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Radical-ion-pair reactions, central in photosynthesis and the avian magnetic compass mechanism, have been
recently shown to be a paradigm system for applying quantum information science in a biochemical setting. The
fundamental quantum master equation describing radical-ion-pair reactions is still under debate. Here we use
quantum retrodiction to formally refine the theory put forward in the paper by Kominis [I. K. Kominis, Phys. Rev.
E 83, 056118 (2011)]. We also provide a rigorous analysis of the measure of singlet-triplet coherence required for
deriving the radical-pair master equation. A Monte Carlo simulation with single-molecule quantum trajectories
supports the self-consistency of our approach.
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I. INTRODUCTION

Radical-ion pairs and their spin-dependent reactions [1,2]
have been recently shown [3–19] to be a paradigm system
for the emerging field of quantum biology [20], that is, the
study of quantum coherence effects or, in general, the study
of quantum information science in the context of biological
systems. The biological significance of radical-ion-pair (RP)
reactions is twofold: (i) they are understood to underlie the
avian magnetic compass mechanism [21–26] and (ii) they
participate in the electron-transfer cascade reactions taking
place in photosynthetic reaction centers [27,28]. In any case,
the experimentally founded science of spin chemistry [29]
deals with such reactions in a wide range of chemical contexts.
Hence the theoretical understanding of RP reactions at the
fundamental level is of importance for current experimental
work in spin chemistry, for further exploring quantum effects
in biological systems, as well as for the design of novel
and potentially quantum-limited biomimetic devices and
sensors.

Theoretically, the fate of radical-ion-pair reactions and
all relevant predictions are fully accounted for by the time
evolution of ρ, the RP’s spin density matrix. The time
evolution of ρ was until recently understood to be driven
by (i) unitary Hamiltonian evolution due to all magnetic
interactions within the RP and (ii) RP population loss due
to spin-dependent charge recombination. We have recently
shown that the spin degrees of freedom of the RP form an
open quantum system, i.e., there is a third source of time
evolution: (iii) the spin decoherence inherent in the radical-pair
mechanism [3,5]. Moreover, since the RP is, in general,
in a coherent (or partially coherent) superposition of spin
states (we refer in particular to singlet-triplet coherence), the
description of the RP’s reaction kinetics appears not to be as
straightforward as originally thought. In [5], we demonstrated
that singlet-triplet (S-T) coherence of the RP is a central
concept in understanding the intimately related effects (i)–(iii)
and put forward a master equation satisfied by the density
matrix ρ. While S-T decoherence was described [3] by first-
principles perturbation theory (similar to most applications of
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the theory of Markovian open quantum systems leading to
a Lindblad decoherence term), the reaction kinetics had been
accounted for in a phenomenological manner open to criticism.
Moreover, the introduction [5] of the coherence measure pcoh

quantifying the “strength” of S-T coherence was also done
intuitively.

In this work, we formalize our approach along both fronts
previously mentioned. In particular, (i) we show that the
measure of S-T coherence introduced in [5] is not well
defined. We then introduce a measure of S-T coherence based
on recently published rigorous considerations by Plenio and
co-workers [30], (ii) we formally derive the reaction terms of
the master equation using quantum retrodiction, a concept
borrowed from the field of quantum communications; and
(iii) we introduce the Monte Carlo (MC) simulation of single-
RP quantum trajectories [31,32]. The MC simulation contains,
by design, all relevant phenomena at the single-molecule level,
and hence forms a unique tool to test the predictions of our
master equation.

We show that our introduced measure of S-T coherence,
properly scaling with the off-diagonal elements of the density
matrix, is essential for the decomposition of ρ into a mixture
of maximally coherent and maximally incoherent states. This
decomposition underlies the retrodictive derivation of the
reaction terms, which lead to (a) a significantly improved
agreement of the master equation prediction with MC and
(b) the derivation of precise and experimentally measurable
decay rates for the S-T coherence.

In particular, in Sec. III, we introduce the Monte Carlo
simulation of single-RP quantum trajectories including only
S-T decoherence and compare it with the master equation for
nonrecombining RPs where perfect agreement is expected by
definition. In Sec. IV, we elaborate on the shortcomings of
our previous measure of S-T coherence and then introduce a
measure based on [30]. The decomposition of ρ into a mixture
of maximally coherent and maximally incoherent states is
presented in Sec. V. This decomposition is the basis of the
rigorous theory of quantum retrodiction used to derive the
reaction terms of the master equation, presented in Sec. VI. In
Sec. VII, we perform a Monte Carlo simulation of RP quantum
trajectories including recombination, comparing the trajectory
average with the prediction of our master equation. Finally,
in Sec. VIII, we discuss the decay of S-T coherence in a way
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that could be relevant to experimentally accessible observables
and we compare our theory with the predictions of competing
theoretical approaches. In the following section, we start with
a few definitions and a brief review of previous work in order
to make this work as comprehensive as possible for the general
reader.

II. DEFINITIONS AND PREVIOUS WORK

The quantum degrees of freedom of RPs are formed by a
multispin system embedded in a biomolecule. In particular,
RPs are biomolecular ions created by a charge transfer
from a photo-excited D∗A donor-acceptor biomolecular dyad
DA, schematically described by the reaction DA → D∗A →
D•+A•−, where the two dots represent the two unpaired
electrons of the two radicals. The excited state D∗A is usually
a spin zero state, hence the initial spin state of the two unpaired
electrons is a singlet, denoted by SD•+A•−.

Now, both D and A contain a number of magnetic
nuclei which hyperfine couple to the donor’s and acceptor’s
electron, respectively, effectively creating a different magnetic
environment for the two unpaired electrons. This leads to S-T
mixing, i.e., a coherent oscillation of the spin state of the
electrons. Charge recombination terminates the reaction and
leads to the formation of the neutral reaction products. Angular
momentum conservation at this step empowers the molecule’s
spin degrees of freedom and their minuscule (relative to
thermal) energy to determine the reaction’s fate: singlet state
RPs, SD•+A•−, recombine to reform the neutral spin zero
DA molecules, whereas triplet RPs, TD•+A•−, recombine
to a different (metastable) triplet neutral product TDA. For
completeness, we note that the reaction can, in principle, close
through the so-called intersystem crossing TDA → DA. The
above are schematically shown in Fig. 1.

