining balance, but not the only ones. On the other hand,
the method of Facchetti et al. [10] gives the same importance
to the lack of balance in every cycle, indistinctly of its length.
This contrasts with the well-documented fact that the longer
cycles have less effect upon a person’s tension than the shorter
ones [22].

These discrepancies are not only on the quantitative side
of the problem but also in the conceptual one. Using the
previous hypothetical example, it is plausible that Mike feels
comfortable by acting as a mediator in the disputes between
Bob and Sue and that Bob (Sue) feels certain stability in the use
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of Mike to influence Sue’s (Bob’s) opinions in her (his) favor.
This situation was indeed considered by Heider already in 1958
when he wrote that [23] “there may also be a tendency to leave
the comfortable equilibrium, to seek the new and adventurous.
The tension produced by unbalanced situations often has a
pleasing effect on our thinking and aesthetic feelings. Balanced
situations can have a boring obviousness and a finality of
superficial self-evidence. Un-balanced situations stimulate us
to further thinking; they have the character of interesting
puzzles, problems which make us suspect a depth of interesting
background.” Then the correct determination of the degree
of balance of real-world signed social networks is of vital
importance to empirically validate one of these hypotheses
over the other.

Here we consider a different way to quantify the degree
of balance in a signed network, which accounts for the
contribution of all signed cycles in the network, by giving
more weight to the shorter cycles than to the longer ones.
This method can be formulated as an equilibrium constant
for a hypothetical equilibrium between the real-world signed
network and its underlying unsigned version. Using this
approach, we study five signed social networks of different
sizes and representing very different social scenarios. We
found that many of these networks, in particular the large
online social networks, are very far from balance. Furthermore,
we also show that the level of balance that a network displays
can be significantly changed by tuning the weights of the social
links among the connected actors in the network. The approach
developed in this work is easy to implement computationally
even for very large networks, as in general its complexity scales
linearly with the size of the network.

II. WALK BALANCE FOR SIGNED NETWORKS

We consider here directed (undirected) signed networks
� = (V,E) in which the weight of every edge is +1 or −1.
Every signed directed (undirected) network has an underlying
unsigned network, which consists of the same set of nodes
and edges as � with all edges having positive sign. The
underlying network of � is represented here by |�| [24].
In this work we denote by n the number of nodes and by
m (m+,m−) the number of (positive, negative) edges. Let
A = A(�) and |A| = A(|�|) be the adjacency matrices of the
signed (directed) network and its underlying unsigned graph,
respectively. A directed (undirected) walk of length k in � is a
sequence of (not necessarily distinct) nodes v0,v1, . . . ,vk−1,vk

such that for each i = 1,2, . . . ,k there is a link from vi−1 to vi .
If v0 = vk , the walk is called a closed walk. The sign of a walk
is the product of the signs of all the edges involved in it [24]. We
recall that in a (directed) network, the total number of walks of
length k is given by tr(Ak), where A is the adjacency matrix of
the graph and tr is the trace of the matrix. A balanced weighted
closed walk (BCW) is a closed walk of length larger than zero
with a positive sign. Similarly, an unbalanced weighted closed
walk (UCW) is a closed walk of length larger than zero with
negative sign.

We recall that a signed directed network is called (cycle)
balanced if every cycle of it is positive. We introduce now
the following definition: A signed (directed) network is said
to be walk balanced if every (directed) closed walk of it

is positive. Obviously, a cycle-balanced network is also a
walk-balanced one and vice versa. The main difference arises
in the quantification of how close to balanced an unbalanced
network is. We start by considering that in social networks
it has been empirically demonstrated that the longer cycles
have less effect upon a person’s tension than the shorter
ones. Then we introduce a weighted sum of all closed walks
in a directed signed network that takes into account this
empirical observation. That is, we consider D = D(�) =∑∞

k=1 tr(Ak)/k!, which converges to D = tr exp(A). Due to the
fact that every BCW contributes positively to D and that every
UCW contributes negatively, we have that D = μB − |μU |,
where μB (μU ) is the sum of the weighted (by inverse factorial
of the length) balanced (unbalanced) closed walks and | · · · |
represents the absolute value. Similarly, we can consider the
same term in the underlying graph |�|, which results in
|D| = tr exp(|A|) = μB + |μU |.

