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Helical filaments having sections of reversed chirality are common phenomena in the biological realm. The
apparent angle between the two sections of opposite handedness provides information about the geometry and
elasticity of the junctional region. In this paper, the governing differential equations for the local helical axis
are developed, and asymptotic solutions of the governing equations are solved by perturbation theory. The
asymptotic solutions are compared with the corresponding numerical solutions, and the relative error at second
order is found to be less than 1.5% over a range of biologically relevant curvature and torsion values from 0 to

1/2 in dimensionless units.

DOI: 10.1103/PhysRevE.90.042722

I. INTRODUCTION

Helical shapes appear throughout the natural world but
perhaps nowhere with the variety and richness as they do
in biology. The helix, in both left-handed and right-handed
forms, lies at the base of the molecular foundations of life
on Earth, and these forms reoccur as structural motifs as
one rises to higher and higher length scales on the ladder
of life [1-7]. The helical structure of the DNA duplex
plays an important role in genetic recombination and in the
packaging of DNA in cells and viruses. Interactions between
helical macromolecules are also found during the folding
of proteins and the assembly of the organic matrix of bone
[8]. And, at the micron scale, rotating helical flagella act
as the external locomotive organelles of bacteria such as E.
coli and Salmonella typhimurium and provide locomotive
and structural functions within the periplasmic spaces of
spirochetes such as Treponema pallidum [9] and Borrelia
burgdorferi [10].

In this paper, we focus on helical filaments in which two
helical conformations, identical save for opposite chirality, are
seemingly concatenated (see Fig. 1). This type of conformation
is reported in a number of biological systems, perhaps most
famously by Darwin in his monograph The Movements and
Habits of Climbing Plants [11]. However, the cellular and sub-
cellular worlds are even richer in examples. The macrophage
scavenger protein features a triple helix with regions of
reversed chirality [12]. Bacteria such as Bacillus subtilis can
assume helical cell-wall shapes of opposite handedness [13].
And the bacterium Spiroplasma swims by switching its helical
body between states of right-handedness and left-handedness,
with the transition between opposite chiralities propagating
along the cell body as it swims [14]. Hotani [6] reported cyclic
chirality transformations of Salmonella flagella subjected to
external fluid flow while one end was tethered on glass.
Conformational transitions caused by hydrodynamic torque
also occur in free-swimming bacteria with multiple flagella.
When a flagellar motor switches from counterclockwise to
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clockwise, the corresponding filament unwinds from the bun-
dle. In the meantime, the chirality reversal initiated by motor
reversal turns the left-handed helix, which had been rotated
counterclockwise, into a right-handed helix rotated clockwise
[15]. Hotani, in his pioneering studies [4-6], related the
measured angles between reversed-chirality domains on single
flagella to the angles between helices concatenated at a point.

The angle (see o in Fig. 1) between the two helical
conformations, called the “block angle” by Hotani [6], can
provide information about the geometry and elasticity of
the transition region. In this paper, we present the results
from asymptotics for the junctional angle between opposite-
handed helices. Elasticity enters the problem because the
curvature and torsion distributions along the filament formed
by the two helices are constrained to minimize the elastic
energy of the filament. The asymptotic solutions are obtained
with a combination of differential geometry and perturbation
theory. In cases where the detailed molecular structure of the
junctional region is poorly understood, these solutions offer
an opportunity to constrain the arrangement and number of
molecular subunits involved.

II. FUNDAMENTAL EQUATIONS

In many biological contexts, the deformations of helical
filaments (such as DNA, bacteria, and plant tendrils) are
relatively small. Because the imposed curvatures are much
less than the inverse diameters of the filament cross sections,
the filaments respond elastically to applied forces and torques.
While the theory of linear elastic filaments, which was
originally developed by Kirchhoff [16], explains well the
shapes of filaments with a single, preferred shape, itis less clear
what shapes are possible for elastic filaments with multiple
stable shapes, such as the concatenated helices previously
mentioned. In order to address this question, we consider the
backbone shape of a filament with multiple preferred helical
forms. We define the backbone shape as a space curve, r(s)
as a function of its arc-length parameter s, which can be
completely described by a Frenet-Serret frame, in which the
orthonormal triad, consisting of tangent vector £ = ¥ (the dot
represents the derivative with respect to s), normal vector i,
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FIG. 1. (Color online) Schematic of two concatenated helices of opposite handedness, a left-handed helix (L) on the left, and a right-handed
helix (R) on the right. (a) The tangent £, normal fi, and binormal b at the junction can be made identical; (b) connecting the two helices smoothly.

Local helical axis Z and “block angle” « are indicated.

and binormal vector b = { x N, satisfies the following matrix

equation:
i 0 « 0\ [t
i|l=|-« 0 1 nj, (D
b 0 -t 0/ \b

where « is curvature and t is torsion.