The straightforward part of RP dynamics is the unitary
dynamics embodied in the magnetic Hamiltonian H, which
mainly contains (i) hyperfine couplings of the donor’s (ac-
ceptor’s) electron with the donor’s (acceptor’s) nuclear spins,
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FIG. 1. (Color online) Simplified energy level diagram depicting
radical-ion-pair reaction dynamics. A donor-acceptor dyad is photo
excited and a subsequent charge transfer produces a singlet radical-ion
pair. Magnetic interactions within the radical pair induce coherent
singlet-triplet mixing, while spin-dependent charge recombination
leads to singlet and triplet neutral products at the respective reaction
rates kS and kT. The reaction can, in principle, close through
intersystem crossing from the triplet to the singlet ground state.

(ii) Zeeman interaction of the donor’s and acceptor’s electrons
with the externally applied magnetic field (nuclear Zeeman
interaction is usually neglected), and (iii) spin-exchange and
dipolar interactions between the donor’s and the acceptor’s
electron [8,33].

Were this a closed system, its dynamics would be fully de-
scribed by Liouville’s equation dρ/dt = −i[H,ρ]. However,
it is not, and hence there are more terms that make up the
master equation, which will be elaborated in the following.
These terms involve two central operators, the singlet and
triplet projectors QS and QT, respectively. Before defining
them, we note that the density matrix ρ describes the spin
state of the RP’s two electrons and M magnetic nuclei located
in D and A. The dimension of ρ is d = 4�M

j=1(2Ij + 1),
where Ij is the nuclear spin of the j th nucleus, with j =
1,2, . . . ,M . For our numerical work, we consider the simplest
possible RP, namely an RP containing just one spin-1/2
nuclear spin hyperfine coupled to, e.g., the donor’s electron.
In this case, the density matrix has dimension d = 8. This
simple model system exhibits the essential physics without
the additional complication of more nuclear spins. We stress
that the master equation we derive is general and equally
applicable for any number of nuclear spins entering the
magnetic Hamiltonian H and any sort of interactions included
in H.

Angular momentum conservation at the recombination
process splits the RP’s Hilbert space into an electron singlet
and an electron triplet subspace, defined by the respective
projectors QS and QT. These are d × d matrices given by
QS = 1

41d − sD · sA and QT = 3
41d + sD · sA, where sD and sA

are the spin operators of the donor and acceptor electrons
written as d-dimensional operators, e.g., the j th component of
sD is written as sjD = ŝj ⊗ 12 ⊗ 12I1+1 ⊗ 12I2+1 · · · ⊗ 12IM+1,
where the first operator in the previous Kronecker product
refers to the donor’s electron spin, the second to the acceptor’s
electron spin, and the rest to the nuclear spins. By ŝ, we
have denoted the regular (two-dimensional) spin-1/2 operators
and, by 1m, we have denoted the m-dimensional unit matrix.
We note that the RP’s singlet subspace has dimension
�M

j=1(2Ij + 1), while the triplet subspace has dimension
3�M

j=1(2Ij + 1). The electron multiplicity 1 in the former

corresponds to the singlet state |S〉 = (|↑↓〉 − |↓↑〉)/√2,
while the multiplicity of 3 in the latter stems from the three
triplet states |T0〉 = (|↑↓〉 + |↓↑〉)/√2, |T+〉 = |↑↑〉, and
|T−〉 = |↓↓〉.

The projectors QS and QT are complete and orthogonal,
i.e., QS + QT = 1d and QSQT = QTQS = 0. There are also
two rates to consider, i.e., the singlet and triplet recombination
rates, kS and kT, respectively. These are defined as follows: con-
sider an RP ensemble with no magnetic interactions (H = 0) to
be in the singlet (triplet) state. Then its population would decay
exponentially at the rate kS (kT). Finally, in any given time
interval dt , the measured singlet and triplet neutral products
will be dnS = kSdtTr{ρQS} and dnT = kTdtTr{ρQT}. These
relations are simple to understand, namely, in the time interval
dt there would be kSdt singlet and kTdt triplet recombinations
if all RPs were in the singlet or triplet state, respectively. If
they are in the general state described by ρ, then kSdt and kTdt

have to be multiplied by the respective probabilities to be in
the singlet or triplet state.
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FIG. 2. (Color online) Detailed energy level structure of radical-
ion pairs. The vibrational excitations of the singlet (DA) and the
triplet (TDA) ground state form a reservoir that probes the electron
spin state of the RP, leading to an intramolecule measurement of QS.
Virtual transitions (rates kS/2 and kT/2) to the reservoir levels and
back to the RP lead to S-T decoherence, while real transitions (rates
kS and kT) to the reservoir states followed by their decay to the ground
state lead to recombination.

The initial state most often considered when doing calcula-
tions with the density matrix is the singlet electron-unpolarized
nuclear spin state written as ρ = QS/Tr{QS}.

A. Singlet-triplet decoherence

A more detailed look at the energy level structure of Fig. 1
reveals the picture depicted in Fig. 2, where we show the
vibrational excited states of the singlet and triplet ground
states, which form the singlet and triplet reservoir. Radical-pair
recombination proceeds as a real transition of the RP to one
of the quasiresonant and quasicontinuous reservoir states. As
we have demonstrated in [6], there cannot be any coherence
between the RP state and the neutral ground states, but only
population transfer from the former to the latter, due to which
the RP is an open system. What we have shown in [3] is
that it is “doubly open” because the same reservoir states lead
to S-T decoherence. Using second-order perturbation theory,
we have shown that virtual transitions to these vibrational
reservoir states and back interrupt the coherent S-T mixing
in individual RPs and hence cause the decay of the ensemble
S-T coherence. This is described with a Lindblad-type and
trace-preserving master equation,

dρ

dt
|decoh = −i[H,ρ] − kS + kT

2
(QSρ + ρQS − 2QSρQS).

(1)

In other words, this equation describes the null quantum
measurement of the RP’s neutral reaction products: there is
a certain probability that the RP will recombine during a time
interval dt . If this does not happen, i.e., if no reaction product is
detected, then there are three different possibilities that could
be realized within dt : (i) a projection to the singlet state, (ii) a
projection to the triplet state, and (iii) Hamiltonian evolution.
In the following section, we present a Monte Carlo simulation
of individual quantum trajectories and elaborate in detail on
these issues.

