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Finding the global minimum-energy structure is one of the main problems of protein structure prediction. The
face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice model can reach high approximation ratios of
real protein structures, so the fcc lattice model is a good choice to predict the protein structures. The lacking of
an effective global optimization method is the key obstacle in solving this problem. The Wang-Landau sampling
method is especially useful for complex systems with a rough energy landscape and has been successfully
applied to solving many optimization problems. We apply the improved Wang-Landau (IWL) sampling method,
which incorporates the generation of an initial conformation based on the greedy strategy and the neighborhood
strategy based on pull moves into the Wang-Landau sampling method to predict the protein structures on the
fcc HP lattice model. Unlike conventional Monte Carlo simulations that generate a probability distribution at
a given temperature, the Wang-Landau sampling method can estimate the density of states accurately via a
random walk, which produces a flat histogram in energy space. We test 12 general benchmark instances on both
two-dimensional and three-dimensional (3D) fcc HP lattice models. The lowest energies by the IWL sampling
method are as good as or better than those of other methods in the literature for all instances. We then test five
sets of larger-scale instances, denoted by the S, R, F90, F180, and CASP target instances on the 3D fcc HP lattice
model. The numerical results show that our algorithm performs better than the other five methods in the literature
on both the lowest energies and the average lowest energies in all runs. The IWL sampling method turns out to
be a powerful tool to study the structure prediction of the fcc HP lattice model proteins.
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I. INTRODUCTION

To predict the structures of the proteins, mostly coarse-
grained simplified models [1–3] have been used by researchers.
However, even for the simplest hydrophobic-hydrophilic (HP)
lattice model [1,2], where two types of amino acids, hydropho-
bic and hydrophilic (or polar), are considered, the protein struc-
ture prediction (PSP) has been proven to be NP-complete [4].
The greatest difficulty lies in the huge search space, as well as
the complexity of the energy surface, which contains many lo-
cal minima and a few global minima. In this paper we focus on
the face-centered-cubic (fcc) HP lattice model [3], which can
yield very good approximations of real protein structures [5].

The deterministic approaches are not helpful in identifying
minimum-energy conformations, so finding the nondetermin-
istic heuristic approaches that can extract minimum-energy
conformations efficiently is of great importance. Some out-
standing heuristic approaches, such as the simple genetic
algorithm (SGA) [6]; the hybrid genetic algorithm (HGA)
[6], which combines generalized short pull moves and im-
proved crossover and mutation operations; the hybrid genetic
algorithm with twin removal (HGATR) [7–9]; the genetic
algorithm with elite-based reproduction strategy (ERSGA)
[10]; the hybrid of hill climbing and genetic algorithm
(HHGA) [10] based on ERSGA; the tabu search (TS) [8];
the evolutionary algorithm (EA) with lattice rotation for
crossover and K-site moves for mutation [11]; the tabu-based
local search (LST) method [12,13]; the tabu-based spiral
search (SST) algorithm [13]; the memory-based local search
(LSM) method [13]; the hybrid search technique that embeds
SST within an enhanced population-based genetic algorithm
(SSTHGA) [14]; the memetic algorithm (MA) [15]; and the

large neighborhood search [16], were applied to the fcc HP
lattice model.

As a Metropolis importance sampling algorithm, the Monte
Carlo simulations have also played a major role in solving
the PSP. Typical examples are the multicanonical ensemble
method [17], the broad histogram method [18], the flat
histogram method [19], and the energy landscape paving
method [20–22]. The Wang-Landau (WL) sampling method
[23], which can reduce the computing time even for systems
with complex energy landscapes, is a type of new Monte Carlo
global optimization method that has been proved to be efficient
for PSP on both two-dimensional (2D) and 3D HP lattice
model proteins [24]. In this paper, an improved Wang-Landau
(IWL) sampling method that incorporates the generation of
initial conformation based on the greedy strategy and the
neighborhood search strategy based on pull moves into the
WL method is proposed for PSP on the fcc HP lattice model.
Numerical results show that the IWL sampling method is an
effective algorithm for solving PSP on the fcc HP lattice model.

