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Noise, transient dynamics, and the generation of realistic interspike interval variation
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First return maps of interspike intervals for biological neurons that generate repetitive bursts of impulses
can display stereotyped structures (neuronal signatures). Such structures have been linked to the possibility of
multicoding and multifunctionality in neural networks that produce and control rhythmical motor patterns. In
some cases, isolating the neurons from their synaptic network reveals irregular, complex signatures that have
been regarded as evidence of intrinsic, chaotic behavior. We show that incorporation of dynamical noise into
minimal neuron models of square-wave bursting (either conductance-based or abstract) produces signatures akin
to those observed in biological examples, without the need for fine tuning of parameters or ad hoc constructions
for inducing chaotic activity. The form of the stochastic term is not strongly constrained and can approximate
several possible sources of noise, e.g., random channel gating or synaptic bombardment. The cornerstone of this
signature generation mechanism is the rich, transient, but deterministic dynamics inherent in the square-wave
(saddle-node and homoclinic) mode of neuronal bursting. We show that noise causes the dynamics to populate
a complex transient scaffolding or skeleton in state space, even for models that (without added noise) generate
only periodic activity (whether in bursting or tonic spiking mode).
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I. INTRODUCTION

Working with bursting neurons from crustacean central
pattern generators (CPGs), the authors of [1,2] made a striking
observation: even though the interspike interval (ISI) se-
quences for different cell types were indistinguishable through
histograms, plots of the (n + 1)th ISI versus the nth ISI—or
ISI return maps–were cell-type specific, even inside a fully
connected and functional neural circuit. Further investigations
demonstrated that ISI first return maps for biological neurons
tend to reveal characteristic patterns of firing sequences
for systems as diverse as crustacean stomatogastric (STG)
neurons [1,2], mammalian retinal ganglion cells [3], and
subthalamic neurons [4].

By construction, each burst containing M spikes contributes
M − 2 points to the ISI first return map. In the specific case
of crustacean stomatogastric neurons, it turns out that such

*Present address: Department of Neuroscience, Physiology
and Pharmacology, University College London, London, UK;
bmarin@if.usp.br
†reynaldo@ifsc.usp.br
‡Present address: Department of Biology, Point Loma Nazarene

University, San Diego, California 92106, USA; RobertElson@
pointloma.edu

§colli@ime.usp.br

points tend to distribute over small specific regions of the
ISI return plane, resulting in a specific arrangement of small
clusters which are populated always in the same sequence,
burst after burst. Such a specific geometrical arrangement
of clusters was termed a neuronal signature in Refs. [1,2],
since it allowed the identification of neuronal types in circuits
presenting different bursting frequencies, duty cycles, and
number of spikes per burst, even across biological species [5].
Moreover, this signature was shown to reflect circuit
connectivity [1,2], information in synaptic input patterns [5],
and the modulation of network operation [6]. In this paper,
we present experimental ISI return maps containing such
characteristic patterns and discuss geometrical mechanisms
for their generation in conductance models.

In realistic electrophysiological neuronal models, several
dynamical variables and parameters interact in nonlinear ways
to produce complex activity patterns, such as quiescence,
tonic spiking and bursting, which can even coexist for the
same cell [7]. The spiking-bursting activity may be periodic
or chaotic. A burst of spikes, taken as a whole, might function
as a robust unit of neural information [8–11]. In contrast, the
possibility of information coding within bursts has received
little attention.

The information-processing properties of CPGs have been
explored in model circuits inspired by the networks in
the crustacean stomatogastric ganglion (STG) [12–14]. The
authors proposed a CPG that generates a steady rhythm
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of bursts but also responds to or recognizes the signatures
produced by its individual neurons. Analysis in the STG has
shown that there is a neuron-to-neuron flow of information
within a bursting, rhythm-generating network [5].