Let λj = λj (�) and μj = μj (|�|) be the eigenvalues of A

and |A|, respectively. Let us define K = D/|D|, which can be
expressed as

K =
∑n

j=1 exp(λj )∑n
j=1 exp(μj )

(1)

It is straightforward to realize that

K = μB − |μU |
μB + |μU | (2)

This means that the ratio of unbalanced to balanced closed
walks can be obtained as

U = |μU |
μB

= 1 − K

1 + K
, (3)

which represents the extent of the lack of balance in a given
signed network. For instance, a network is highly unbalanced
if K ≈ 0, which makes U ≈ 1. On the other hand, a balanced
network has U = 0. It has been proved that λj (�) = λj (|�|)
(with multiplicities) if and only if the signed network � is
balanced [25]. Consequently, K � 1, with equality if and only
if the signed network is balanced. As the network departs
from balance the walk-balance index drops down to 0. That is,
K tends asymptotically to zero for certain classes of graphs,
which will be called maximally unbalanced networks. A class
of these networks can be constructed using the following
result. Let Cn and Kn stand for the cycle and complete
graphs, respectively. The cycle is the graph in which all the
nodes are connected to two other nodes. The complete graph
is the graph in which every pair of nodes is connected by
an edge.

Theorem 1. Let Gn be the graph whose adjacency matrix
is given by A(Gn) = 2A(Cn) − A(Kn). Then K(Gn) → 0 as
n → ∞.

This result is proved in Appendix A. Thus, 0 < K � 1, with
values close to unity indicating more balance in the network
and values close to 0 for largely unbalanced networks.

In an analogous way as for the definition of spectral balance
for the whole network we define the following index that
characterizes the degree of balance of a given node:

Ki = [exp(A)]ii/[exp(|A|)]ii . (4)
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FIG. 1. Values of the balance indices for four small directed
networks. The values in parentheses correspond to the undirected
version of the networks. Notice that the first two networks are
perfectly balanced according to the index based on triangles only
(K3), but they are differentiated by the index K that accounts for
all balanced and unbalanced subgraphs. The same happens for the
last pair, which is perfectly unbalanced according to K3 but displays
a different degree of balance according to K . Solid lines represent
positive links and the dashed lines represent negative links.

For the sake of comparison we will use here the ratio
of the number of signed to unsigned triangles (see [26]
where a similar approach is used to model conflict dynamics)
K3 = tr(A3)/tr(|A|3), which can be written as K3 = (tB −
tU )/(tB + tU ), where tB and tU are the number of balanced
and unbalanced triangles, respectively. Because the number
of unbalanced triangles can be larger than the number of
balanced ones in a network, this index can be negative. In fact,
−1 � K3 � 1 when the lower bound is reached in a network
in which all triangles are unbalanced and the upper bound is
reached for a network in which all triangles are balanced. In
Fig. 1 we give an example that illustrates some of the main
characteristics of the balance indices defined in this section.

III. GLOBAL BALANCE AS AN EQUILIBRIUM CONSTANT

We consider here a hypothetical dynamical system in which
an unsigned network |�| changes the sign of a few links to
give rise to a signed network � (see Fig. 2). This is the network
analog of a conformational change in a molecule, such as the
conformational change in a protein or DNA. To complete this
analogy we need to assume that the network is submerged into
a thermal bath with inverse temperature β = (kBT )−1, where
kB is the Boltzmann constant (see e.g., [27]).

The change of the free energy of the thermodynamic process
is the difference of free energies of the final and initial
states �F = F� − F|�|, where F� = −β−1 ln Z� and F|�| =
−β−1 ln Z|�|. The corresponding partition functions are Z� =

FIG. 2. Hypothetical equilibrium between a signed graph � and
its underlying unsigned graph |�|. Solid lines represent positive links
and dashed lines represent negative links.

tr exp(βA) and Z|�| = tr exp(β|A|). It is straightforward to
realize that the change in free energy of the system is given by
�F = −β−1 ln(Z�/Z|�|) and we can write the equilibrium
constant for the process represented in Fig. 1 as the ratio
of the two partition functions K = exp(−β�F ) = Z�/Z|�|.
Consequently, the equilibrium constant is written as

K(β) = tr exp(βA)/tr exp(β|A|), (5)

which means that the walk-balance index is just a particular
case of this equilibrium constant for β = 1.