The remainder of the paper is organized as follows. In Sec. II
we briefly describe the fcc HP lattice model. In Sec. III we
describe our method. The numerical results and a discussion
of our implementation are shown in Sec. IV. We summarize
in Sec. V.

II. THE FCC HP LATTICE MODEL

The fcc HP lattice model has been proved to be the densest
sphere-packing model based on the full proof of Kepler
conjecture [25]. It is a kind of HP lattice model. Before
introducing the fcc HP lattice model, we first review a regular
(square or simple cubic) HP lattice model.
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A. The HP lattice model

The HP lattice model [1,2] is an abstraction of real proteins
based on the belief that hydrophobic amino acids tend to
come together and form a compact core to exclude water
and interactions between hydrophobic amino acids greatly
contribute to the free energy of the natural conformation of
a protein. In a regular (square or simple cubic) HP lattice
model, a protein is composed of only two types of amino
acids, hydrophobic and hydrophilic. A protein sequence that
can be regarded as a string with binary characters H and P is
arranged as a self-avoiding walk (SAW) chain, where adjacent
characters in the sequence occupy adjacent grid points in a
regular (square or simple cubic) HP lattice model and no grid
point in the lattice is occupied by more than one character. Two
amino acids are topological adjacent if they are neighbors in the
lattice, but are not adjacent in the sequence. A topological H-H
bond is formed between two topological adjacent hydrophobic
amino acids. If a conformation c has m H-H bonds, its free
energy E(c) = m(–1). Hence, the conformation with the lowest
free energy corresponds to the conformation with the largest
number of H-H bonds.

B. The fcc HP lattice model

The 2D square and 3D cubic models are the most frequently
used HP lattice models. However, they have the drawback of
allowing interactions only between amino acids of opposite
parity in the sequence. That is to say, if two amino acids are
at any even distance in the primary sequence, they cannot
be neighbors in the lattices. In addition, their ability to
approximate real proteins is poor. For these reasons, this paper
considers the fcc HP lattice model [3], which is shown to yield
very good approximations of real protein structures [5,10]
and is parity problem free, which means an odd indexed
amino acid in the sequence can be the neighbor of both
odd and even indexed amino acids in the sequence and vice
versa. This model has also been rigorously shown to be the
closest packing geometry for identical spheres [4]. In fact,
the 2D fcc lattice is the infinite graph G = (V ,L), where the
vertex set V = (

√
3 Z × Z)∪[(

√
3 Z + √

3/2) × (Z+ 1/2)]
and the edge set L = {(x,x ′)|x,x ′� V,‖x − x ′‖ = 1}. Here
Z denotes the integer set and ‖x − x ′‖ denotes the Euclidean
distance between x and x ′. The 3D fcc grids can be described
as a stack of 2D fcc grids, where every individual 2D
grid is slightly offset with respect to the grids above and
below it. The 2D and 3D fcc lattices are generated by the
following basis vectors: (–1,0), (1,0), (1/2,

√
3/2), (–1/2,

–
√

3/2), (–1/2,
√

3/2), (1/2,–
√

3/2) and (1,–1,0), (–1,1,0),
(–1,–1,0), (1,1,0), (0,–1,1), (0,–1,–1), (1,0,1), (1,0,–1), (0,1,1),
(–1,0,1), (0,1,–1), (–1,0,–1), respectively. Two 3D fcc points
Pi(xi ,yi ,zi) and Pj (xj ,yj ,zj ) are adjacent if and only if
(xi−xj )2 + (yi−yj )2 + (zi−zj )2 = 2. Each grid point has 6
neighbors in the 2D fcc HP lattice model that form a hexagon
(see Fig. 1) and 12 neighbors (see Fig. 2) in the 3D fcc
HP lattice model [24]. With this, a protein conformation
of the sequence can be placed as a SAW chain on a 2D
or 3D fcc lattice. Then the energy of a given conforma-
tion is defined as the number of topological adjacent H-H
bonds.

FIG. 1. Unit of the 2D fcc HP lattice model, where the six basis
vectors are shown and grid point O has six neighbors.