Previous work on the dynamics of bistable bacterial flagella
considered filaments with a single curvature and a bistable
torsion and posited an energy functional of the form [15,17,18],

e = [ as| G = emr+ (5 1 o
= [ ds| gl ts@r ) |

where A is the bending modulus of the filament, «p is a
preferred curvature, g(7) is a quartic function that defines the
two stable states for the torsion, and y; defines the energetic
cost for gradients in the torsion. The static solutions that
minimizes this energy for an infinite filament are [15]

Kk(s) = Ko, (3)
7(s) = A + Q tanh(s /26), 4)

where A + Q are the stable states of the torsion, and & is
the front width that controls the region over which the torsion
flips from one sign to the other [see Fig. 2(a)]. This front width
depends on the elastic parameter y;. The angle between the
two helical regions is greatly affected by the aforementioned
parameters, especially &. For long and thin filaments, the
bending modulus scales as the fourth power of the radius,

(a) Symmetric case (A = 0)

(b) Asymmetric case (A # 0)

FIG. 2. (Color online) The variation of torsion 7 along the back-
bone of the helical filament. (a) Torsion curves at different front
widths & (0.1 for dashed red curve, 0.4 for green solid curve, 0.8 for
black solid curve) if there is no shift in torsion. (b) In the asymmetric
case (A # 0), the torsion on the two sides of the origin is no longer
antisymmetric.

whereas the compressional modulus scales as the square of
the radius. Therefore, it is much easier to bend a filament than
to compress it. Under most forces of biological relevance,
biofilaments can be treated as being inextensible.

Here we consider a more general energy functional that
allows for bistability in the curvature and torsion. Indeed,
mechanical models of the structure of bacterial flagella suggest
multiple stable values for both curvature and torsion [19,20].
The simplest form of this energy is then

5—/dh +yK 0K 2+ +yr At \? 5
= S|: () 7(%) g(t) ?<£> :| (5)

In this energy, the function k(«) is considered to be a quartic
function with two minima. The parameter y, defines the
energetic cost for gradients in curvature. We assume that
Y« & ¥y, so that the length over which curvature and torsion
vary is equal to &. As this energy is nonlinear in curvature and
twist, Kirchhoff rod theory cannot be used directly to solve for
the stable states. However, the elastic restoring moment can
always be written as the functional derivative of the energy with
respect to the strain vector [21]. Therefore, the static torque
and force-free solutions for the curvature and torsion should
both be hyperbolic tangent functions, analogous to what was
defined above for the torsion.

Since any infinitesimal part of a space curve can be treated
as part of a helix (with the same curvature and torsion as the
curve at that point), the helical axis (or screw axis) is useful
for describing the conformation of a filament. The local helical
axis  can be defined in terms of € and b through the following
relation:

rt N «b
V2t e? it

and the angle « between two helices can be determined by the
inner product of the corresponding helical axes Z; and 2, i.e.,
cos(a) = 2; - 2 (see Fig. 1). Here, for simplicity, we consider
infinite length filaments. This approximation is valid as long
as the transition region between handedness reversals is small
compared to the total length of the filament. For bacterial
flagella, this transition zone was previously estimated to be
around 80 nm, which is much less than typical flagellar lengths
of 1-10 pm.

In the following sections, asymptotic solutions for the block
angle are explored for the cases when the front width £ is equal
to zero (Hotani case), as well as for the cases when the front

(6)
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width & is not equal to zero (finite-width case). And the finite-
width cases are divided into two scenarios: one is symmetric in
which A = 0 and the torsion curves are antisymmetric around
the origin [see Fig. 2(a)]; the other is asymmetric in which
A 5 0 and the torsion curve does not possess this symmetry
[see Fig. 2(b)]. Since the basic idea for the asymmetric case is
essentially the same as the symmetric case, it is presented as
an appendix.

III. BLOCK ANGLE
A. Hotani case (¢ — 0)

In the limit where the front width & goes to zero, the block
angle is denoted by «. It can be obtained from simple geomet-
rical considerations. Considering the two helices as wrapped
around separate cylinders, each helix can be represented as one
of the diagonals of a rectangular “unit cell” having dimensions
(pitch) x (cylinder circumference). Since the tangent vectors
at the junction of the two helices have to be equal (see Fig. 3),
the diagonals must be colinear, and the three (positive) angles
o, 04 and —6_ must sum to 180°: a9 + 64 + (—60-) = 7. The
angle « can then be determined as g = 7w — (84 — 6_), i.e,,

oy = tan’l(r+//<+) — tan’l(r_//c_), (7)

where 6 are the pitch angles of the helices, and x4 and 74
are the curvatures and torsions of the helices, respectively.
In terms of the pitch P and radius R of the helices, ki =
Ry/[R% + (Py/27)*] and 14 = 27 P+ /[P + (2w R1)*].