IV. MATERIALS AND METHODS

A. Data sets

The signed social networks analyzed in this work are (i)
Gama, a set of political alliances and oppositions among the
Gahuku-Gama subtribes in the highland New Guinea [28,29],
(ii) WWI, networks of relations among the major players
in the First World War at different times [7], (iii) Epinions,
a trust-distrust network among users of the product review
site Epinions [30], (iv) Slashdot, a friend-foe network in the
technological news site Slashdot [9,31], and (v) WikiElec-
tions, a network representing the votes for the election of
administrators in Wikipedia [32]. Network (i) was downloaded
from UCINET IV Datasets at in [33], (ii) was built from the
information provided by Antal et al. [7], and (iii)–(v) were
downloaded from the Stanford Network Analysis Platform
[34]. The number of nodes and signed links of the three online
social networks are given in Table I.

B. Computational approaches

All calculations were performed using MATLAB. While the
calculation of K does not involve any difficulties when the
networks are small, large-scale networks require advanced
computational techniques. For the three online social networks
studied here we have used the implicitly restarted Arnoldi

TABLE I. Number of nodes and signed links in three online social
networks.

Network n m+ m−

Epinions 131 828 717 667 123 705
Slashdot 82 144 425 072 124 130
WikiElections 8297 81 664 21 927

042802-3



ERNESTO ESTRADA AND MICHELE BENZI PHYSICAL REVIEW E 90, 042802 (2014)

(IRA) method [35,36]. This algorithm can be used to compute a
user-specified number k of selected eigenvalues λ1,λ2, . . . ,λk

of largest magnitude of the input matrices A and |A|. We then
approximate tr[ exp(M)] ∼= ∑k

j=1 exp(λj ), where M is either
A or |A|. When the matrices A and |A| are asymmetric, like
in the case of directed networks, there are some eigenvalues
that are nonreal. Hence, it is possible, in principle, that
the approximation tr[ exp(M)] ∼= ∑k

j=1 exp(λj ) will have a
nonzero imaginary part. This problem can be easily avoided
by observing that the approximation will be real provided
we include the conjugate λ̄j of every complex λj among the
k eigenvalues used in the approximation, since in this way
the imaginary parts of exp(βλj ) and exp(βλ̄j ) will cancel
each other out. Moreover, in our calculations we find that
the few eigenvalues of largest magnitude tend to be real, so
the computed approximations are either real or have a small
imaginary part, which can be simply ignored. In practice, we
find that very small values of k give excellent approximations,
owing to the fact that the eigenvalues of largest magnitude
have a positive real part and are well separated from the
rest of the spectrum. Experimenting with different values of
k shows that increasing k above a small fixed value does
not appreciably change the value of the traces, in relative
terms. Values of k between 6 and 10 yield tiny relative
errors, but in some cases even k = 1 results in an acceptable
approximation. In summary, we find that the IRA method
provides a very effective approach for approximating the
trace of the exponential of large adjacency matrices of both
signed and unsigned networks with the complexity being
approximately O(n) if k is small and fixed.

V. BALANCE IN SMALL SOCIAL NETWORKS

We start the analysis of some real-world signed networks
by considering two systems formed by small networks. The
first deals with the evolution of the relations among the major
players in World War I (WWI) [7]. The second is provided
by the Gahuku-Gama subtribe system of the Eastern Central
Highlands of New Guinea [28,29]. In Fig. 3 we represent the
six protagonists of WWI at different time snapshots, starting
from the Three Emperors’ league in 1872 and ending with the
British-Russian Alliance of 1907. As can be seen, the general
trend is towards increasing the balance in time. In 1872 the
global balance index is K = 0.4668, which is increased up to
K = 0.5489 in 1904, just before a total balance is produced in
1907 with the British-Russian Alliance. This trend is broken
with the break of the Russia-Germany alliance in 1890, which
makes the global balance drops to K = 0.4681. If instead
of K we consider only the contribution of triads to the global
balance, i.e., by means of K3, it looks like the German-Russian
lapse caused a dramatic decrease in the global balance. That
is, the values of K3 for the six signed networks are 0.428,
0.500, 0.200, 0.500, 0.500, 0.500, and 1.000. What happens
is that although a large triad unbalance exists in this period,
it is compensated for somehow in some tetrad balance. For
instance, AH-It-Ge-Fr-AH, Ru-AH-It-Ge-Ru, and Fr-GB-Ru-
AH-Fr are examples of balance squares that compensate for
the lack of triad balance. Consequently, the consideration of all
cycles, like in the walk-balance approach, is more appropriate
than the triad-only methods for having a correct picture of