The ISI return maps of many STG neurons change con-
siderably when the cells are disconnected from their synaptic
circuit. In these isolated neurons, the ISI sequences within
each burst vary between bursts, this variation growing expo-
nentially as bursts evolve and the spike train progresses [15].
This activity has been classified as chaotic bursting [16].
However, the neurophysiological mechanisms of this behavior
have remained elusive. Detailed, conductance-based models
generally produce regular activity when parameters are set
to biologically plausible values [17]. Deterministic neuron
models operating in chaotic regimes can generate irregular
(nonperiodic, broad spectrum) time series, but their ISI return
maps are highly structured, because chaotic trajectories are
confined to particular regions of state space [18–21]. More-
over, the production of chaotic activity involves fine-tuning of
model parameters in order to meet strict criteria, e.g., being
close to spike-adding bifurcations [20].

In contrast, state-space trajectories generated by stochastic
processes are not confined in this way, because noise is
able to nudge a dynamical system to populate the transient
scaffolding (skeleton) inherent in the dynamics. Accordingly,
we here propose a mechanism to generate the ISI signature
of irregularly bursting neurons based on the interplay of
deterministic and stochastic dynamics. The noiseless system
does not need to be tuned to a chaotic regime, nor is there a
restrictive definition of the origin of the noise. We anticipate
that this approach can be applied to other problems as well,
such as burst alignment algorithms and noise-level estimation.

II. METHODS

A. Biological neurons: recordings and analysis

The stomatogastric nervous system was removed from
spiny lobsters, Panulirus interruptus, and pinned out in vitro
in standard Panulirus saline [15]. The STG, which contains
the rhythm-generating pyloric circuit, remained connected
to anterior ganglia whose descending modulatory influence
sustain cellular bursting activity. The lateral pyloric (LP) or
pyloric dilator (PD) neurons were disconnected from synaptic
input from other pyloric circuit neurons by photoinactivating
or deeply hyperpolarizing some presynaptic neurons and
blocking inputs from others pharmacologically [22,23]. After
synaptic isolation, neurons were impaled by two micro-
electrodes for independent current injection and membrane
potential recording.

Experimental signature maps were obtained by using a
double threshold technique to detect spike timing. A spike is
detected when the membrane potential time series rises above
a threshold value of −35 mV. To avoid spurious detections
driven by experimental noise, new spike detection is allowed
only after the membrane potential decreases and crosses a
−38 mV reset threshold.

B. Neuron model

Our analysis made use of a tridimensional conductance-
based neuronal model (1). This model has been introduced

TABLE I. Parameters for the currents in the deterministic simu-
lations [Eq. (1)]. Vi are the ionic reversal potentials, ḡi are maximum
conductance densities, and τi are the timescales for each conductance.
The steady-state activation functions are defined as m∞

i = {1 +
exp [(V 1/2

i − V )/ki]}−1, where V stands for the membrane potential.
Other passive parameters are the membrane specific capacitance
C = 1 μFcm−2 and a dc bias Iext = 5 μAcm−2.

Nap Kd KM Leak

Vi (mV) 60 −90 −90 −80
ḡi (mS cm−2) 20 9 5 8
V

1/2
i (mV) −19.9 −25 −21.2

ki (mV) 15 5 5
τi (ms) 0.152 20

as a minimal model for square-wave bursting [24] and has
been previously analyzed in Refs. [21,25]. It consists of a
two-dimensional fast subsystem coupled to a one-dimensional
slower one. The fast subsystem consists of a persistent
sodium current with instantaneous activation INap, and a
potassium current IKd. The slow subsystem comprises the
gating dynamic of an M-type potassium current IKM. The
biophysical parameters are listed in Table I.

CV̇ = Iext − gleak(V − Vleak) −
INap

︷ ︸︸ ︷

gNapm
∞
Nap(V − VNap)

− gimi(V − VK)
︸ ︷︷ ︸

Ii

, (1)

ṁi = m∞
i − mi

τi

, i = [Kd,KM].