III. MONTE CARLO SIMULATION OF S-T
DECOHERENCE USING SINGLE-MOLECULE

QUANTUM TRAJECTORIES

As is well known from quantum optics, the absence of
a detection event, e.g., a photon detection, in a quantum
measurement, called “null” measurement, also has an effect
on the system’s quantum state. What we have shown in [3]
is that the quantum state evolution of a nonrecombining RP
(absence of detection of recombination events) is given by the
Lindblad master equation (1). This trace-preserving master
equation encompasses the following three possibilities that
a nonrecombining RP faces during the time evolution of
its quantum state: (i) a quantum jump to the singlet state
ρS = QSρQS/Tr{ρQS}, taking place with probability

dpS = (kS + kT)dt

2
Tr{ρQS}, (2)

(ii) a quantum jump to the triplet state ρT = QTρQT/Tr{ρQT},
taking place with probability

dpT = (kS + kT)dt

2
Tr{ρQT}, (3)

(iii) unitary evolution driven by the Hamiltonian H, taking
place with probability 1 − dpS − dpT.

In an ensemble of RPs, these single-molecule possibilities
are unobservable, so we have to average over them. This
averaging exactly reproduces the master equation (1). In
other words, writing ρt+dt = dpSρS + dpTρT + (1 − dpS −
dpT)(ρt − idt[H,ρt ]) leads to (1) for dρ/dt = (ρt+dt −
ρt )/dt .

The physical significance of the sum kS + kT appearing in
the probabilities dpS and dpT is the fact that both singlet and
triplet reservoirs continuously “measure” the same observable,
namely, QS. The result of this measurement is either 1
or 0, corresponding to the singlet and triplet projections,
respectively. In particular, the singlet reservoir measures
the observable QS at the rate kS/2. The “yes” result of
this measurement corresponds to QS = 1 and the singlet
projection, while the “no” or null result corresponds to the
triplet projection. Similarly, the triplet reservoir measures the
observable QT = 1 − QS at the rate kT/2. The yes result
of this measurement corresponds to QS = 0 and a triplet
projection, while the no or null result corresponds to the
singlet projection. Equivalently, QS is measured at the total rate
(kS + kT)/2. Again, these measurements are unobservable and
lead to the aforementioned S-T dephasing. What is observable
is the detection of a neutral recombination product. The
corresponding null detection implies the possibilities (i)–(iii).

For testing our code and providing a “baseline” for the
simulations of Sec. VII, we show in Fig. 3 an example of an MC
simulation of just the singlet-triplet decoherence described by
(1). To simulate the quantum trajectories of nonrecombining
RPs, we start with 104 RPs all being in the singlet state at
t = 0. We then evolve the state of each RP, using, in each
time increment dt , a random number r uniformly distributed
between 0 and 1. If r < dpS, we project the RP trajectory
to the singlet state; if dpS < r < dpS + dpT, we project it to
the triplet state; and if 1 > r > dpS + dpT, we evolve the RP
state with the Hamiltonian H. Due to these random quantum
jumps, the S-T oscillations of the RPs suffer dephasing,
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FIG. 3. (Color online) The time evolution of 〈QS〉 for a model RP
with one nuclear spin, taking into account only S-T decoherence and
S-T mixing driven by the Hamiltonian H = ω(s1z + s2z) + As1 · I,
where the Larmor frequency is taken ω = A/10 and the recombina-
tion rates are kS = kT = A/4. These parameters represent a typical
RP at earth’s field with a hyperfine coupling on the order of 1 mT and
recombination times on the order of 20 ns. (a) Single-RP quantum
trajectory, depicting singlet and triplet projections at random instants
in time. The initial RP state for this trajectory is |S〉 ⊗ |↑〉. (b) Average
of 20 000 such trajectories (red solid line), half of which have initial
state |S〉 ⊗ |↑〉 while the other half have initial state |S〉 ⊗ |↓〉. The
time axis was split into 10 000 steps dt , in every one of which one
out of the three possibilities outlined in Sec. III was realized. The
prediction of the trace-preserving master equation (1) is shown by
the black dashed line. The initial state for the density matrix was
the usually considered singlet state with unpolarized nuclear spin,
ρ = QS/Tr{QS}.

and hence the trajectory-averaged expectation value of QS

exhibits S-T oscillations of decaying amplitude. The perfect
agreement between MC and the master equation (1) shown in
Fig. 3(b) is expected by definition, i.e., the physics included
in the MC simulation is those exactly reproducing the master
equation. This agreement does not convey any information
other than that our code is working properly and that the
10 000 trajectories are statistically adequate for the comparison
undertaken in the following.

IV. SINGLET-TRIPLET COHERENCE

Since QS + QT = 1 (the unit matrix is henceforth un-
derstood to have the dimension of the particular RP under
consideration), any density matrix ρ can be written as ρ =
(QS + QT)ρ(QS + QT), or

ρ = ρSS + ρTT + ρST + ρTS, (4)

where ρxy = QxρQy , with x,y = S,T. It is clear that ρSS + ρTT

forms the incoherent part of ρ, whereas the S-T coherence is
represented by ρST + ρTS. A naturally arising question is how
coherent is a particular RP state described by some density ma-
trix ρ. Consider, for simplicity, an imaginary four-dimensional
RP. The state |ψ〉 = (|S〉 + |T0〉)/

√
2 or, equivalently, ρ =

1
2 |S〉〈S| + 1

2 |T0〉〈T0| + 1
2 |S〉〈T0| + 1

2 |T0〉〈S| clearly is max-
imally S-T coherent, whereas the state ρ = 1

2 |S〉〈S| +
1
2 |T0〉〈T0| is maximally incoherent. There could also be an
intermediate case of partial coherence, such as ρ = 1

2 |S〉〈S| +
1
2 |T0〉〈T0| + a|S〉〈T0| + a|T0〉〈S|, with a < 1/2. We thus need
a measure of the “strength” of the “off-diagonal part” ρST of the
density matrix. In [5], we introduced the measure of coherence,

pcoh(ρ) = Tr{ρSTρTS}
Tr{ρSS}Tr{ρTT} . (5)

However, this definition of pcoh is flawed in the following
sense. S-T coherence is reflected by the value of the off-
diagonal elements of the density matrix in the S-T basis. It is
intuitively expected that such a measure should scale linearly
with the off-diagonal elements; however, pcoh scales as the
square of the off-diagonal elements of ρ. Hence, if they decay
at some rate �, pcoh will decay at 2�, and this will skew the
description of the relevant dynamics.