FIG. 3. (Color online) Evolution of the global balance among the
six major players of World War I at different time periods. Solid blue
lines account for alliances and dashed red lines represent enmities.
The degree of balance of every country is proportional to the radii of
the circles. GB denotes Great Britain; Ru, Russia; Ge, Germany; Fr,
France; AH, Austro-Hungarian Empire; and It, Italy.

global balance in social networks. We also calculate the local
contribution of each country to the balance. As can be seen
in Fig. 3, Germany (Ge), the Austro-Hungarian (AH) empire,
and Italy (It) always display a large balance across time, while
Great Britain (GB), France (Fr), and Russia (Ru) were always
more unbalanced. It should be noticed that after 1882 the
alliance between Ge, AH, and It was permanent, while the
three other major players (GB, Fr, and Ru) were changing
their alliances and enmities all the time, until the formation
of the British-Russian alliance of 1907. After this point, when
all the countries were balanced, WWI started, maybe as a
consequence of the fact that every country felt strong enough
to go to war. As remarked by Antal et al. [7]: “while social
balance is a natural outcome, it is not necessarily a good one.”
Although these small networks are not so balanced as expected
from the consideration of triads only, they display significantly
small degrees of unbalance (see the values of c = 0.002 422
in Fig. 3), in good agreement with Heider’s balance theory.
Notice that, in many cases, just the rewiring of a single link
will produce a totally balanced network, e.g., rewiring the
negative link between GB and Russia in the 1904 network to
connect any of these two countries with any of AH, Ge, or It,
produces d = −4.625 × 10−5.

The signed network of the Gahuku-Gama subtribe system
of the Eastern Central Highlands of New Guinea describes a
series of alliances and oppositions among the Gahuku-Gama
subtribes [28,29], which are distributed in a particular area
and engage in prolonged warfare. In fact, “[warfare] . . . is that
activity which characterizes the tribes of the Gahuku-Gama
as a whole and which differentiates them from groups in
other [sociogeographic] regions” [28]. The consideration of
triangles only to account for the balance of the Gahuku-Gama
network does not reveal all the interesting features of this
alliance-conflict system. For instance, the index K3 = 0.735
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FIG. 4. (Color online) Lack of global and local balance among
the subtribes in the highlands of New Guinea. Subtribes are repre-
sented by circles with radii proportional to their degree of balance
and located on an artistic representation of New Guinea highlands
according to Read [29]. Solid dark blue lines are for alliance (Rova)
relations and red dashed lines are for antagonistic (Hina) relations.

indicates that the network is in a close-to-balanced state.
This is exactly what is revealed by the consideration of the
node contribution to balance, which indicates that 5 (Gaveve,
Ove, Alikadzuha, Nagamo, and Ukudzuha) out of 16 subtribes
are perfectly triangle balanced. However, the spectral balance
index is K = 0.335, which indicates a state not so close to a
balance, i.e., U = 49.8%. Notice that with the given number
of nodes and positive and negative edges, many networks can
be constructed for which U = 0.0%. The lack of balance in
this network is clearly extended beyond the triads. For instance,
the tribe of Nagam that is triad balanced has a relatively
poor node balance index of Ki = 0.424 due to the fact that
it participates in several unbalanced squares and pentagons.

We now consider the node balance index of each of
the tribes in the Gahuku-Gama system. The tribes with
largest balance are Alikadzuha, Ove, Gaveve, Ukudzuha, and
Kotuni. All these tribes are geographically located in the
northeastern part of the Gahuku-Gama region. In contrast, the
tribes displaying more unbalance are Uheto, Seuve, Notohana,
Gehamo, and Kohika, all of which (except Seuve) are located
in the western part of the Gahuku-Gama region. In the Fig. 4
it can be seen that there is a clear dividing line between the
southwestern and northeastern parts of the region in terms of
the local balance of the respective tribes. In this particular
scenario it looks like the balance or unbalance is very much
controlled by geographical constraints. The most unbalanced
subtribe is that of Uheto, which is the one most to the
southwest of the region. By removing all links (positive and

negative) that are incident to this subtribe, the global balance
of the network increases from K = 0.335 (U = 49.8%) to
K = 0.532 (U = 30.5%). This is equivalent to isolating this
subtribe from any other with which it has alliances or enmities
to increase significantly the global balance of the system. All
in all, this network, used as a classical example of balance in
social relations according to Heider’s theory, is not as balanced
as expected from the consideration of triads only. Although
we can consider the previous small networks as relatively
balanced, this one can only be considered as a moderately
balanced network.