Equation (7) can also be verified via the differential
geometry of space curves. For analytic simplicity, as well
as to avoid singular points, a new variable is introduced as
Y = +/k? + t? Z instead of using the helical axis Z itself. Then,
Y = ¢t + «b, and the spatial evolution of Y is given by

Y = it + «b. (8)

Substituting Eq. (3) and (4) into Eq. (8), and integrating on
both sides, the solution of the ordinary differential equation
(8) can be obtained as

Sdt(u)., ~
Y = / tdu + ko b(0). )
0 du

It can be determined from Eq. (4) that lim;_odt(u)/du =
Q3(u). Thus, the limiting values of Y at +oo and —oo

FIG. 3. The geometrical explanation of the angle o, (adapted
from Ref. [15]). R4 are the radii of the helices, and P.. are the pitches
of the helices.
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FIG. 4. (Color online) The variation of block angle before and
after shifting as a function of shift ratio d and torsion-curvature ratio
A. The isolines are the variation &y — « in degrees.
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are
Jim Y=Y, = Vg + Q%2 = ikoh(0) + Q,10),
(10)
lim Y=Y_ = ,/k}+ Q%2 =ib(0)+ 2_10),
§——00
where @, = Q+A,Z;,and Q_ = —Q+A,Z_ are the torsions

and helical axes at +o0o0 and —oo, respectively. Therefore,
cos(ag) = 24 - 2— = (kg + Q4 Q)/ (Vi + LViZ + Q2),
and the block angle can be determined as

oo = tan~ (4 /ko) — tan~ ' (2_ /ko), (11)

consistent with the result obtained from geometrical reasoning.

For the Hotani case, the asymmetric shift A of the torsion
curve can greatly affect the block angle; the variation after
shifting can be up to 60° (see Fig. 4) according to Eq. (11). If
the block angle after shifting is denoted as &, the variation of
the angle before and after can be written as

. 2d°) (12)
>0 — 1)+ 2+ 1)

whered = A/Q,and A = ko/ 2. Fig. 4 shows the block-angle
variation as a function of shift ratio d and curvature-torsion
ratio A, where the contour lines are the block-angle variation
isolines labeled in degrees. One can see that the variation of
the angle is typically less than 10° when the shift is no more
than 50%. The variation in the angle increases with the shift,
but decreases with increasing curvature-torsion ratio.

However, when the front width £ is not equal to zero, both
block angles o and &g are affected. This will be discussed
next in a section devoted to the finite-width case.

&0—0[0:—&111

B. Finite-width case (¢ # 0)

For the finite-width case (when & # 0), both the torsion ©
and the helical axis Z are changing along the filament, and the
problem is complicated by the front width &, as well as by
the shift of the torsion curve A. The evolution of the helical
axis along the filament has to be solved from its governing
equations, along with the boundary conditions. The block

042722-3



JING YANG, CHARLES W. WOLGEMUTH, AND GREG HUBER

(a) & : 0.2

FIG. 5. (Color online) The evolution of the helical axis Z on a sphere at different front widths.

angle can then be determined from the inner product of the
helical axes at 400 and —oo.

For the symmetric case, the governing equation for the
helical axis is derived from the Frenet-Serret formulas as the
following ordinary differential equation (in which the helical
axis Z is incorporated implicitly into the variable Y):

Y” + 4tanh()Y” + [(2 + K?) + (2 + T?) tanh®()]Y’
—T2 tanh(n)sech?(n)Y = 0. (13)
Here curvature, torsion, and arc length are nondimensionalized
by the front width § as K = 2§k, T = 2£€2, and n = 5/2§,
respectively, and the prime represents the derivative with

respect to 1. The corresponding boundary conditions for the
above differential equation are

0 T 0
YO)=[0], YO=]|0], Y0 =]|TK
K 0 0

The details of the derivation of Eq. (13) and its boundary
conditions are presented in Appendix B. Similarly, for the
asymmetric case, the governing equation for the helical axis
can be written as

Y"” + 4 tanh(n)Y”
+[(2 + K* + D?) + 2TD tanh() + (2 + T?) tanh* ()] Y’
—sech?(n)[TD + T? tanh(n)]Y = 0, (14)

where D = 2& A. The corresponding boundary conditions are

D T 0
YO)=[0], YO=]|0], YO =]|TK]|,
K 0 0

where the three-vectors are represented by the three com-
ponents in the x, y, and z directions. It is difficult to solve
Egs. (13) and (14) analytically, but their asymptotic solutions
can be obtained through perturbation theory.