Bursting activity is generated via an hysteretic loop. It can
be easily analyzed by considering the slow variable mKM as a
bifurcation parameter [24,26], which drives the fast subsystem
cyclically from a branch of equilibria (henceforth denoted as
E) to a limit cycle manifold L (Fig. 1). When the trajectory
(gray curve in Fig. 1) slides along the stable equilibrium part
of E (solid segment of thin black line marked as E), the
full tridimensional system is in the hyperpolarized, interburst
phase. Since the flux is evolving below the mKM nullcline (long
dashed red [gray] curve), it moves toward smaller mKM values.
The stable equilibrium eventually disappears in a saddle-node
bifurcation (point labeled SN), so the trajectory moves towards
the spiking manifold L (thick black “tube”). Crossing the
mKM nullcline leads the trajectories to move towards larger
mKM values. Spikes in the active phase of bursting correspond
to full revolutions around L. This manifold disappears in a
saddle-homoclinic orbit bifurcation (point labeled S-H), when
it collides with the middle (saddle) segment of E .

Several conductance-based models can give rise to square-
wave bursting, including those built to study systems as diverse
as pancreatic β-cells [20,27], neurons in the pre-Bötzinger
complex of the brain stem [28,29] or hippocampal CA1
pyramidal cells [30]. Our analysis can be applied to any of
these or even other systems, provided that bursting involves
a saddle middle branch in the equilibrium curve of the fast
subsystem.
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FIG. 1. (Color online) (a) Phase portrait for the noiseless neuronal model Eq. (1). A noiseless bursting trajectory is depicted in gray. The thin
black curves correspond to the fast subsystem equilibrium branch E , where solid (dashed) lines denote stable (unstable) states—saddles, in this
case. The thick black “tube” depicts the envelope of the spiking manifold L. The long dashed red (gray) curve is the mKM nullcline: trajectories
below (above) it move towards smaller (larger) mKM values. Labelled points indicate bifurcations in the fast subsystem: SN: saddle-node and
S-H: saddle-homoclinic orbit. The green (dashed black over light gray) curve defines the saddle middle branch S, starting at the saddle node
and ending at the homoclinic bifurcation. (b) Full-model trajectory (blue [dark gray] and light gray curves) emanating from initial condition
(star) in the unstable manifold of a saddle in the saddle branch S. The Poincaré surface of section � is depicted in dotted beige (gray). Filled
circles represent � crossings, which are used in the reduced model analysis.

As additional examples of square-wave bursting neu-
ron signatures, we have included those generated by the
Hindmarsh–Rose three-dimensional model [31], with parame-
ters as in Table II, and a model for neurons in the pre-Bötzinger
complex (model and parameters described in Ref. [28], model
1). In both models, the chosen parameter set supported periodic
bursting activity.

C. Stochastic dynamics

Stochastic ion channel gating has been suggested to be
the major source of noise in isolated neurons [32]. Since our
derivation of the generative model for ISI map signatures
does not impose constraints nor require a particular noise
mechanism, we chose to model stochastic gating using three
different approaches [33]. For the Nap-Kd-KM model, we
used a Langevin approximation to microscopic gating schemes
derived in Ref. [34]. In this approximation, the subunit
gating dynamics ṁi are complemented with a state dependent
(multiplicative) random forcing ξ , with zero mean and variance
inversely proportional to the number of channels N in the
membrane patch, according to Eq. (2):

ṁi = m∞
i − mi

τi

+ ξi, 〈ξi〉 = 0,

(2)

〈ξi(t)ξi(t
′)〉 = m∞

i (1 − m∞
i )

Niτi

δ(t − t ′).

For the Hindmarsh–Rose model, we opted for the current
noise approach [33], adding a stochastic force directly to the

TABLE II. Parameter values for the Hindmarsh–Rose neuron
model, periodic bursting mode.

a b c d s x1 r I

1 2.7 1 5 4 −1.6 0.01 4

membrane potential equation. Finally, for the pre-Bötzinger
neuron model, we used conductance noise [33,34], where the
stochastic terms are added to the conductance terms in the
voltage dynamics: Ii = gi(mi + ξi)(V − Vi).

The resulting stochastic differential equations were inte-
grated numerically by using the Euler–Maruyama scheme [35]
with a fixed time step of 0.001 ms.