VI. BALANCE IN LARGE ONLINE SOCIAL NETWORKS

The results obtained by considering K3 and K for three
large online social networks, Epinions [30], Slashdot (Zoo fea-
ture) [9,31], and Wikipedia [32], are given in Table I. Facchetti
et al. [10] considered undirected versions of these networks
and observed that Epinions, Slashdot, and WikiElections have
high percentages of balanced nodes (see Table II). On the
basis of these results, they concluded that these online social
networks are highly balanced. The index K3, which considers
triads only, exactly reproduces this trend of high balance for the
undirected versions of these networks. This demonstrates that
the method used by Facchetti et al. [10] gives significantly
more weight to the contributions of triads to the degree of
balance in these networks. In contrast, our current results
obtained by using the walk-balance index K show that the
undirected versions of these three online networks are highly
unbalanced, with percentages of balance not far from 0%
(see Table II). More interestingly, an analysis of the directed
networks shows that with the exception of Epinions, the
other two online social networks are very much unbalanced.
Note that, according to the unbalance index U , Slashdot and
WikiElections have 87.1% and 99.99% of unbalance in their
structures. As before, it is worth mentioning that there are
many balanced networks that can be constructed by rewiring
the positive and negative links of these networks. The only
thing that should be done is to split the nodes of these networks
into two sets and then use the negative links only to connect
nodes in the two different sets and positive links to connect
nodes inside the same set. The resulting networks will display
perfect balance by definition [20].

The three online social networks are, however, more
balanced than expected from a random allocation of the signs to
the edges. We have randomly reshuffled the signs of the edges
in these networks, keeping the exact proportion of positive
to negative links. The randomly reshuffled networks display
significantly less balance than the real ones: K ∼ 10−17

TABLE II. Balance in signed online social networks.

Undirected Directed

Network % bal.a K3 K U (%) K3 K U (%)

Epinions 83.7 0.808 1.88 × 10−15 100 0.759 0.761 13.6
Slashdot 68.3 0.772 2.63 × 10−7 100 0.880 0.069 87.1
WikiElections 52.9 0.595 3.29 × 10−12 100 0.511 2.22 × 10−5 99.99

aPercentage of balanced nodes reported by Facchetti et al. [10].
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(Slashdot), K ∼ 10−18 (Epinions), and K ∼ 10−9 (WikiElec-
tions). This result indicates that the real-world networks are
more balanced than expected from a totally random allocation
of the friendship-enmity relations among the people. Taking
the two results together, we should conclude that the online
social networks of Slashdot and WikiElections are very far
from the ideal balance predicted by Heider’s theory, although
they are more balanced than expected from a random allocation
of the edge signs.

Where do these high levels of structural unbalance come
from? Leskovec et al. [8] have found that triads of the form
“the enemy of my enemy is my friend” are significantly
underrepresented in these three online social networks. The
triads with only one negative link or with all three negative
links have been found to be overrepresented in the three online
networks [8]. Because the triad with only one negative link is
unbalanced, it is plausible to ask whether the high unbalance
is coming mainly from the all-negative triads. To respond to
that question we constructed the subnetworks of the online
networks in which only the negative links are considered. Here
we will describe the results only for the directed networks
(see Appendix A for the results on undirected versions of the
networks). The three negative subnetworks display very poor
degrees of balance (U = 100% for Epinions, U = 91.4%
for Slashdot, and U = 84.3% for WikiElections), which are
not significantly different from the ones obtained by random
reshuffling of the networks and further extraction of the
negative subnetworks (U = 100% for Epinions, U = 100%
for Slashdot, and U = 97.9% for WikiElections). These
results support the idea that a great deal of the unbalance in
these online social networks comes from the totally negative
cycles in the networks, supporting the previous findings of
overrepresentation of all-negative triads in these networks [8].
However, not all of the unbalance comes from negative triads
as should be expected from Davis’s weaker notion of balance.
If we compare the previous results with those obtained by
using the index K3, which accounts only for triads, we see
a large contrast. In this case the three negative subnetworks
display high degrees of balance, which are larger than the ones
obtained for the randomly reshuffled ones (in parentheses):
K3 = 0.265 (0.045) for Epinions, K3 = 0.719 (0.1105) for
Slashdot, and K3 = 0.183 (0.140) for WikiElections. Thus,
the existence of many other negative cycles is responsible for
that global lack of balance in these networks. Finding such
individual negative fragments is a giant computational task
due to the size of the networks and the typical combinatorial
explosion of signed directed fragments in networks. However,
our results are conclusive in determining that these social
networks are not as balanced as expected from Heider’s
balance theory. These levels of unbalance are not incompatible
with Davis’s model of weak balance if the model is modified
to consider other types of negative fragments apart from the
all-negative triads.