C. Helical-axis trajectory

An interesting phenomenon that should be mentioned here
is that the trajectory swept out by the helical axis lies on the
surface of a sphere. If all the bases of the local helical axis Z
along the filament are translated to the center of a unit sphere,
the heads of the helical axes trace out a continuous trajectory

(b) € = 1.1
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on the surface of the unit sphere (see Fig. 5). The length of the
trajectory can be determined as

+oo QL
/ |z| ds = f
—00 Q_

= tan™" (4 /ko) — tan” ' (Q—/ko),

which is identical to the block angle for the Hotani case (§ =
0). It can be seen from Eq. (15) that the total length of the
trajectory is constant for fixed «o and €2, but the shape of
the trajectory, as well as the actual block angle, changes as
a function of front width £. The trajectory is distorted into a
curly shape on the spherical surface at large £ and becomes
more and more “straight” as & decreases, eventually becoming
a geodesic on the unit sphere in the limit £ — 0 (see Fig. 5).
The block angle is the angle between the two helical axes at
the opposite ends of the trajectory; thus, the block angles for
the finite-width cases are always less than their counterparts
for the Hotani cases «y.

KodT
2 2
Ky +T

15)

IV. PERTURBATION METHODS

Perturbation methods [22] can be used to find approximate
solutions to problems which cannot be solved exactly. For
the symmetric case, two perturbation variables €| and €, are
introduced into Eq. (13) to solve the third-order differential
equation, i.e.,

Y” + 4tanh()Y” + [(2 + €2) + (2 + €1) tanh®()]Y'

—e; tanh(n)sech’(n)Y = 0, (16)
and a double series expansion
g .
Y = Z el Yy (17)

i,j=0
is proposed as the solution of the differential equation (13).
After substituting the double series expansion into Eq. (16),
collecting coefficients of like powers of eéef , and letting the

coefficients equal to zero, we get a new series of third-order

differential equations for Y;; of the following form:
Y} + 4 tanh(n)Y]; + 2[1 + tanhz(n)]Y;j =NH;;, (1)

where the indices i,j =0,1,2,..., and the NH;; are the
nonhomogeneous terms of the new series of differential

042722-4
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TABLE 1. Nonhomogeneous terms NH;; in the differential
equations (18).

i j NH;;

0 0 0

0 1 sech?(n) tanh(17) Yoo — tanh?(1)Y},

1 0 -Y),

1 1 sech?(n) tanh(n)Y o — Y, — t21nh2(r;)Y’10
0 2 sech?(n) tanh(n) Yo — tanhz(n)Yf)1

2 0 -Y),

equations; their specific expressions are listed in Table I. The
corresponding boundary conditions for these new differential
equations are

0 T 0
Yoo =[0]. Yi@=[0]. Y0 =|KT]|. and
K 0 0
0
Y 0 =Y,0=Y,0=[0]| ori, j+#0).

0

Similarly, for the asymmetric case, three perturbation
variables €1, €;, and &3 are introduced into Eq. (14) as

Y"” + 4 tanh(n)Y”
+[(2 + &) 4 2e3 tanh(n) + (2 + &) tanh*(in)]Y’

—les3 + €1 tanh(n)]sech2(r;)Y =0, (19)

PHYSICAL REVIEW E 90, 042722 (2014)

and a triple series expansion is assumed as the solution of the
differential equation (19), i.e.,

o.¢]
Y= ) elelefYiu (20)
ij.k=0

Then the new series of differential equations for Y;;; becomes

Y/, + 4tanh(nY/;, +2[1 + tanh®(n)]Y};, = NH;j, (21)

in which NH;;; are nonhomogeneous terms that are listed in
Table V. The corresponding boundary conditions are

0 T
Yoo =10]. Yy =1|0],
K 0
0
Y0 = [KT |,
0
0
and  Y;j(0) = Y/;,(0) = Y/, (0) = | 0| (for i, j, k #0).
0

After the differential equations (18) and (21) are solved
iteratively, the solutions Y;; and Y;j are substituted into
Egs. (17) and (20), respectively, and setting €; = T? and
€, = K2 for the symmetric case, and &, = T2, &, = K> + D?,
and ¢3 = TD for the asymmetric case, then the asymptotic
solutions for Eqgs. (13) and (14) are obtained as infinite series.