III. METHODS

A. Wang-Landau sampling method

The WL sampling method was first introduced by Wang
and Landau [23] in 2001. Unlike conventional Monte Carlo
methods that directly generate a canonical distribution at a
given temperature, this method estimates the density of states
g(E) for the range of possible energies accurately via a random
walk. By using a carefully controlled modification factor, the
estimate for g(E) is improved at each step of the random walk,
which makes g(E) converge to the correct value very quickly.
The method is based on the fact that a given energy level E is
visited in energy space with a probability proportional to the
reciprocal of the density of states 1/g(E).

At the very beginning of the Wang-Landau sampling
method, g(E) is unknown as is the range of possible energies.
So the density of states is set self-adaptively, namely, every
time the random walk finds a new energy, marked as visited,
we set, respectively, its density of states and the corresponding
histogram to 1. In the simulations on the fcc lattice model,
we begin the random walk in energy space by randomly
changing the conformations of the proteins, but the energy
associated with each conformation is only accepted with a
probability proportional to the reciprocal of the density of
states. Therefore, the acceptance probability from energy E1

to E2 is as follows: P (E1 → E2) = min(eln g(E1)−ln g(E2),1). If

FIG. 2. Unit of the 3D fcc HP lattice model, where the 12 basis
vectors are shown and grid point O has 12 neighbors.
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E2 is accepted, then g(E2) will be updated by multiplying it
by a modification factor fi , where f 0 is set equal to the value
e ≈ 2.718 28, which Wang and Landau used in their original
paper; at the same time, the histogram H (E2) will also be
changed by adding 1, i.e., ln[g(E2)] = lnfi+ln[g(E2)] [g(E2)
= fig(E2)] and H (E2) = H (E2) + 1. In contrast, if the state
with energy E2 is rejected, then ln[g(E1)] = lnfi+ln[g(E1)]
[g(E1) = fig(E1)] and H (E1) = H (E1) + 1. Since the value
of g(E) will be too big to be shown as a double precision
number, we choose the logarithmic formula. In the original
work by Wang and Landau [23], the convergence of the WL
algorithm was controlled by the flatness of the histogram.
However, the flatness criterion is not strict [26–28]. Zhou and
Bhatt [26] gave a proof of the convergence and analyzed the
source of statistical error. Morozov and Lin [27,28] further
identified estimations of the convergence and accuracy of
the WL algorithm. In fact, in simulations on the fcc lattice
model, the convergence of a random walk can be controlled
by the criterion [28] H (E) � ln 2/ln fi for all visited energies
E. After convergence we reduce the modification factor to a
finer one using a function such as fi + 1 = √

fi (any function
that monotonically decreases to 1 will do), reset H (E) to 0
for all visited energies E, and begin the next random walk.
The simulation continues until the modification factor fi falls
below a threshold (e.g., f final = 1.0001≈ 1) at which g(E) has
converged towards the true value of density of states with a
statistical error

√
a ln fi , where the factor a is proportional to

the local difference of the density of states [27]. Our goal is to
find the conformation with the lowest energy, so in simulations
we also keep the lowest energy Eopt and the corresponding
conformation copt each time we find a new lower-energy
conformation.

B. Generation of initial conformation

The Wang-Landau sampling method starts to search for
low-energy conformations from a valid initial conformation.
We use the greedy strategy to get the initial conformation
for a given amino acid sequence with length n. The detailed
steps are as follows. First, we put the first two amino acids at
two adjacent fixed positions on the lattice. Subsequently, we
pseudoplace the ith (3 � i � n) amino acid at every position
that is adjacent to the (i–1)th amino acid and not occupied
by other amino acids, where “pseudoplace” means that the

(a)   (b) 

FIG. 3. Example of the single-point pull moves on the 2D fcc HP
lattice model. Closed and open circles indicate the hydrophobic and
hydrophilic amino acids, respectively. If position A is free, then amino
acid 5 can be placed at A and a pull move in (a) can be executed,
where amino acid 6 is moved to the position of amino acid 5 and then
a valid conformation [indicated in (b)] is obtained.