VII. TUNING BALANCE IN SOCIAL NETWORKS

A potential advantage of the consideration of the walk
balance index as an equilibrium constant is that we can study
the effects of the inverse temperature β over the index. This
represents a way to tune the degree of balance of a network

without changing its topology. The inverse temperature plays
the role here of an overall importance given to the opinions in
a social network, i.e., high importance corresponds to β → ∞
(T → 0), while low importance implies β → 0 (T → ∞).

The plots of the equilibrium constant K vs β for the
Slashdot and WikiElection networks follow an exponential
decay. This plot corresponds to the network analogue of the
van’t Hoff plot [37] and the exponential dependence of K

with the β for these two networks can be described by the
network analog of the van’t Hoff equation d ln K/dβ = −�H ◦

R

[35], where �H ◦ is the standard enthalpy of the network
transformation represented in Fig. 1. If we assume that �H ◦
is independent of T , the integration of the van’t Hoff equation
results in the well-known linear form [37]

ln K = −�H ◦

R
β + �S◦

R
, (6)

where �S◦ is the standard entropy of the network transforma-
tion. A plot of ln K vs β gives a straight line with the intercept
�S◦/R and the slope −�H ◦/R. The negative slopes obtained
for both the Slashdot and WikiElection networks indicate
that the transformation from a totally balanced network to an
unbalanced one is endothermic, i.e., the system absorbs energy
from its surroundings. The slope for Slashdot is −2.67 and
that for WikiElections is −10.80, indicating that the second
is a significantly more endothermic process than the first. In
other words, obtaining the unbalance in the WikiElections
network costs more energy to the system than in the Slashdot
network. This result fits perfectly with the fact that in the
Wikipedia network the edge signs are more public than in
Slashdot. Thus, it is plausible that users, who can see the votes
of others, have more tendency to conform to already positive
voting outcomes as has been clearly remarked by Leskovec
et al. [8]. This inertia to vote negatively is represented in our
model by a higher endothermicity of the process of converting
positive to negative links in the equilibrium depicted in Fig. 1.
Mathematically, the behavior of these two networks can be
explained by the fact that the spectral gap of both A and
|A| is relatively large, i.e., λ1 � λ2 and μ1 � μ2. Then the
equilibrium constant can be approximated by

K ∼= exp(βλ1)

exp(βμ1)
= exp[−β(μ1 − λ1)], (7)

which displays the perfect exponential decay observed in
Fig. 5, i.e., the plots of ln K versus β for these networks are
perfect straight lines with correlation coefficients larger than
0.999.

The Epinions network displays a completely nonlinear
behavior in its van’t Hoff plot, which clearly points to a
nonmonotonic change of the balance with the temperature.
As can be seen in Fig. 5, there is a local minimum at β = 0.09
(K = 0.6058) and then the absolute maximum is obtained
at β = 0.62 (K = 0.7996), after which the balance decays
exponentially. Before explaining the causes for this nonlinear
behavior of the van’t Hoff plot let us remark what it means in
terms of network balance. It is usually assumed that balance in
signed (social) networks depends uniquely on the sign pattern
and the topological arrangement of the nodes and links in the
network. Here we observe that the environmental conditions in
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FIG. 5. (Color online) Demonstration of the fact that the balance
of a network can be dramatically changed by tuning the weights of
its links. The plot represents the analog of the van’t Hoff plot for
networks, where the equilibrium constant (balance index) is plotted
against the inverse temperature (weight of the links).

which these networks are embedded can change the balance in
a nonmonotonic way. Suppose that every link in this network
receives the typical weight of one. Then the global balance
of the network is K = 0.761. This balance can be increased if
every link in the network receives a weight of β = 0.62, which
could mean, for instance, that we decrease the importance of
every opinion represented by a link in the network. However,
further decreasing this weight will reduce the balance down
to K = 0.6058 when β = 0.09. More importantly, increasing
the weight we give to the opinions in the network beyond the
typical value of one does not improve the balance but decreases
it down to an asymptotic value of zero for β → ∞.