III. RESULTS

A. ISI maps of irregular bursting in biological neurons

The biological neurons, LP and PD, generated irregular
spiking-bursting activity of the type shown by the excerpted
time series in Fig. 4(c). Maps of the ISIs for spike trains within
bursts are shown in the boxed areas of Fig. 2. The initial ISIs,
from the start of bursts, are shown in Figs. 2(b) and 2(d). As
the bursts evolve, the dispersion of corresponding sequential
ISIs increases greatly. Bursts also vary in total number of
spikes.

B. Unidimensional reductions of neuronal model

We now construct a hybrid (deterministic and stochastic)
mechanism for generating ISI map signatures similar to
those of biological neurons. It is convenient to start with
unidimensional reductions of the model [Eq. (1)] to guide
the intuition and then generalize to the full system. A number
of different strategies for performing such reductions have
been proposed [21,36,37], all of which could be equivalently
employed. Our analysis relied on straightforward Poincaré
mapping and fast-slow subsystem decomposition [26,36].

Since ISI signatures are defined in terms of subsequent
maxima in membrane potential traces, the Poincaré surface
of section � had to be constructed in a way that the time
between crossings corresponded to intermaxima intervals for
the variable V . Such a requirement was satisfied by adopting
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(a) (b)

(c) (d)

FIG. 2. (Color online) (a), (b) First return ISI maps for bursting
activity of isolated LP and (c), (d) PD neurons from the STG of the
lobster Panulirus interruptus. Colors (shades of gray) in panels (b)
and (d) indicate successive ISI pairs at the start of bursts. ISIs have
been normalized so that the maximum ISI is unity.

the surface defined by V̇ = 0 [see Fig. 1(b) for a schematic
representation of � and a trajectory for the full model].

In the slow-fast decomposition, mKM is treated as a control
parameter for the fast subsystem. We built unidimensional
maps characterizing the full dynamics by gridding the interval
of mKM values that supported limit cycles in the fast subsystem,
and using intersections of � with these cycles as initial
conditions for integrating the full system [Eq. (1)].

The discrete dynamics of mKM in the intersection of the
Poincaré surface of section � with the limit cycle manifold L
is depicted in Fig. 3(a). The mapping f1d (mKM) is the updated
value of mKM obtained by integrating the system along a cycle
starting from the initial conditions described above, which
provided us the (full model) time elapsed between each � ∩ L
crossing. Hence, we were able to couple an “observable”
T {mKM} to the dynamics, giving rise to the map in Fig. 3(b).
The ISI return map is then straightforwardly defined in terms
of this observable, as the pairs (T {mKM}, T {f1d (mKM)}),
displayed in Fig. 3(c).

C. Mechanism of noise-induced irregularity

The apparent discontinuity in the mapping f1d is in-
strumental in understanding irregularities in the number of
spikes and total burst duration. Notice that the dynamics is
not chaotic: the strongly dissipative quasihorizontal segment
(mKM ≈ 0.07) reinjects all trajectories into neighboring points
at the beginning of the spiking manifolds L. Nevertheless it
is possible—due to noise—that trajectories reach the almost
vertical region of f1d , being mapped leftward and climbing
back up the spiking “ladder” (segment of f1d with positive
derivative). Thus, the large negative derivative in f1d amplifies
microscopic noise, leading to irregular ISI patterns and burst
durations even when the noiseless system supports only
periodic bursting.

Focusing back on the full model, it is possible to determine
the origin of the abrupt, although continuous, change in f1d

after the fixed point m∗. There is an ensemble of states
close to the end of the spiking manifold L that, when
evolving towards hyperpolarization, follow the saddle branch
of the equilibrium manifold E—as depicted in Fig. 4(a)—and
are eventually reinjected into the spiking manifold L. In
the membrane potential time series, such reinjections would
be reflected as prolongation of bursts by addition of spikes or
“burstlets”: clusters of spikes appended to a bursting trajectory,
after a hyperpolarization smaller than the typical interburst