   
(a)  (b) 

FIG. 4. Example of parallel pull moves on the 2D fcc HP
lattice model. Closed and open circles indicate the hydrophobic and
hydrophilic amino acids, respectively. If positions A and B are free
[see (a)], then amino acids 4 and 5 can be placed at their adjacent
parallel positions A and B. Then, to obtain a valid conformation, on
the left side of amino acid 4, amino acid 3 is moved to the position
of amino acid 4, 2 to 3, and 1 to 2 and on the right side of amino acid
5, amino acid 6 is moved to the position of amino acid 5 and 7 to 6
[indicated in (b)].

ith amino acid is placed temporarily and will be removed
after computing the energy of the partial conformation, which
consists of the previous i – 1 amino acids and the ith amino
acid. If such positions exist, we formally put the ith amino
acid at the position where the energy of the corresponding
partial conformation is lowest; otherwise we remove the (i –
1)th amino acid and continue to grow the partial conformation
from the (i – 2)th amino acid. Once a valid conformation with
n amino acids is produced, the process is stopped.

C. Pull moves

An efficient neighborhood search strategy is also impactful
in the Wang-Landau sampling simulation. Here the pull move
that was originally introduced by Lesh et al. [29] for square
and cubic lattices is used to execute the neighborhood search.
Different from the pivot moves [30], it allows for close-fitting
motion of a polymer chain within a confining environment
[29]; unlike end flips, corner flips, and crankshafts [30], it
is complete and reversible [8,29], which makes it efficient to
update the conformation and to guarantee the reachability of
the global minimum.

According to the number of moved amino acids at the first
step of the move, the pull moves can be divided into single-
point pull moves and two-point pull moves. In single-point

(a) (b) 

FIG. 5. Example of tilted pull moves on the 2D fcc HP lattice
model. Closed and open circles indicate the hydrophobic and
hydrophilic amino acids, respectively. If positions A and B are free
[see (a)], then amino acid 3 can be placed at position A and 5 can be
placed at position B. Then, to obtain a valid conformation, on the left
side of amino acid 3, amino acid 2 is moved to the position of amino
acid 3 and on the right side of amino acid 5, amino acid 6 is moved
to the position of amino acid 5 [indicated in (b)].
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TABLE I. Twelve instances for the fcc HP lattice model.

Instance Length Sequence

1 20 HPHP2H2PHP2HPH2P2HPH
2 24 H2P2(HP2)6H2

3 25 P2HP2(H2P4)3H2

4 36 P3H2P2H2P5H7P2H2P4H2P2HP2

5 48 P2H(PH3)2P5H10P6(H2P2)2HP2H5

6 50 H2(PH)3PH4P(HP3)3P(HP3)2HPH4(PH)4H
7 54 H2(PH)3PH4P(HP3)4P(HP3)2HPH4(PH)4H
8 60 P(PH3)2H5P3H10PHP3H12P4H6PH2PHP
9 64 H12(PH)2 ((P2H2)2P2H)3(PH)2H11

10 85 H4P4H12P6(H12P3)3HP2(H2P2)2HPH
11 100a P3H2P2H4P2H3(PH2)3H2P8H6P2H6P9HPH2PH11P2H3PH2PHP2HPH3P6H3

12 100b P6HPH2P5H3PH5PH2P2(P2H2)2PH5PH10PH2PH7P11H7P2HPH3P6HPH2

pull moves, at each move, only one amino acid can be moved
and the entire sequence only moves to one direction. The main
idea of the single-point pull move is as follows. We randomly
choose an amino acid from the chain with length n. If there
exists a “legal” position that is vacant in the grid and adjacent to
both this amino acid and either its predecessor or successor in
the chain, we put it at this position. If the chain has been broken,
we put the successor (or predecessor) of this amino acid in its
old position. Then we complete the remaining moves by the
pull-move rules until a new legal conformation is reached. An
example of single-point pull moves on the 2D fcc HP lattice
model is shown in Fig. 3. References [29,31] give a description
of the detailed steps of the single-point pull moves.