V. RESULTS AND DISCUSSION

The asymptotic solutions of the differential equations
(18) and (21) for the finite-width cases are obtained with

TABLE II. Solutions Y;; of the differential equations (18).*

i j Components Y;;
X T tanh(n)
0 0 y KTq(n)
z K
X 0
0 1 y —KT{ tanh(n) [’ log’[cosh(x)]csch®(x) dx}/6
Z K{ tanh(n) /' log*[cosh(x)]csch*(x) dx } /2
X =T J x*sech’(x)dx]/2
1 0 y —KT[ J x*sech®(x) dx]/6
Z 0
X T{q(m) f; f(x)dx + [} log[cosh(x)] f(x)dx — tanh(n) [ xf(x)dx}
1 1 y KT{q(n) [, §(x)dx + [, log[cosh(x)]g(x)dx — tanh(n) [, xg(x)dx}
z K{g(m) [y h(x)dx + [, log[cosh(x)]h(x)dx — tanh(n) [, xh(x)dx}
X 0
0 2 y KT{5 tanh(n) ' log*[cosh(x)] dx — log’[cosh(n)]}/120
z K{log*[cosh(n)] — 4 tanh(n) [, log’[cosh(x)] dx } /24
X T(n*{n tanh(n) — 4log[cosh(n)]} + 12 [’ x* log[cosh(x)] dx) /24
2 0 y KT(n*{n tanh(n) — 5log[cosh(n)]} 4 20 f; x* log[cosh(x)] dx)/120
z 0

A f(x) = tanh(x) fox u tanh(u) du
g(x) = {tanh(x) [, u? tanh(u) du + f; log?[cosh(u)] du}/2
h(x) = — fox log[cosh(u)] du, and g(n) = ntanh(n) — log[cosh(n)]

042722-5
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TABLE III. The limits of Y;; when n — +o0.

Components

lim,,_,+oo Yij

N RN RN RN RN RN R

T
KTlog?2
K
0
KT[r%log2 — 4log®2 — 6¢(3)]/24
K[7? — 1210g?2]/24
—Tn%/24
—3¢(3)KT/16
0

Tr* /1440
0.063 823 2KT
K[90z(3)log2 — 7%]/480
0
0.016 045 3KT
K{80[log* 2 + 62 (3) log2] — 37* — 407% log? 2}/1920
T74T/5760
15¢(5)KT/256
0

perturbation methods, and the block angle is determined
from the asymptotic solutions. For convenience, the block
angles for these cases are compared with the Hotani angle,
and the difference is denoted the block-angle correction Aw.
The expressions for the angular corrections, as well as their
numerical magnitudes, are discussed for both symmetric and
asymmetric cases. Only the symmetric case is treated in this
section; the asymmetric case is presented as Appendix A for
the interested reader.

The nonhomogeneous terms NH;; for the differential
equations (18) are listed in Table I, and the solutions Y;; for
the series of ordinary differential equations (18) are listed in
Table II. For the sake of simplicity, only the solutions of second
order or less are listed.

When n — 400 or —oo, the asymptotic solutions Y =
Z?}:a K*T% Y;; converge to vectors Y. or Y_, respectively,
for example,

oo

Y. = lim Y=

n—>+00

K¥T¥( lim Y;)). (22)
n—+00
i,j=0
The limits of Y;; at +o0 are listed in Table III, and Y_ can be
obtained from Y according to the following equation:

-1 0 0
Y_=[0o 1 o]y,
0 0 1

The block angle is determined from the inner product of
the helical axes Z at +00 and —oo as
Y, Y. K-T>+8

cos(a) = Z(+00) - 2(—00) = K+T2 K +T12 °

(23)

where S =Y C;;K¥T% (coefficients C;; are listed in
Table IV). The dot product cos(a) can also be expanded as
a Taylor series around «g, the block angle for the Hotani

case [see Eq. (7) or (11)]: cos(e) = cos(ag) — sin(ag) Ao —
cos(ao)(Aa)2/2 + ..., where Ao =« — o is the angular
correction that we are seeking.

Now, the expressions for cos(¢) and sin(¢) corresponding
to the Hotani case are easily obtained:

cos(ap) = (K* — T2 /(K* + T, (24)

sin(g) = 2KT/(K? + T2). (25)

After substituting the Taylor series for cos(«) into Eq. (23) and
truncating terms higher than second order in the Taylor series,
we get the following quadratic equation for Aw:

K> -T2
—T(Aa)Q —2KTAa = S. (26)

TABLE IV. Coefficients C;; in the variable S

C,‘j

~
~.

7%/6
—74/360
0.015969 5
—0.001 18379
0.000257 451
—74/120
0.160 131
—0.0177785
0.002048 12
{778 + 810[322(3) + 1010g(2)¢(5)1}/69 120
—0.0512277
0.006023 14
—4978/33 177 600 — 45¢(3)¢(5)/2048
0.007 75547
225¢2(5)/65536

N A B W WWNRNDNDDN == ===
—_— N = W N = R W =R W -
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Dimensionless Torsion, T
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FIG. 6. (Color online) Block-angle correction as a function of K and T, including the quadratic term in the Taylor series for cos . (a)
Contour plot of block-angle correction labeled in degrees. (b) Relative errors between numerical and perturbation results.