FIG. 3. (Color online) One-dimensional reduction of the dynamics. Panel (a) shows discrete dynamics f1d (mKM) of the slow variable. The
highly negative derivative section close to the fixed point m∗ is of paramount importance in the suppression or addition of burstlets at the end
of a burst, leading to complex ISI signatures. (b) The observable T {mKM} coupled to the dynamics in A, that encodes the (full model) time
elapsed in a f1d (mKM) mapping. (c) The ISI signature structure, defined in terms of the observable T {.}. The thin lines connecting calculated
points were added to guide the eye.
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FIG. 4. (Color online) Burstlets associated with canard trajectories. (a) The red (dark gray) part of the trajectory indicates the bursting
“main sequence,” with the flux evolving through the spiking manifold L. This particular trajectory does not fall directly to the stable part of
the equilibria manifold (black curve) after L disappears in the homoclinic bifurcation. Instead, it glides along the unstable (saddle) branch of
E (dashed black curve) for some time (blue [light gray] part of trajectory), until being reinjected into L, thus generating a burstlet. The bottom
traces represent the time course of the burstlet trajectory, superimposed with a regular (long trace in lighter gray) one. This trajectory was
obtained by integrating the deterministic Nap-Kd-KM model for a parameter set close to a spike adding transition, so that a long “burstlet”
could be easily obtained for the sake of illustration. (b)–(d) Burstlets in the stochastic Nap-Kd-KM model, a biological PD neuron and the
stochastic Hindmarsh–Rose model, respectively.

hyperpolarization. Examples of such burstlets can be seen in
Figs. 4(b)–4(d).

Trajectories that follow unstable structures such as the
middle branch of E are called canards [38,39]. Note that these
reinjections into L can take place at any mKM value up to
the vicinity of the saddle-node bifurcation, depending on how
long the trajectory follows the saddle branch. It is precisely this
set of transient canard orbits that gives rise to the “dynamical
skeleton” of ISI signatures, the deterministic substrate that is
populated when noise is added to the model. We will construct
this “skeleton” in detail in the next section.

D. Skeleton of ISI signature map for full model

In order to unearth the skeleton, we first need to construct
what we called a “flabellate structure” W in the Poincaré
section �. We start by taking initial conditions over the
unstable separatrices (approximated through the eigenvector
corresponding to a positive eigenvalue) of points in the saddle
middle branch S. This branch is composed by saddle points
in the fast subsystem equilibrium curve E , between the fold
(SN) and homoclinic (S-H) bifurcations, and is indicated in
green (dashed black over light gray) in Fig. 1(a). One such
initial condition is depicted as a star in Fig. 1(b), as well as the
crossing it originates in �. The full system is then integrated
until the first � crossing. Proceeding likewise for each one of
the saddle points in S, we obtain a set of intercepts S ∈ �,
represented by the blue (dark gray, top) curve in Fig. 5. Let f

be the discrete dynamics on � (the Poincaré map), i.e., the map
which generates a sequence of � crossings according to the full
model dynamics, analogously to f1d for the reduced model.
Each one of the points S in the blue (dark gray, top) curve is
then iterated with f , producing a new set of � intercepts f (S).
This gives rise to the green (second from top to bottom) curve

in Fig. 5. Accordingly, subsequent iterates f n(S) will generate
the flabellated structure W .

Notice that each one of the constituent branches of W
(colored [shades of gray] curves in Fig. 5) starts with a
black point, at its lowest mKM value. Such points are the �

FIG. 5. (Color online) Projection into the mKMV plane of the
flabellate structure W generated inside the Poincaré section �. The
blue (long dark gray, at the top) curve depicts � crossings for
initial conditions close to the unstable manifolds of saddles in the
S branch. The black circle at the end of the blue (dark gray, top)
curve is visited every time a complete interburst hyperpolarization
takes place, as happens to be the case for the nine-spike periodic orbit
of the unperturbed model. The other colored (shades of gray, evolving
counterclockwise from the long dark gray curve at the top) curves are
mKMV projections of the iterates of states in the blue (dark gray, top)
curve under the Poincaré map associated with section �. Their (left,
black) endpoints are the iterates of the left endpoint of the blue (dark
gray, top) curve.
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FIG. 6. (Color online) (a), (b) Signature skeleton (colored [shades of gray] filled circles): (T {P },T {f (P )}) pairs for points P in the
flabellate structure W of Fig. 5. The generated “infrastructure” is only accessible by the system through the addition of noise, given the strongly
attractive character of the periodic bursting orbit. The unfilled gray circles correspond to a signature generated by simulating the stochastic
model. Panel (b) depicts the cluster generation mechanism for the first ISIs in a burst, along the deterministic scaffolding (colored [shades of
gray] curves emerging from clusters centered at the periodic orbit for the noiseless case).

intersections of the periodic orbit for the unperturbed system.
The flabbelate form W reveals a dynamically rich, transient
infrastructure that can be visited when the system is perturbed
by noise, but lies “hidden” in the noiseless case.