Correspondingly, in two-point pull moves, at each move,
two amino acids can be moved at the same time and the entire
sequence moves to two contrary directions. Two-point pull
moves can be divided into parallel pull moves and tilted pull
moves. In parallel pull moves, at the beginning of the move,
two adjacent amino acids are moved and the directions in
which they move are parallel. An example of parallel pull
moves on the 2D fcc HP lattice model is shown in Fig. 4.
Tilted pull moves can be performed on the condition that there
exist three adjacent amino acids in the same line and there

exist two free positions on the same side of the line that are
adjacent to the middle amino acid. An example of tilted pull
moves on the 2D fcc HP lattice model is shown in Fig. 5.

The pull move on the 3D fcc lattice is similar to that on
the 2D fcc lattice. However, in a 2D fcc lattice, the chosen
amino acid may at most be moved to six adjacent positions
(see Fig. 1), but in a 3D fcc lattice it may be moved at most to
12 adjacent positions (see Fig. 2).

D. Description of the algorithm

By incorporating the generation of an initial conformation
based on the greedy strategy and the neighborhood search
strategy with pull moves into Wang-Landau sampling method,
an IWL sampling method is proposed for the fcc HP lattice
model. The calculating procedure is presented as follows.

(i) Generate randomly a valid initial conformation c1 based
on the greedy strategy. Compute the energy E1 of c1. Let
Eopt = E1 and copt = c1. Let the set of visited energies M =
{E1}, the histogram function H (E1) = 1, and density of states
g(E1) = 1. Let i = 0 and f0 = e ≈ 2.718 28.

(ii) Let N = {1,2, . . . ,n}.
(iii) Choose randomly an integer j from N .

TABLE II. Comparison of computational results by different methods on the 2D fcc lattice model. Instances are taken from Table I.
Numbers in bold indicate the lowest energies so far. Best denotes the lowest energy found in all runs for each instance. Avg. denotes the average
lowest energy in all runs. SD denotes the standard error of the lowest energies in all runs.

IELP IWL

Instance SGA HGA HGATR ERSGA HHGA TS Best Avg. SD Best Avg. SD

1 –11 –15 –15 –15 –15 –15 –15 –15.0 0.000 –15 –15.0 0.000
2 –10 –13 –13 –13 –17 –17 –17 –17.0 0.000 –17 –17.0 0.000
3 –10 –10 –10 –12 –12 –12 –12 –12.0 0.000 –12 –12.0 0.000
4 –16 –19 –19 –20 –23 –24 –24 –24.0 0.000 –24 –24.0 0.000
5 –32 –32 –41 –40 –44 –43.3 0.781 –44 –43.4 0.672
6 –30 –38 –42 –40.1 0.943 –42 –41.8 0.400
7 –21 –23 –23 –31 –44 –41.9 1.300 –44 –43.3 0.698
8 –40 –46 –46 –55 –66 –70 –71 –70.1 0.539 –71 –70.4 0.477
9 –33 –46 –46 –47 –63 –50 –75 –74.1 0.700 –75 –74.7 0.476

10 –101 –100.2 0.600 –101 –100.4 0.316
11 –94 –93.0 0.632 –94 –93.5 0.589
12 –94 –93.2 0.400 –94 –93.2 0.400

042715-4



WANG-LANDAU SAMPLING IN FACE-CENTERED-CUBIC . . . PHYSICAL REVIEW E 90, 042715 (2014)

(iv) Execute single-point and two-point pull moves for all
legal move positions of the j th amino acid of the current
conformation c1. If at least one pull move is executed
successfully, choose randomly a legal conformation obtained
by pull moves as an updated conformation of c1, denoted by
c2, then compute the energy E2 of c2, let g(E2) = 1 and
H (E2) = 1, and go to step (v); otherwise, let N = N − {j}
and go to step (iii).

(v) If E2 /∈ M , let M = M + {E2}.
(vi) If random (0,1) < min(eln g(E1)−ln g(E2),1), let

ln[g(E2)] = lnfi + ln[g(E2)], H (E2) = H (E2) + 1,
E1 = E2, and c1 = c2 and go to step (vii); otherwise,
let ln[g(E1)] = lnfi + ln[g(E1)] and H (E1) = H (E1) + 1
and go to step (viii).