A. Rigorous analysis of S-T coherence

Although essential, a rigorous quantification of coherence
in quantum systems has received little attention, at least
compared to the quantification of entanglement which has
advanced through the definition of several measures [34,35].
Recently, Plenio and co-workers introduced a rigorous ap-
proach to quantifying quantum coherence [30]. We will follow
this approach to introduce a well-behaved measure of S-T
coherence.

The first step is to define the set of incoherent states I.
Since we are interested in S-T coherence, it is straightforward
to define I as the set containing all density matrices ρ for
which ρ = ρSS + ρTT, i.e., the coherences ρST and ρTS are
absent. Plenio and co-workers then define a set of three criteria
that any measure of coherence should satisfy. The first and
most obvious (and the one that will be used in the following)
is that pcoh(ρ) = 0 for ρ ∈ I. In order not to overburden this
discussion with technical details, this and the other two criteria
are reproduced in Appendix A, where we also demonstrate in
more detail the shortcomings of our previous definition (5).

In the definition of pcoh to be shortly introduced, pcoh scales
linearly with the off-diagonal elements of ρ, as it conforms
with the Hilbert-Schmidt norm Cl1 (ρ) shown in [30] to be
an acceptable measure of coherence. In this measure, Plenio
and co-workers sum the absolute value of all off-diagonal
elements of the density matrix. However, we are not interested
in quantifying coherences within the triplet subspace, e.g.,
among |T+〉 and |T−〉. Neither are we interested in nuclear
spin coherences. We are only concerned with the coherence
between the electron singlet and triplet subspaces. So, in our
definition, we will sum the absolute value of the amplitudes
appearing in the coherences |S〉〈T0|, |S〉〈T+|, and |S〉〈T−|. To
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do so, we define

C(ρ) =
∑

j=0,±

√
Tr{ρST|Tj〉〈Tj|ρTS}. (6)

This definition is visualized by a simple example in
Appendix B. Before defining the measure pcoh, we note the
following: (i) Since Tr{ρ} is a decaying function of time due
to recombination, we have to normalize C(ρ) by Tr{ρ} in order
to get the genuine measure of coherence for the surviving RPs.
(ii) As mentioned in [30], the state of maximum coherence in
a d-dimensional Hilbert space with basis |j 〉 is

∑d
j=1

1√
d
|j 〉.

In our case, the most general pure state of an RP can be written
as |ψ〉 = αS|S〉 ⊗ |χS〉 + ∑

j=0,± αj |Tj 〉|χj 〉, where |χS〉 and
|χj 〉 are normalized nuclear spin states. Here S-T coherence is
maximum when |αS| = |αj | = 1/2, and this maximum value
is

∑
j=0,± |αSαj | = 3/4. However, if the Hamiltonian excites

a subset of these coherences, e.g., only the S-T0 coherence,
the maximum value of the coherence would be smaller. Since
in the following we use pcoh as a probability measure, we
normalized C(ρ) with its maximum value obtained when ρ

evolves unitarily under the action of H. So now we define

pcoh(ρ) = 1

Tr{ρ}
C(ρ)

max{C(ρ̃)} , (7)

where dρ̃/dt = −i[H,ρ̃]. We note that this definition of pcoh

is numerically very similar to the square root of our earlier
definition (5).

V. DEFINITION OF ρcoh AND ρincoh

It is clear from (6) that if we scale ρST and ρTS with a
positive number λ, i.e., if ρST → λρST and ρTS → λρTS, then
pcoh → λpcoh. So going back to the general form (4) of the
density matrix ρ, if we choose λ = 1/pcoh, that is, if we define
the density matrix

ρcoh = ρSS + ρTT + 1

pcoh
ρST + 1

pcoh
ρTS, (8)

then ρcoh will describe a maximally coherent state,
pcoh(ρcoh) = 1. The density matrix ρcoh can be thought of
as the S-T coherence distillation of ρ. We can also define
a maximally incoherent density matrix ρincoh:

ρincoh = ρSS + ρTT, (9)

for which pcoh(ρincoh) = 0. Using Eqs. (4), (8), and (9), it is
then trivial to show that any density matrix ρ can be written as

ρ = (1 − pcoh)ρincoh + pcohρcoh. (10)

This will be the starting point for the retrodictive derivation
presented in the following section. We note that this general
decomposition of ρ into ρincoh and ρcoh was possible due to the
particular definition of ρcoh and its property that pcoh(ρcoh) =
1, which itself relies on the linear scaling of pcoh mentioned
previously. In other words, the following formal derivation
based on quantum retrodiction would not be possible without
the proper definition of the S-T coherence measure.

VI. QUANTUM RETRODICTION AND
RADICAL-ION-PAIR RECOMBINATION

A. Radical-ion-pair recombination from the single-molecule
and from the ensemble perspective

The density matrix of an ensemble of N RPs is ρt =∑N
i=1 |ψi(t)〉〈ψi(t)|, where |ψi〉 is the spin state of the ith RP.

Each |ψi〉 has suffered a number of S- or T-quantum jumps until
the time t . Due to recombination, N is time dependent, since
if the ith RP recombines at time t , its quantum state |ψi〉〈ψi |
at time t must be subtracted from ρt in order to update ρt

into ρt+dt . Although this is a simple physical picture from the
perspective of quantum trajectories, it is not straightforward
to translate it into a master equation. The root of the difficulty
is S-T dephasing, which transforms a pure initial state into a
mixture.