The nonlinearity of the van’t Hoff plots is well documented
for physical systems. It is a consequence of the lack of
independence of �H ◦ with T . In this case the integration of
the van’t Hoff equation gives rise to a meromorphic function
in terms of the temperature [37]:

ln K = −�H ◦

R
β + a ln β−1 + bβ−1 + cβ−2 + · · · + C,

(8)

where C is a constant of integration. We have fitted the
van’t Hoff curve for Epinions using such an expression (see
Appendix A) and have obtained �H ◦

R
= −0.4716, which is

significantly smaller than the values obtained for Slashdot and
WikiElections. That is, Epinions needs to take significantly
less energy from the environment in order to reach the level of
balance observed in the network.

VIII. CONCLUSION

We have developed a method that quantifies the global and
local balance of a signed (social) network by accounting for

the contribution of all cycles in the network, but giving more
weight to the shorter cycles than to the longer ones. This
last requirement is based on empirical observations in social
sciences. The degree of balance of a network is then obtained
from the calculation of the spectra of their adjacency matrix,
so no ad hoc heuristic is needed. The walk-balance index can
be understood as an equilibrium constant for a hypothetical
dynamics in which some of the edges of an all-positive network
become negative. This formulation allows the introduction of
an important parameter, the temperature, which modulates
the relative importance given to the opinions in a social
network.

We have observed that real-world social networks from very
different scenarios are in general not as balanced as expected
from Heider’s theory. These results contrasts significantly with
previous findings that social networks are in general extremely
balanced [10]. The main differences could be due to the
fact that here we consider balance from a wider structural
perspective in which all potential cycles make a contribution
to the balance or unbalance of a network, but in which
we also account for the empirical observation that shorter
cycles have a larger influence over balance than longer ones.
Small cycles different from triads, such as signed squares,
are also important for describing the balance in networks and
consequently for elaborating theories that explain the observed
lack of balance in certain social networks. Another important
idea put forward in this work is that balance can be modified
by changing the weights of the links in a network by using
the physical metaphor of a network temperature. This allows
the modification of the balance state of a network without
changing its topology at all. Consequently, diminishing the
possibilities of conflicts in such a kind of friend-enmity
network is possible by tuning the importance given to the
general opinions expressed in those networks. Thus, taking
together all of its aspects, our method for describing balance
offers a deeper understanding of the structural and dynamical
nature of balance in signed social networks.
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APPENDIX A: PROOF OF THEOREM 1

We start by proving that the matrices A(Cn) and A(Kn)
commute. Let E = 1 · 1T , where 1 is an all-one vector.
Obviously, A(Kn) = E − I , where I is the corresponding
identity matrix. Then A(Kn)A(Cn) = EA(Cn) − A(Cn) and
A(Cn)A(Kn) = A(Cn)E − A(Cn). The two matrices commute
if A(Kn)A(Cn) = A(Cn)A(Kn), which implies that EA(Cn) =
A(Cn)E. It can be easily checked that

EA(Cn) = [k11 k21 · · · kn1] (A1)

042802-7



ERNESTO ESTRADA AND MICHELE BENZI PHYSICAL REVIEW E 90, 042802 (2014)

TABLE III. Balance indices in the all-negative subnetworks of the undirected versions of the
three online social networks studied.