Now let T be the function with domain in � and assuming
values in the positive real numbers, which gives the time
needed for a point in � to return to it under the full dynamics.
This is the natural extension, in the full model, of the return
time T used in the unidimensional reduction. The level curves
of T will be called isochrons.

If Pn is the nth intersection of the trajectory with �

[examples depicted in Fig. 1(b)], then f (Pn) is the next
intersection, T {Pn} will be the interspike duration (nth ISI),
and T {Pn+1} will be the next interspike duration [(n + 1)th
ISI]. This establishes a relation between � and an ISI return
diagram, by the map P 
→ (T {P },T {f (P )}), or the ISI return
map transformation.

When noise is taken into account, the otherwise periodic
orbit is perturbed and there is an increased probability of
trajectories being reinjected into the spiking manifold L via
the burstlet mechanism, i.e., transient orbits through unstable
manifolds of saddles in the middle branch S. This way, the
blue (dark gray, top) curve in Fig. 5 will be populated, and
subsequently the flabellate structure W . Then the regions
of the ISI diagram most likely to be visited are in the
image of W under the ISI return map defined above, i.e.,
(T {W},T {f (W)}). This construction is termed the signature
skeleton and is depicted in Fig. 6.

In the noiseless case, due to the attracting periodic orbit,
the signature structure [defined as all the (T {P },T {f (P )})
pairs for points P in the periodic orbit] will correspond only
to the images of the endpoints of W (black circles, Fig. 5,
corresponding to solid colored [shades of gray] points in
Fig. 6). When noise is taken into account, stereotypical clusters

akin to the ones observed in experimental signatures arise
along the deterministic infrastructure [Fig. 6(b)]. Notice that,
for the initial spikes in every new burst, the sequence of
population of each cluster is likely to be the same, according
to the order of each “bone” [colored (shades of gray) lines in
Fig. 6(b)] in the skeleton.

Fig. 7 represents the dynamics in � projected onto the
mKMV plane, with the addition of first return isochrons. An
isochron is a subset of � with constant return time. In Fig. 7, a
color (shade of gray) was assigned to each isochron. The origin
of the hook-shaped structure (“kink”) for the smallest ISI in
the experimental signatures [Figs. 2(b) and 2(d) black-blue-
green (black-increasingly lighter shades of gray) sequence]
is elucidated by noticing that noise tends to spread crossings
across isochrons. This way, two ISI in different positions along
the burst are similar, leading to vertically stacked clusters in
the (T {P },T {f (P )}) (signature) map.

E. Simulation of ISI map signatures

The integration of the full (noisy) model [Eqs. (1) and (2)],
in addition to a simple threshold (−30 mV) spike detection,
leads to the ISI signature map in Fig. 8. This map qualitatively
reproduces the structure of the ISI signature of biological
neurons (Fig. 2), including fine details such as the kink in
the low-ISI main sequence, as well as the variability in both
number of spikes and interburst intervals (reflected in the
diffusiveness at the end of the main sequence and the extent
of the isolated high-ISI arms). All of these features can be
traced back to an underlying deterministic scaffolding, so that
the role of noise is to induce transient dynamics exposing
this infrastructure. Note also that the qualitative resemblance
between model and biological ISI maps was obtained without
special tuning of model parameters. Similar structures were
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FIG. 7. (Color online) Isochrons of return time to �. Long times
(blank areas) have been discarded to increase readability. The black
curve is the intersection of the surface of section � with the
fast subsystem limit cycle manifold L, corresponding to intraburst
spiking. Red (clustered dark gray) circles correspond to � crossings
of an integrated trajectory of the full noisy model [Eqs. (1) and (2)].
Noise tends to spread the crossing points across isochrons, so that
spikes of different positions in a burst give rise to similar ISIs—
generating “kinks” in the signature. Grayscale: starting from the
0.75 ms isochron on the bottom left, return times grow monotonically
following isochrons from left to right towards the rightmost isochron
(black, 1.25 ms return time).

also obtained by adding noise to either pre-Bötzinger or
Hindmarsh–Rose model neurons (Fig. 9), suggesting that
similar mechanisms may be at work in these cases also.