Therefore, the block-angle correction A« can be solved as

Then the second part of Eq. (27) turns out to be

—2KT + /4K2T? — 25(K? — T2)

K2 — T2

—S/2KT ifK=T
Aa =4 _ NG . (27)
2KT+ 4II(<22T;2 VET) e AT

Actually, the second part (when K#T) of Eq. (27) is just a
correction to the first part (when K = T), since the square-root
term in the second part can be asymptotically expanded as
follows:

VAK2T? — 2S(K? — T2)

K2 _ T2
— okt /1~ SE-T)
2K2T12

SKZ_TZ SZKZ_T22
— o1 - 2 ) St L
4K2T? 32K4T*
SKZ_TZ 32K2_T22
— k7 — P )
2KT 16K3T?
0.5[
= 04f
03
3
Sozf
5]
£
Q0.1p
0 L L n n L L L n L n n n n n L n n L n
0 0.1 0.2 0.3 0.4 0.5

Dimensionless Curvature, K

(a)

S S?TK? -T2 N
2KT 16 K3T3 ’

which has the form of a correction to the K = T case.

The block-angle correction as a function of K and T is
shown in Fig. 6(a), in which the contour lines are correction
isolines labeled in degrees [the dash lines are the results from
Eq. (27) and the solid lines are the numerical results obtained
by solving the Frenet-Serret equations (1) with appropriate
initial conditions]. The angular corrections A« increase with
both K and T, and the contour lines are almost symmetric with
respect to the line K = T (there is slight difference when K and
T are exchanged). Since the exchange of K and T is equivalent
to switching the binormal vector b and the tangent vector t,
and it does not greatly affect Z [according to Eq. (6)].

Figure 6(b) shows the relative error ¢ between the asymp-
totic solution [Eq. (27)] from perturbation theory and the

6.0 — T T —— T
L @
o
L o
%gbo <
L o o N
4.07 RPN ©
| o © 9 ©
- o © o0 o
o\c L QQQOQQOO ©
= 20) g 05 o0 -
© 3 008 “Too 0 ° o o
L o 00 °
g + @Ooas OWQQOQ o
£ 0.0 ogP o 000 0o © |
w U o 0% 00 o © °
[ <>O<><°> 0% o © ©
;; ogooo o
T-2.0| 8709 o
Q | %Q o
[h4 i %Oo o
- S o ¢ |
4.0 &
T T R B
-6.0
0 0.1 0.2 0.3 0.4 0.5

Curvature-Torsion Norm Squared, K? + T2

(b)

FIG. 7. (Color online) Block-angle correction as a function of K and T (without quadratic analysis). (a) Contour plot of block-angle
correction labeled in degrees. (b) Relative errors between numerical and perturbation results.
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FIG. 8. (Color online) Truncated form of block-angle correction [see Eq. (28)] as a function of K and T. (a) Contour plot of block-angle
correction labeled in degrees. (b) Relative errors between the numerical and perturbation results.

numerical solution, i.e.,

(Aanum - Aaper)/AOlnum x 100% s

as a function of the square of the curvature-torsion norm K? +
T2. The relative error increases monotonically with K> + T2,
and when K? 4+ T2 is 0.5, the relative error is only about 1.5%.

The inclusion of the quadratic term of the Taylor series
expansion for cos(a) in solving for A« greatly improves the
accuracy of the estimation of angular correction. For compar-
ison, Fig. 7(a) shows the numerical results and the asymptotic
solutions without the quadratic term included [see Eq. (26)].
The solid lines are the results from numerical solution, and
the dashed lines are the results from asymptotics. The dif-
ference between the numerics and asymptotics increases with
the dimensionless curvature K and torsion T [relative errors are
shown in Fig. 7(b) as a function of K?> + T?], and the relative
error is much higher compared to that in the quadratic analysis.
The relative error can reach 5%, when K2 4+ T2 is around 0.25,
and seems to increase linearly with K> + T2. (The decrease
after 0.25 is just due to lack of data.)

For convenience, the first three terms in Eq. (27) (after
the expression for S is substituted in) can be taken as an
approximation of Eq. (27) by truncating the remaining terms
for small KT, i.e.,

72

o~ ks Togr g T
T T30 T asso
and the results from the truncated form Eq. (28) are shown in
Fig. 8(a). The truncated form agrees well with the numerical
results at small K and T, and the relative errors are shown in
Fig. 8(b) as a function of K> + T2. Relative error increases
with K2 + T2, and the relative error is generally less than 1%
when K? + T? is less than 0.25.