Network K K (random) K3 K3 (random) C̄a C̄a (random)

Epinions 4.10 × 10−11 ∼10−4 0.652 0.681 0.012 0.022
Slashdot 1.38 × 10−6 0.025 0.758 0.851 0.005 0.010
WikiElections 3.95 × 10−5 ∼10−6 0.569 0.890 0.028 0.031

aAverage Watts-Strogatz clustering coefficient reported by Leskovec et al. [8].

and

A(Cn)E =

⎡
⎢⎢⎢⎢⎢⎣

k11T

k21T

...

kn1T

⎤
⎥⎥⎥⎥⎥⎦

, (A2)

where ki is the degree of the node i. Then, if the graph
is regular, k1 = k2 = · · · = kk = r and A(Cn)E = EA(Cn) =
r[1 · · · 1], which proves that the adjacency matrix of
a complete graph and that of any regular graph commute.
Because the cycle is a regular graph, the first part of the proof
is complete.
Because of the commutativity between the adjacency matrices
of the cycle and complete graph we can start by writing the
ratio

Z(Gn)

Z(|Gn|) = tr{exp[2A(Cn)] exp[−A(Kn)]}
tr{exp[2A(Cn)] exp[A(Kn)]} . (A3)

Using the eigenvalues and eigenvectors of the adjacency
matrices of cycles and complete graphs we have

{exp[A(Cn)]}pp = 1

n

n/2∑
j=0

exp

[
2 cos

(
2πj

n

)]
, (A4)

{exp[A(Cn)]}pq = 1

n

n/2∑
j=0

exp

[
2 cos

(
2πj

n

)]

× cos

(
2πj (p − q)

n

)
, (A5)

{exp[A(Kn)]}pp = en−1

n
+ n − 1

ne
, (A6)

TABLE IV. Fitting parameters for the van’t Hoff plots of the
online social networks of Slashdot and Wikielections. Here R2 is
the squared correlation coefficient and RMSE is the root of the mean
standard error.

Network a b R2 RMSE

Slashdot − 2.676 0.001023 1.0000 0.001611
WikiElections − 10.8 0.1161 0.9999 0.06957

{exp[A(Kn)]}pq = en−1 − 1

ne
, (A7)

{exp[−A(Kn)]}pp = 1

nen−1
+ (n − 1)e

n
, (A8)

{exp[−A(Kn)]}pq = 1

nen−1
− e

n
. (A9)

For j = 1,2, . . . ,n the angles jπ/(n + 1) uniformly cover the
interval [0,π ], thus enabling the usage of the following integral
approximation:

{exp[A(Cn)]}pp ≈ 1

π

∫ π

0
e2 cos θdθ = I0(2), (A10)

{exp[A(Cn)]}pq ≈ 1

π

∫ π

0
e2 cos θ cos[θ (p − q)] = Id(p,q)(2),

(A11)

where Iα(x) is the Bessel function of the first kind and α =
d(p,q) is the shortest path distance between the nodes p and
q in the network. Then, using the fact that

∞∑
j=1

Ij (2) = 1

2
[e2 − I0(2)], (A12)

we finally obtain

lim
n→∞ K(Gn)

= lim
n→∞

[
1

nen−1 + (n−1)e
n

]
[nI0(2)] + (

1
nen−1 − e

n

) ∑
j=1 Ij (2)[

en−1

n
+ n−1

ne

]
[nI0(2)] + (

en−1−1
ne

) ∑
j=1 Ij (2)

= lim
n→∞

[
1

en−1 + (n− 1)e
]
[I0(2)] + (

1
nen−1 − e

n

) (
e2 − I0(2)

2

)
[
en−1 + n− 1

e

]
[I0(2)] + (

en−1 − 1
ne

)(
e2 − I0(2)

2

) =0.

(A13)

APPENDIX B: NUMERICAL RESULTS

The results for the all-negative undirected subnetworks are
given in Table III. The fit of the van’t Hoff equations for the
online social networks is shown in Table IV (see also Figs. 6
and 7).
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FIG. 6. (Color online) Nonlinear change of the balance ln K

with the weight of the links (inverse temperature β) in the online
social network Epinions. The circles represent the values from the
simulation and the solid line represents the fit using ln K = −�H ◦

R
β +

a ln β−1 + bβ−1 + cβ−2 + · · · + eβ−5 + C, where �H ◦
R

= −0.4716,
a = −0.279, b = −0.023 08, c = 0.002 422, d = −4.625 × 10−5,
e = 2.535 × 10−7, and C = 0.2223. The squared correlation coef-
ficient R2 = 0.9922 and the root of the mean standard error is equal
to 0.008 625.

FIG. 7. (Color online) Linear change of the balance ln K with
the weight of the links β in the online social networks WikiElections
and Slashdot. The circles and squares represent the values from the
simulation and the solid lines represent the fits using ln K = aβ + b,
where a = −�H

R
and the parameters given in Table IV.
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