As is well known, there is no unique way to unravel a
density matrix into its component pure states. Hence we have
to instead utilize the following physical scenario. Given the
density matrix ρt at some time t , and given the measured singlet
and triplet neutral products during the infinitesimal interval dt ,
dnS, and dnT, respectively, how do we update ρt into ρt+dt?
In general, the change dρ = ρt+dt − ρt is caused by (i) the
change of state of RPs that did not recombine during dt , call it
dρdecoh, given by (1), and (ii) the RPs that did recombine during
dt , call it dρrecomb, i.e., dρ = dρdecoh + dρrecomb. Clearly,
Tr{dρ} = Tr{dρrecomb} = −dnS − dnT, but that alone cannot
lead to the form of dρrecomb.

We will now derive dρrecomb using the formal tools of
quantum retrodiction. We then compare the predictions of the
master equation to the Monte Carlo simulation. The latter
turns out to be a very useful tool, since dealing with an
ensemble of pure states allows us, by default, to subtract the
particular component states |ψi〉 of the recombined RPs from
the considered ensemble.

B. Radical-ion-pair recombination and quantum retrodiction

The predictive approach to quantum measurements, which
we are most familiar with, addresses the following question:
Given the density matrix describing a physical system, what
are the probabilities of specific measurement outcomes? The
so-called retrodictive approach [36,37], used less often, is
about the reverse: Given a specific measurement outcome,
what is the probability that the system’s state prior to the
measurement was this or that? Quantum retrodiction is relevant
to quantum communication [38,39] since Bob, the receiver
of quantum information, attempts to reconstruct the quantum
state delivered to him by Alice, the sender, based on specific
measurement outcomes.

The idea relating RP recombination to the concept of
retrodiction and S-T coherence is the following. When an
RP is in a particular state |ψ〉 just before it recombines, we
must subtract |ψ〉〈ψ | from the density matrix to account for
this recombination event. But since S-T dephasing produces a
mixture of pure states, given the recombination product, which
is either the singlet or the triplet ground state, one cannot
unambiguously retrodict the prerecombination state |ψ〉. A
singlet recombination could, for example, result from a singlet
RP as much as from an S-T coherent RP. The theory of quantum
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retrodiction allows us to retrodict |ψ〉 “on average.” The way
this is done depends on how coherent the RP state is that is
described by the density matrix ρ, and hence the necessity of
defining pcoh.

This is seen by examining the two extreme cases of
minimum and maximum S-T coherence, for which dρrecomb is
straightforward to derive. Based on the general decomposition
(10), the theory of quantum retrodiction can then be seamlessly
applied in the general case of a density matrix with partial
S-T coherence.

C. Recombination of maximally coherent radical-ion pairs

Suppose that at time t , we have an ensemble of N RPs
all in some maximally S-T coherent state |ψ〉. Suppose
further that the only change during the interval dt is the
recombination of just one RP, i.e., the detection of one neutral
product. Clearly, scaling the normalization of ρ from 1 to
N just for the sake of this discussion, it is ρt = N |ψ〉〈ψ |
and ρt+dt = (N − 1)|ψ〉〈ψ |, since now we have one less RP
in the state |ψ〉. This can be formalized as follows. For a
maximally coherent ensemble of RPs all in the same state
|ψ〉, the single-molecule density matrix will be ρ/Tr{ρ}. If
we define δρ1S

coh (δρ1T
coh) to be the change in ρ due to the

measurement of just one singlet (triplet) neutral product, it
will be

δρ1S
coh = δρ1T

coh = − ρ

Tr{ρ} . (11)

D. Recombination of maximally incoherent radical-ion pairs

In the other extreme, suppose that ρt is a maximally
incoherent mixture of singlet and triplet RPs, i.e., ρt = ρSS +
ρTT. Then the detection of a singlet (triplet) recombination
product leads us to conclude with certainty that it resulted from
a singlet (triplet) RP and hence we can reduce the population
of singlet (triplet) RPs by one. If we define δρ1S

incoh (δρ1T
incoh) to

be the change in ρ due to the recombination of just one singlet
(triplet) RP, it will be

δρ1S
incoh = − QSρQS

Tr{QSρQS} = − QSρQS

Tr{ρQS} , (12)

δρ1T
incoh = − QTρQT

Tr{QTρQT} = − QTρQT

Tr{ρQT} . (13)

The last equality in the above equations follows from the cyclic
property of the trace and the fact that QS and QT are projectors,
and hence idempotent.

E. Recombination of radical-ion pairs having
partial S-T coherence

We will now use the formalism of quantum retrodiction to
derive the reaction operators for the general case of partial
S-T coherence. The retrodiction formalism [38,39] uses the
preparation operators �i and the measurement operators �j .
In particular, suppose that a system is prepared in a state ρi with
probability P (i). The preparation operator is then defined as
�i = P (i)ρi . If the particular preparation is unknown, then we
have to average over all possible preparations and the system
will be described by the density matrix ρ = ∑

i �i . Suppose

further that a measurement defined by the positive operator-
valued measure (POVM) set �i , where

∑
i �i = 1, returns

the j th result. Defining ρr
j = �j/Tr{�j}, the main result of

retrodiction theory is that the conditional probability that state
ρi was prepared, given the measurement result j , is

P (i|j ) = Tr
{
�iρ

r
j

}
∑

i Tr
{
�iρ

r
j

} . (14)

The POVM set of measurement operators of interest in our
case consists of �1 = QS and �2 = QT, already mentioned
to satisfy the condition QS + QT = 1. As shown before, the
general form of the RP density matrix at time t can be
written as ρ = �1 + �2 = (1 − pcoh)ρincoh + pcohρcoh, i.e.,
we identify �1 = (1 − pcoh)ρincoh and �2 = pcohρcoh, where
ρcoh and ρincoh have been defined by (8) and (9), respectively.

Suppose that during the interval dt we have detected one x

neutral product, where x = S,T. To apply Eq. (14), we note that
since ρr

x = Qx/Tr{Qx}, the denominator Tr{Qx} of ρr
x will drop

out of Eq. (14). Further, since ρ = ∑
i �i , the denominator in

Eq. (14) is proportional to the expectation value of Qx at time
t , i.e.,

∑
i Tr{�iρ

r
x} ∝ Tr{ρQx}; hence, given the detection of

one x neutral product, the probabilities that it originated either
from ρincoh or from ρcoh are

P (incoh|x) = Tr{�1Qx}
Tr{ρQx} = (1 − pcoh)

Tr{ρincohQx}
Tr{ρQx} ,

P (coh|x) = Tr{�2Qx}
Tr{ρQx} = pcoh

Tr{ρcohQx}
Tr{ρQx} . (15)

Since the expectation value of Qx in ρ is the same as in ρincoh

and ρcoh, it readily follows that

P (incoh|S) = P (incoh|T) = 1 − pcoh,

P (coh|S) = P (coh|T) = pcoh.