(vii) If E2 < Eopt, let Eopt = E2 and copt = c2.
(viii) If H (E) � ln 2/ln fi for all visited energies E � M ,

go to step (ix); otherwise, go to step (ii).
(ix) Let fi + 1 = √

fi , and i = i + 1.
(x) If fi ≈ 1.0001, output the lowest-energy conformation

copt and stop; otherwise, reset H (E) = 0, keep g(E) for all the
energies E(E∈M), and go to step (ii).

IV. NUMERICAL RESULTS

We run the IWL sampling method on both 2D and 3D fcc HP
lattice models. The IWL method is coded in Java language and
run on a desktop computer with an Intel Core 2 Duo 1.6-GHz
processor and 2 GB of RAM. We test two sets of instances
from the literature. For each instance, the IWL method is run
20 times independently.

A. Test instances

The first set of instances includes 12 general instances
listed in Table I, some of which have been used in literature
[9,11,15,16]. The second test set consists of five sets of
larger-scale instances, denoted by the S, R, F90, F180, and
CASP target instances. The S, R, F90, and F180 instances are
taken from Ref. [13] and six CASP target instances are from
the CASP website [32].

B. Numerical results and comparison

The first set of 12 instances listed in Table I is widely used
to test the performance of the algorithms on square and simple
cubic lattice models. Now we first test this set of general
instances on the 2D fcc HP lattice model. The computational
results are listed in Table II, in comparison with those from the
SGA [6], HGA [6], HGATR [7–9], ERSGA [10], HHGA [10],

FIG. 6. Distribution of the standard errors of the lowest energies
in all runs by the IELP and IWL methods for instances 1–12.

FIG. 7. Conformations with the lowest energies found by the IWL
method on the 2D fcc HP lattice model. Black and white circles
indicate the hydrophobic and hydrophilic amino acids, respectively.
Typical conformations are shown with (a) E = −44 of instance 7,
(b) E = −71 of instance 8, (c) E = −75 of instance 9, (d) E =
−101 of instance 10, (e) E = −94 of instance 11, and (f) E = −94
of instance 12.

TS [8], and improved energy landscape paving (IELP) methods
[22]. Our algorithm can easily reach the lowest energies so
far for four short instances 1–4, while for instances 5–9 both
the IELP and IWL methods can find the same energies that
are lower than the results from the other six methods. For
instances 10–12, the IWL sampling method gets the same
lowest energies that the IELP method does. However, our
algorithm can get average energies for these three instances
as good as or lower than those from the IELP method. To
further compare the performances between the IWL and ELP
methods, we also list the standard errors of the lowest energies
in all runs. The standard error shows how much the variation
or dispersion from the average value exists. As can be seen
in Table II, for each sequence, the standard error by the IWL
sampling method is as good as or lower than those by the IELP
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TABLE III. Comparison of computational results by different methods on the 3D fcc lattice model for the longest eight instances in Table I.
Numbers in bold indicate the lowest energies by the six methods.

Instance HGATR MA TS EA IELP IWL

Best Avg. SD Best Avg. SD

5 –69 –74 –74 –74 –74.0 0.000 –74 –74.0 0.000
6 –69 –73 –73 –72.6 0.663 –73 –72.6 0.497
7 –59 –77 –77 –76.6 0.663 –77 –76.6 0.490
8 –117 –122 –130 –130 –130 –130.0 0.000 –130 –130.0 0.000
9 –103 –114 –132 –132 –132 –132.0 0.000 –132 –132.0 0.000

10 –165 –189 –188.2 0.980 –189 –189.0 0.000
11 –156 –186 –185.0 0.775 –186 –185.2 0.548
12 –181 –180.2 0.600 –181 –180.5 0.592

method, which indicates that the lowest energy of each run by
the IWL sampling method tends to be closer to the average
value. Figure 6 shows the standard error for instances 1–12
by the IELP and IWL methods. Typical conformations by the
IWL sampling method for instances 7–12 are shown in Fig. 7.