Many bacterial flagella are built from a helical arrangement
of 11 protofilaments comprised of the single protein flagellin
[23]. The flagellin monomer is bistable and can be in either
a long or short state [24]. This bistability of the flagellin
monomer leads to polymorphism of the flagellum: a single
flagellum has multiple stable helical states. During bacterial
swimming, rotation of the flagella can cause the flagellum to
flip between these stable states, and purified and reconstituted
flagella are sometimes seen where part of the flagellum is in one

KT, (28)

state and another part of the flagellum is in a different helical
state. In the context of elasticity, there should be an energetic
cost for having a transition between two different states on the
same flagellum. The analysis presented here allows a means for
estimating the elastic parameters that define the energetic costs
for gradients in curvature and torsion. For example, Hotani
reconstituted bacterial flagella using mixtures of wild-type and
mutant flagellin [3,5]. He then measured discrepancies in the
block angle of the filament that were on order of 1-4 degrees.
Based on these deviations in block angle, we predict that the
front width & is between 32 and 64 nm for bacterial flagella,
and the corresponding dimensionless variables K and T are
less than 0.4, with D less than 0.2, suggesting that the results
presented in this paper are relevant to this system. Hotani’s
measurements also suggest that larger curvature or torsion
discrepancies produce larger deviations in the block angle.
Therefore, we expect that £ is dependent on the strain between
neighboring flagellin monomers in the flagellum.

VI. CONCLUSION

An asymptotic solution for the angle between two helical
conformations of a filament of reversed chirality is presented.
The filament’s shape is determined by minimizing a quartic
strain energy, leading to a scaled version of the exact governing
equations for the local helical-axis orientation. These equa-
tions are tackled with a combination of perturbation theory
and differential geometry. The junctional region between the
two handednesses possesses a characteristic length scale, the
front width &, and the cases of zero and finite & are both
considered. The finite-£ cases are further subdivided into two
cases depending on the symmetry properties of the filament’s
torsion around the junction. The correction to the angle gives
information about the finite transition region, and comparing
the asymptotic solution with numerics gives relative errors of
less than 1.5% for values of the (dimensionless) curvature-
torsion norm squared K>+ T? up to 0.5. The solutions
obtained provide a means for estimating elastic parameters
for polymorphic biofilaments; for example, we discuss how
our solutions relate to Hotani’s experimental data on bacterial
flagella [3,5]. Reconciling the classical elasticity theory of
bihanded filaments, and similar biomorphological problems,
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TABLE V. Nonhomogeneous terms NH;j; in the differential
equations (21).

i J k NH, ik

0 0 0 0

1 0 0 sech?(17)Yooo — 2 tanh(17) Yy,

0 1 0 =Yoo

0 0 1 sech?() tanh(17) Yoo — tanhz(n)Yg00

with detailed models of their underlying subunit geometry is
an area for future work.
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APPENDIX A: ASYMMETRIC CASE

The nonhomogeneous terms in the differential equations
(21) are listed in Table V, and the solutions Y;; are listed in
Table VI (only the solutions second order or less are listed).
The limits of Y;;; when 5 tends to —oo or +00 are listed in
Table VII.

The asymptotic solution Y of the differential equa-
tion (21) can be written as an infinite series, ie., Y =
>0 k=o(TDY (K? + D*)/T**Y 4, and the limits of Y at +00
or —oo are

lim Y=

n—-+00

o0

Z (TDY (K> + D*/T*( lim Yi;)
i, j.k=0 e
1, ],Kk=!

Y+=
(A1)
o0
1 _ i (12 202k (1 B
Y,_nl}r_nooY_l;o(TD) (K> +D?'T (,,ETOOYU")
L, J,K=

(A2)

PHYSICAL REVIEW E 90, 042722 (2014)

As before, the angle o can be determined from

Y, Y_
cos(a) =2y -Z_ = ,
JEHTHI 4+ 1)
where Ty =T+ D and T_ = —T + D. As in the symmetric
case, cos(a) can be expanded in a Taylor series around &y, i.e.,
. s cos(@p) 2
cos(a) = cos(@gy) — sin(@y) Ao — 5 (Aa) +---,
(A3)
where
B D? + K? — T?
cos(g) = ,
\/(K2 FT2K? +T2)
. 2KT
sin(@g) =

JEe e+ 1)

and Ao = o — @p. Aa can be approximated from the above
quadratic equation (A3) after truncating terms higher than
second order:

_ —2KT + /4K’T? — 2A(D? + K2 — T?)

A
o D2+K2—T2

. (A

where A = Y, Y. — D> + K2-T%) = > m k=0
B, K* T? D* (the coefficients B are listed in Table VIII).

Figure 9 presents the block-angle correction as a function
of curvature and torsion when the torsion curves are shifted
from the symmetric position. The contour lines are the angular
correction isolines labeled in degrees [the dashed lines are
the results from Eq. (A4), and the solid lines are the results
from numerical solutions of the Frenet-Serret equations with
appropriate boundary conditions].