We have shown how the density matrix changes upon detecting
just one product in the extreme cases of maximum and min-
imum coherence. In the general case when the RP ensemble
is described by ρ, detecting just one singlet (triplet) neutral
product leads to a change in ρ given by δρ1S (δρ1T), where

δρ1S = P (incoh|S)δρ1S
incoh + P (coh|S)δρ1S

coh,

δρ1T = P (incoh|T)δρ1T
incoh + P (coh|T)δρ1T

coh.

The generalization to the case of detecting dnS =
kSdtTr{ρQS} singlet and dnT = kTdtTr{ρQT} triplet neutral
products is now straightforward:

dρrecomb = dnSδρ
1S + dnTδρ1T. (16)

Since Tr{δρ1S
coh} = Tr{δρ1T

coh} = Tr{δρ1S
incoh} = Tr{δρ1T

incoh} = − 1,
it is Tr{dρrecomb} = −dnS − dnT, as it should be.

Using (1) and (16), we arrive at the master equation
describing RP quantum dynamics:

dρ

dt
= −i[H,ρ] (17)

− kS + kT

2
(ρQS + QSρ − 2QSρQS) (18)

− (1 − pcoh)(kSQSρQS + kTQTρQT) (19)

−pcoh
dnS + dnT

dt

ρcoh

Tr{ρ} . (20)
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The term in (17) is the unitary Hamiltonian evolution which
generates S-T coherence, the dissipation of which is given
by term (18), while (19) and (20) are the spin-dependent
reaction terms. This master equation has a form identical
to the one derived in [5], the crucial difference being the
different definition of pcoh and the last term (20) where we
now have the appearance of ρcoh instead of ρ that was used
phenomenologically in [5].

Finally, we rewrite the master equation (17)–(20) in a
more “user-friendly” form involving only the matrices ρxy =
QxρQy , where x,y = S,T:

dρ

dt
= −i[H,ρ] − kS + kT

2
(ρST + ρTS)

− (1 − pcoh)(kSρSS + kTρTT)

− 1

Tr{ρ} (kSTr{ρSS} + kTTr{ρTT})
× (pcohρSS + pcohρTT + ρST + ρTS).

VII. MONTE CARLO SIMULATION OF S-T
DECOHERENCE AND RECOMBINATION USING

SINGLE-MOLECULE QUANTUM TRAJECTORIES

To the simulation presented in Sec. III, we now add two
additional possibilities in each time step dt : singlet and triplet
recombination with probability drS = kSdt〈QS〉 and drT =
kTdt〈QT〉, respectively. In the event that the j th RP recombines
within dt at time t , its state |ψj 〉〈ψj | is subtracted at time t

from the sum ρ = ∑
i |ψi〉〈ψi |.

For a more comprehensive understanding of the consider-
ations to follow, we first show in Fig. 4 just the Hamiltonian
evolution (no decoherence, no reaction) of 〈QS〉 = Tr{ρ̃QS}
and C(ρ̃) for the model RP considered in our numerical
examples. Clearly, when 〈QS〉 = 1, it is C(ρ̃) = 0, as expected
since we have no coherence between the singlet and triplet
subspace. This coherence is maximum at intermediate times
in-between the extrema of 〈QS〉.

0

0.8

0.4

0.6

1.0

0.2

Tr{ρQS}~

C(ρ)~

time (units of 1/A)
10 040 070302 50 60

FIG. 4. (Color online) Time evolution of Tr{ρ̃QS} (red solid line)
and S-T coherence C(ρ̃) (black dashed line) for the same RP
considered in Fig. 3, taking into account only S-T mixing driven by the
Hamiltonian H, i.e., dρ̃/dt = −i[H,ρ̃]. The singlet state obviously
corresponds to zero S-T coherence, while the state in-between the
extrema of Tr{ρ̃QS} corresponds to an S-T superposition and hence
maximum S-T coherence.
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FIG. 5. (Color online) Time evolution of 〈QS〉 including S-T
mixing, S-T decoherence, and recombination for the same RP
Hamiltonian used in Figs. 3 and 4, with kS = kT = A/4. (a) Example
of a single-RP quantum trajectory with initial state |S〉 ⊗ |↑〉.
(b) Monte Carlo simulation (red solid line) using 10 000 trajectories
(two initial states |S〉 ⊗ |↑〉 and |S〉 ⊗ |↓〉, with 5000 trajectories for
each), prediction of the master equation of this work (dashed line),
and the earlier theory (solid line) introduced in [5]. The corresponding
measure of S-T coherence pcoh is shown with the blue dotted
line. The Monte Carlo and the theoretical prediction of this work
coincide.

In Fig. 5(a), we depict a single-RP quantum trajectory,
similar to the one shown in Fig. 3(a), but now also including
recombination. The recombination rates are taken equal,
kS = kT. In Fig. 5(b), we show that using the master equation
(17)–(20) derived here, we obtain a perfect agreement with
the MC simulation that was lacking with the earlier theory.
The MC simulation is the average of 104 trajectories, such as
the one shown in Fig. 5(a). In Fig. 5(b), we also include the
time evolution of pcoh.

We next move to the asymmetric regime where kT �= 0 and
kS = 0. This is of interest as it is found in the RPs appearing
in a large number of photosynthetic reaction centers [28]. In
Figs. 6(a) and 6(b), we again plot 〈QS〉 for kS = 0, kT = A/4,
and kT = A/2, respectively. While for the former we get a very
good agreement between the Monte Carlo simulation and the
master equation, the agreement is not perfect for the latter, but
still much better than our earlier theory. We comment on this
in Sec. IX.

VIII. DECAY RATE OF SINGLET-TRIPLET COHERENCE

For the sake of completeness, we present a comparison
between our theory, the traditional (or Haberkorn) approach
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FIG. 6. (Color online) Similar plots as Fig. 5, but with asymmet-
ric recombination rates. (a) kS = 0, kT = A/4. (b) kS = 0, kT = A/2.