Further, to verify the effectiveness of the IWL sampling
method, we apply it on the 3D fcc HP lattice model. We test
12 general instances listed in Table I. For instances 1–4, the
IWL sampling method can easily obtain the optimal energies
in the literature and for eight longer ones, the computational
results by the IWL sampling method are listed in Table III,
in comparison with those from the HGATR [7], MA [15], TS
[8], EA [11], and IELP [22] methods. From Table III we can
see that the lowest energies by the IWL method are as good as
or lower than those by the HGATR, MA, TS, EA, and IELP
methods. For instance 5, four out of the six methods (TS, EA,
IELP, and IWL) find the lowest energy that is missed by the

HGATR, while the MA does not report the result. For instance
6, the EA, IELP, and IWL methods can get lower energy than
that by the MA. However, both the HGATR and TS do not
report their results. The lowest energy by the TS, IELP, and
IWL methods for instance 7 are lower than that by the HGATR,
while the other two methods do not report their results. For
instances 8 and 9, the IWL sampling method also gets the
optimal energies that are obtained by the TS, EA, and IELP
methods. For instances 10 and 11, it is obvious that the optimal
energies by the IELP method and our method are much better
than that by the MA. Only the IELP and IWL methods report
the results for sequence 12 and they get the same lowest energy.
However, the average lowest energies by the IWL sampling
method are as good as or lower than those by the IELP method
for all the instances. From Table III we can also see that, for
each instance, the standard error by the IWL sampling method
is as good as or better than that by the IELP method.

TABLE IV. Comparison of computational results by different methods for the S, R, F90, F180, and CASP target instances on the 3D fcc
HP lattice model. Native E. is the optimal energy and is obtained by using HPSTRUCT [33]. Numbers in bold indicate the lowest energies by
the six methods. The numbers in parentheses are the average lowest energies.

Instance Length Native E. LST LSM SST SSTHGA IELP IWL

S1 135 –357 –351(–341) –355(–347) –353(–349) –355(–354.23) –355(–354.40)
S2 151 –360 –355(–343) –354(–347) –355(–352) –359(–356.84) –360(–357.83)
S3 161 –367 –355(–340) –359(–350) –360(–355) –364(–362.63) –366(–364.80)
S4 164 –370 –354(–343) –358(–350) –363(–356) –365(–362.63) –366(–363.20)

R1 200 –384 –332(–318) –353(–326) –359(–345) –364(–352) –369(–362.44) –369(–364.88)
R2 200 –383 –337(–324) –351(–330) –358(–346) –364(–355) –366(–362.60) –371(–368.03)
R3 200 –385 –339(–323) –352(–330) –365(–345) –366(–353) –370(–362.82) –373(–368.86)

F90_1 90 –168 –164(–160) –168(–166) –168(–166.23) –168(–166.63)
F90_2 90 –168 –165(–158) –168(–164) –168(–167.13) –168(–167.15)
F90_3 90 –167 –165(–159) –167(–165) –167(–166.00) –167(–166.07)
F90_4 90 –168 –165(–159) –168(–165) –168(–167.24) –168(–167.46)
F90_5 90 –167 –165(–159) –167(–165) –167(–166.18) –167(–166.58)

F180_1 180 –378 –338(–327) –360(–334) –357(–340) –359(–348) –363(–357.68) –364(–361.12)
F180_2 180 –381 –345(–334) –362(–340) –359(–345) –365(–353) –364(–362.83) –367(–363.60)
F180_3 180 –378 –352(–339) –357(–343) –362(–353) –371(–359) –368(–363.45) –372(–367.20)