The shift A should not be larger than the torsion €2,
otherwise the filament cannot have reversed chirality. The
percentage shift of the torsion curve (A/€2) is therefore
employed to investigate how shifting affects the block angle.
It can be seen in Fig. 9 that the shift of the torsion curve does

TABLE VI. Solutions Y;j of the differential equations (21).

i j k Components Yk
X D + T tanh(n)
0 0 0 y KT{n tanh(n) — log[cosh()]}
z K
X T{ log*[cosh(n)] — 2 tanh(n) [; log[cosh(x)]dx}/2 + D[ f; x*sech®(x) dx]/2
1 0 0 y KT{#log*[cosh(n)] — 2 tanh(n) f;' x log[cosh(x)]dx — [;log*[cosh(x)]dx}/2
z K{n? tanh(n) — 2nlog[cosh(n)] + 2 [’ log[cosh(x)] dx } /2
X T{2n log[cosh()] — n* tanh(n) — 2 |’ log[cosh(x)] dx } /2
0 1 0 y T{3n*log[cosh(n)] — n* tanh(n) — 6 [, x log[cosh(x)] dx}/6
z 0
X D{2tanh(n) /' log[cosh(x)] dx — log*[cosh(n)]}/2
0 0 1 y KT{ log3 [cosh(n)] — 3 tanh(n) /017 log2 [cosh(x)]dx }/6
z K{2 tanh(n) f;' log[cosh(x)] dx — log*[cosh(n)]}/2
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TABLE VII. The limits of Y;;; when  — +00 or —o0.

i j k Components lim, —, 4 o0 Yijk lim,—, —oo Yiji
X D+T D-T
0 0 0 y KTlog?2 KTlog?2
Z K K
x [12Tlog?2 + (D — T)72]/24 [12Tlog?2 — (T + D)72]/24
1 0 0 y KT[27%log?2 — 21¢(3)]/48 KT[21¢(3) — 272 log2]/48
z Kr?/24 —Kn?/24
x —72T/24 72T /24
0 1 0 y —3¢(3)KT/16 —3¢(3)KT/16
z 0 0
x D[r? — 121og?2]/24 D[n? — 121log?2]/24
0 0 1 y KT[r2log2 — 6¢(3) — 4log® 2]/24 KT[72log2 — 6¢(3) — 4log® 2]/24
z K[r? — 121og?2]/24 K[n? — 121og?2]/24

not affect significantly the block-angle correction, there being
only slight variation when the percentage shift is even 90%.
However, the error of the asymptotic solution increases with
the percentage shift.

APPENDIX B: DERIVATION OF THE GOVERNING
EQUATION FOR THE HELICAL AXIS

According to the Frenet-Serret formulas [see Eq. (1)], f: =
« 1, and hence

t = Ko (B1)

if the curvature « is a constant « [the case considered in this
paper; see Eq. (3)]. For the same reason, we can obtain Y = tt
from Eq. (8), i.e.,
, Y
t=—.

T

(B2)

Similarly, after taking a derivative on both sides of Eq. (6),
we obtain

KT —KT
- (KZ + .[2)3/2n'

5 KT — KT " N
7= m(l{t — Tb)

Then, after substituting Z = Y/~/k2 + 72 and « = ky into the
above equation and rearranging, we obtain

2 2\3/2
ﬁz_wi L . (B3)

KoT ds /Kg 412

Substituting Eqs. (B2) and (B3) into Eq. (B1), we then
obtain

d* (Y +(K§+r2)3/2d Y —o
ds?\ © T ds\ \Jio + 72/

After substituting Eq. (4) into the above equation, rearranging
and dedimensionalizing, we get the governing equation for the
helical axis, i.e., Eq. (13).

The corresponding boundary conditions can be obtained
from Y = rt+« b and its first and second derivatives by
setting s = 0, £0) = (1,0, 0)T, #(0) = (0, 1, 0)", and b(0) =
0,0, DT,

TABLE VIII. Coefficients B in the variable A.

~
~.

Biji

[ T NS T N T N T S = T ==
(SN '® TS SO ST NG T NG R S
S O = O O = O N = O

w2/6

—[* 4 216¢(3)log 2]/576

9:2(3)/256
{m* + 2472 1og® 2 — 48[log* 2 + 62 (3) log 2]} /576
[—47*10g? 2 + 48 log 2(m2 + 3 log? 2)z (3) — 225¢2(3)]/2304
[7%log2 — 4log® 2 — 6¢(3)]17/576

—[n* +2162(3) log 2]/576

972(3)/128
LB3)[—m2log?2 +4log’ 2 + 6¢(3)]/64

9:2(3)/256
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FIG. 9. (Color online) The A« isolines represented in degrees as a function of dimensionless curvature and torsion for different percentages

(@) 1%, (b) 30%, (c) 60%, (d) 90% of torsion shift A /<.
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