[40], and the theory put forward by Jones and Hore [11].
First we reiterate [5] that the traditional theory results from
our theory by forcing pcoh = 0. We also note that our master
equation (17)–(20) is identical with the Jones-Hore equation
in the case kS = kT. In this special case, pcoh drops out of
our master equation (17)–(20). In Fig. 7(a), we plot the time
evolution of 〈QS〉 for all three theories, which qualitatively
look quite similar. Their most obvious difference is how fast
the S-T coherence is lost. By inspection, it readily appears that
the amplitude of the S-T oscillations in Fig. 7(a) decays faster
in the Jones-Hore theory, slower in our theory, and even slower
in the traditional approach. We will now rigorously quantify
this observation by following a general approach equally
applicable to all three theories. This is based on the general
decomposition (4), in particular we will consider the coherent
part of ρ which is ρc = ρST + ρTS. In our master equation,
ρc appears both in term (18) and in term (20). The latter is
obvious, while the former can be seen by simple operator
manipulations leading to QSρ + ρQS − 2QSρQS = ρc. Thus,
if we right (left) multiply the master equation (17)–(20) with
QS (QT), then vice versa, and take the sum, we find that ρc

obeys the equation

dρc

dt
= −i[H,ρ]c − �cρc, (21)

where [H,ρ]c = QS[H,ρ]QT + QT[H,ρ]QS. The decay of ρc

is governed by the rate

�c = kS
(

1
2 + 〈Q̃S〉

) + kT
(

1
2 + 〈Q̃T〉), (22)

where we defined 〈Q̃x〉 = Tr{ρQx}/Tr{ρ} with x = S,T.
Moreover, since it will be needed in the following, by taking
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FIG. 7. (Color online) Comparison of the three theories for the
case presented in Fig. 6(b), i.e., kS = 0 and kT = A/2. (a) The S-T
coherence, embodied by the amplitude of the oscillation of 〈QS〉,
decays faster in the Jones-Hore theory, slower in our theory, and even
slower in the traditional theory. (b) The corresponding decay rate
γc/k, where kT = 2k.

the trace of both sides in (17)–(20), we find that Tr{ρ}, the
normalization of ρ, obeys the equation

dTr{ρ}
dt

= −κTr{ρ}, (23)

where

κ = kS〈Q̃S〉 + kT〈Q̃T〉. (24)

We finally define the “genuine” S-T decoherence rate as γc =
�c − κ . This describes the decay of S-T coherence due to
all effects other than the changing normalization of ρ. This
definition follows if we normalize ρc by Tr{ρ} and then use
(21) and (23). Then we indeed find that the decay rate of
ρc/Tr{ρ} is γc.

We now consider two cases: (a) kS = kT = k, and (b) kS = 0
and kT = 2k, so that kS + kT is the same in both cases. In case
(a), we find that �c = 2k since 〈Q̃S〉 + 〈Q̃T〉 = 1. Moreover,
κ = k, hence, γc = k. In case (b), it is �c = k(1 + 2〈Q̃T〉),
while κ = 2k〈Q̃T〉, hence, γc = k.

We will now perform the same calculation for the traditional
and the Jones-Hore theory. We first note that Eqs. (23) and (24)
are common for all three theories. The traditional master equa-
tion is dρ/dt = −i[H,ρ] − kS(QSρ + ρQS)/2 − kT(QTρ +
ρQT)/2. Again, multiplying from left and right with the
projection operators as before, we find that the decay rate of ρc

is �c = (kS + kT)/2. In case (a), it is found that γc = 0, while
in case (b), we get γc = k(1 − 2〈Q̃T〉). The Jones-Hore master
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TABLE I. Decay rate of S-T coherence γc.

γc This work Trad. theory J.-H. theory

kS = kT = k k 0 k
kS = 0, kT = 2k k k(1 − 2〈Q̃T〉) 2k(1 − 〈Q̃T〉)

equation is dρ/dt = −i[H,ρ] − kS(QSρ + ρQS − QSρQS) −
kT(QTρ + ρQT − QTρQT). We similarly find that �c = kS +
kT. Then, in case (a), it follows that γc = k and, in case (b),
γc = 2k(1 − 〈Q̃T〉). For clarity, we summarize the results in
Table I.

The asymmetric case kT 
 kS together with the singlet
initial state is the regime of the quantum Zeno effect [3,41–44]
(most pronounced if kT 
 �, where � is the S-T mixing
frequency). In this regime, when the RP’s spin state is about to
evolve from the initial singlet state, it is strongly back projected
to it due to the high kT. Thus, 〈Q̃S〉 decreases slowly from
its initial value of 1, and hence 〈Q̃T〉 can be quite small, in
particular, quite smaller than 1/2. This observation is common
to all three theories. It thus follows that 2k(1 − 〈Q̃T〉) > k >

k(1 − 2〈Q̃T〉). Indeed, as shown in Fig. 7(b), the Jones-Hore
theory predicts the largest decay rate for the S-T coherence,
ours is intermediate, and, for the traditional theory, it is the
smallest.

IX. DISCUSSION

We will finally comment on the success of the master
equation (17)–(20) in matching the MC simulation, which has
built in the fundamental physical processes of RP reactions
at the single-molecule level. While for the case kS = kT there
is a perfect agreement between theory and MC, independent
of the particular definition of pcoh, for the asymmetric case
kT 
 kS, we have the more noticeable theory-MC deviation
the higher kT is. For most practical purposes, such a small
deviation should be of little concern; however, it is worthwhile
to discuss.

To our understanding, the problem is an underestimation
of S-T coherence that in principle can be hardly overcome.
The reason is the impossibility to unravel a density matrix
into its component pure states. S-T decoherence will produce
a mixture of S-T coherent, yet dephased, states, which when
described by a density matrix will look equivalent to a mixture
of S-T incoherent and S-T coherent states, as we have shown
with the decomposition into �1 and �2. To exacerbate the
problem for the sake of this discussion, consider, for example,
a mixture of the coherent states |ψ1〉 = (|S〉 + |T0〉)/

√
2

and |ψ2〉 = (|S〉 − |T0〉)/
√

2 with equal weights. Then, ρ =
1
2 |ψ1〉〈ψ1| + 1

2 |ψ2〉〈ψ2| = 1
2 (|S〉〈S| + |T0〉〈T0|). This state ap-

pears as maximally incoherent, yet it is formed by maximally
coherent states. Having access to the information embodied by
ρ, it is impossible to unravel or retrodict the constituents |ψ1〉
or |ψ2〉.