3mse 179 –323 –266(–249) –278(–254) –289(–280) –293(–286) –291(–287.72) –294(–290.31)
3mr7 189 –355 –301(–287) –311(–292) –328(–313) –331(–320) –351(–347.42) –353(–349.75)
3mqz 215 –474 –401(–383) –415(–386) –420(–403) –439(–435.88) –443(–440.60)
3no6 229 –455 –390(–373) –400(–375) –411(–391) –424(–406) –415(–411.43) –425(–418.12)
3no3 258 –494 –388(–359) –397(–361) –412(–393) –426(–407) –462(–457.32) –477(–474.50)
3on7 279 ? –491(–461) –499(–463) –512(–485) –526(–501) –548(–546.85) –561(–553.11)
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Subsequently, we also perform simulations on five sets
of larger-scale instances, denoted as the S, R, F90, F180,
and CASP target instances, respectively. Table IV shows the
computational results by the LST method [12,13], the LSM
method [13], the SST algorithm [13], the SSTHGA [14], the
IELP method [22], and the IWL sampling method on the 3D
fcc HP lattice model. The lower bounds of the free energy
values [in column 3 (Native E.) of Table IV] are obtained
from [13]. However, the lower bound of 3on7 is unknown
(presented as a question mark). From Table IV we can see
that the IWL sampling method wins over the LST, LSM, SST,
SSTHGA, and IELP methods for these instances on both the

FIG. 8. Conformations with the lowest energies found by the IWL
sampling method for six CASP target instances on the 3D fcc HP
lattice model. The black and white balls indicate the hydrophobic
and hydrophilic amino acids, respectively. Typical conformations are
shown with (a) E = −294 of instance 3mse, (b) E = −353 of instance
3mr7, (c) E = −443 of instance 3mqz, (d) E = −425 of instance
3no6, (e) E = −477 of instance 3no3, and (f) E = −561 of instance
3on7.

lowest energies and average lowest energies. For instances
S2, S3, and S4 we get lower energies than those by the other
four methods (LST, SST, SSTHGA, and IELP), except for the
LSM, which does not report the results of these three instances,
while for instance S1, SST, IELP, and our algorithm obtain the
same energy. It is noted that, for instances R2 and R3, we can
obtain lower energies missed by the other five methods, while
for instance R1, the IELP and IWL methods obtain the lowest
energy that is missed by the other four methods. From Table IV
we can see that the SST, IELP, and IWL methods get the native
energies for all the F90 instances that are missed by the LST
method, but our method explores the conformation surfaces
more efficiently than the SST and IELP methods; for instances
F180_1, F180_2, and F180_3 we get lower energies than those
by the other five methods. We also find lower energies than
those by the LST, LSM, SST, SSTHGA, and IELP methods
for all six CASP target instances except for instance 3mqz,
for which the SSTHGA does not report its result. For each
instance, the native energy [in column 3 (Native E.) of Table
IV] is obtained by using HPSTRUCT [33], which is a state-
of-the-art software program and can give the native energy
on the fcc HP lattice if one has access to the precomputed
H cores [33] of the HP sequence by a different method. It is
obvious that the software HPSTRUCT outperforms the IWL
method for all instances, except for the five F90 instances;
however, if an HP sequence has m H residues and there is
no m-residue H core, then HPSTRUCT cannot run and if not
all size m H cores are available, then HPSTRUCT may not
converge. Even if H cores are available, HPSTRUCT may
not converge within a prespecified time limit, in which case no
answer is returned [16]. Figure 8 shows typical representatives
of the lowest-energy conformations obtained by the IWL
sampling method for six CASP target instances. It is obvious
that each conformation possesses a compact hydrophobic
core.

V. CONCLUSION

It is easy for the search method to get trapped in local
minima during the process of finding the ground-state con-
formations of a protein because of the huge search space of
the protein free-energy landscape. To address this problem,
we propose the IWL sampling method, which incorporates
the generation of an initial conformation based on the greedy
strategy and the neighborhood search strategy based on pull
moves into the Wang-Landau sampling method for the protein
structure prediction on the fcc HP lattice. By modifying the
estimate of the density of states at each step of the random
walk in energy space and carefully controlling the modification
factor, we can determine the density of states very accurately.
We compare our results with those by the SGA, HGA, HGATR,
ERSGA, HHGA, TS, MA, EA, LST, LSM, SST, SSTHGA,
and IELP methods, which achieved the state-of-the-art results
for the same instances of the fcc HP lattices. The numerical
results show that our method significantly outperforms or is
as good as the other methods over the tested instances. Not
unexpectedly, this is particularly pronounced for the five sets
of larger-scale instances considered.
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