IV. DISCUSSION

The presented mechanism accounts for the generation of
irregular bursting traces with complex signatures, in terms of a
low-dimensional conductance-based model and a macroscopic
approximation of stochastic gating noise. Noise plays a crucial
role in the mechanism: although the deterministic scaffolding
of the model (its skeleton) can support complex behavior, this
dynamical richness is usually suppressed by the dissipative
character of the periodic bursting or tonic spiking orbits.
Noise, however, unveils the transient dynamics, giving flesh

(a) (b)

FIG. 8. (Color online) ISI signature generated by the model of a
square-wave burster neuron with channel noise [Eqs. (1) and (2)].
Scaling of plots and point colors as in Fig. 2.

(a) (b)

FIG. 9. (Color online) (a) Signature generated by the pre-
Bötzinger neuron model with conductance noise. (b) Signature
generated by the Hindmarsh–Rose neuron model with current noise.
Conventions are as in Figs. 2 and 8.

to the skeleton and generating the ISI signature patterns
characteristic of biological neurons.

Let � be the hypersurface defined by V̇ = 0. Let S
be the set of saddle points between the saddle-node and
homoclinic bifurcations in the equilibrium branch E . The
set of intersections of � with the unstable manifolds
of the saddles in S and further iterates of these intersections
under the Poincaré mapping f : � → � define the flabellate
structure W . Now consider the observable T : � → R+,
which gives the return time to �. Skeletons are the image
of the ISI return map transformation when applied to W , i.e.,
the pairs (T {W},T {f (W)}).

We emphasize the robustness of the skeleton to parameter
fluctuations: since it is inherently tied to the bifurcation
structure of the model, its general features persist even
through bursting-tonic transitions (associated with the gain
of stability of the fixed point in the unidimensional map f1d ).
Signatures essentially will remain the same for scenarios
in which bursting is induced by noise (the noiseless system
otherwise spiking tonically) [25]. That seems indeed to be the
case for the PD neuron [Fig. 2(b)], given the presence of very
long (more than 100 spikes) bursts and comparatively shorter
hyperpolarization periods.

Irregular activity in neuronal models has been associated
with the presence of deterministic chaos [40–42]. Never-
theless, the main cause of irregularities in our model is
the amplification of stochastic phenomena by the transient
dynamics. Structures defined by such dynamics persist even
for parameter regimes that do not support chaotic attractors.
Noise-induced chaos [43]—where the neighborhood of nonat-
tracting hyperbolic sets is visited due to perturbations—could
be present, because chaotic saddles can arise in spike-adding
transitions as shown in Ref. [20]. This would, however,
involve fine tuning of parameters and might prove too delicate
to detect [44] with large noise intensities such as those
needed, seemingly, to simulate biological results. Similar
considerations may apply also to “stochastic chaos” associated
with D-type stochastic bifurcations [45].

Bursting activity can be generated through several distinct
geometric mechanisms [24] in addition to the saddle-node
and homoclinic behavior studied here. By using the proposed
geometrical framework, general features of the dispersion of
ISI pairs in neuronal signature maps can be predicted. In
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particular, the burstlet generation mechanism via transient
canard trajectories will require bursting scenarios involving
a saddle middle branch.

As different levels of noise are added to the model, there
is a scaling of ISI cluster dispersion (data not shown). This
provides a possible method of estimating the dynamical noise
level in time series analysis of real neurons. We also point
out that the burstlet definition and description can be used to
improve burst alignment algorithms [46], by separating bursts
into a “main sequence” followed by irregular burstlets.
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