From (19), it is seen that in the asymmetric case where kS =
0, if pcoh is underestimated, then we remove a correspondingly
larger triplet character from ρ, and hence ρ appears to be more
singlet than it really is, as is evident from Fig. 6, i.e., the
master equation overshoots the MC. Moreover, this deviation

is noticeable at the minima of pcoh, while it is indiscernible
at the maxima of pcoh. Again, this is due to the reaction term
(19) of the master equation, which is more pronounced for low
values of pcoh.

We finally reiterate that what we have treated is the
fundamental quantum dynamics of RP reactions governed by
the physical processes inherent in the radical-pair mechanism,
i.e., S-T dephasing and charge recombination, stemming
from virtual and real transitions to the products’ vibrational
reservoirs, respectively. Clearly, other sources of decoherence
could be present, which are either fundamental or technical,
and the manifestation of which could depend on the physical
realization of the RP dynamics, e.g., whether the molecules
are in solution or in the solid state as in photosynthetic
reaction centers. Dephasing due to a bath of surrounding
nuclear spins that have not been included in the magnetic
Hamiltonian has analogues in the study of quantum dots
[45–47] and has been considered by several authors [12,48,49].
To our understanding, a consensus on the physical significance
and the quantitative details of this hyperfine relaxation is
still lacking in the literature. Whether the S-T dephasing we
consider is a dominant process or not will at the end depend
on the comparison between the particular recombination rates
kS and kT of the RP under consideration and the hyperfine
relaxation rate, or, in general, the rates of other relaxation
processes in the particular RP environment.

A detailed understanding of the interplay of all possible
decoherence mechanisms, whether fundamental or technical,
is outside the scope of this work. It is, however, a basic
requirement for connecting the microscopic dynamics of RP
reactions with behavioral observations of the avian compass
mechanism, which is a nontrivial exercise recently undertaken
in [13,50–52].

X. CONCLUSIONS

To summarize, we have used formal considerations for
quantifying the strength of singlet-triplet coherence in radical-
ion pairs, which is central for understanding their quantum
state evolution. We have also applied the formalism of quantum
retrodiction to provide a theoretically solid basis for deriving
the master equation for radical-ion-pair quantum dynamics.
This represents a refinement of our previous work, which is
substantiated by Monte Carlo simulations. These have their
own interest as they can realistically and precisely simulate
the dynamics of RP reactions including all relevant physical
processes. For most practical purposes, however, the master
equation we derive should be adequate.

This work is about the self-consistency of our approach
and not about making the case of which among the competing
theories is the correct one. In other words, if the model pre-
sented in Fig. 2 is a physically adequate model for describing
RPs, as we believe it is, our master equation introduced here
represents a first-principles result that alleviates problems with
our previous phenomenological treatment. Nevertheless, we
have compared the predictions of our approach with the other
two competing theories and discussed in detail how all three
theories describe the decay of S-T coherence, which is a central
observable in RP reactions.
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APPENDIX A

According to [30], any measure of coherence, pcoh(ρ),
should satisfy the following requirements: (1) pcoh(ρ) = 0
for ρ ∈ I. (2) pcoh(ρ) should be monotonous under all
incoherent positive and trace-preserving maps, i.e., pcoh(ρ) �
pcoh[�ICPTP(ρ)], where the map �ICPTP(ρ) = ∑

n KnρK
†
n is

defined by a set of Kraus operators Kn. These satisfy∑
n K

†
nKn = 1 and KnIK

†
n ⊂ I. (3) There is a stronger

requirement, namely that pcoh(ρ) is monotonous under selec-
tive measurements on average, i.e., pcoh(ρ) �

∑
n pnpcoh(ρn),

where ρn = KnρK
†
n/pn, again with

∑
n K

†
nKn = 1 and

KnIK
†
n ⊂ I. The probability to select ρn in the measurement

defined by Kn is pn = Tr{KnρK
†
n}.

We can now demonstrate that the previously defined
measure (5) is not a good measure of S-T coher-
ence. An S-T decoherence process can be described by

the following Kraus operators: K1 = √
1 − λQS, K2 =√

1 − λQT, and K3 = √
λ1. This set of operators has the

effect of scaling ρST and ρTS by the factor 0 � λ � 1. We
would expect that the measure of coherence also scales by
λ; however, defining ρ ′ = ∑3

n=1 KnρK
†
n, we easily find that

pcoh(ρ ′) = λ2pcoh(ρ) when using definition (5) for pcoh. Put
differently, the measure (5) is similar to the squared Hilbert-
Schmidt norm Cl2 (ρ), which does not satisfy [30] the strong
monotonicity criterion (3) above.

APPENDIX B

To visualize the definition of C(ρ) in (6), we consider a
simple example of an S-T coherent state of a single-nucleus
RP, e.g., |ψ〉 = α|S〉 ⊗ |↓〉 + β|T−〉 ⊗ |↑〉. The corresponding
density matrix is

ρ = |α|2|S〉〈S| ⊗ |↓〉〈↓| + |β|2|T−〉〈T−| ⊗ |↑〉〈↑|
+αβ∗|S〉〈T−| ⊗ |↓〉〈↑| + α∗β|T−〉〈S| ⊗ |↑〉〈↓|. (B1)

We wish to pick the amplitude αβ∗ of the S-T off-diagonal
term in Eq. (B1), i.e., the third term. This can be done as
follows. In this simple example, ρST = αβ∗|S〉〈T−| ⊗ |↓〉〈↑|.
If we right-multiply ρST with |T−〉〈S| ⊗ 12, we are left with
r = αβ∗|S〉〈S| ⊗ |↓〉〈↑|. If we then right-multiply r with r†

and take the trace of the resulting expression, it readily follows
that |αβ| =

√
Tr{rr†}. In the general case, we will have |S〉〈T0|,

|S〉〈T+|, and |S〉〈T−| coherences, and hence the definition (6).
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