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Entropy production of a steady-growth cell with catalytic reactions
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Cells generally convert external nutrient resources to support metabolism and growth. Understanding the
thermodynamic efficiency of this conversion is essential to determine the general characteristics of cellular
growth. Using a simple protocell model with catalytic reaction dynamics to synthesize the necessary enzyme
and membrane components from nutrients, the entropy production per unit-cell-volume growth is calculated
analytically and numerically based on the rate equation for chemical kinetics and linear nonequilibrium
thermodynamics. The minimal entropy production per unit-cell growth is found to be achieved at a nonzero
nutrient uptake rate rather than at a quasistatic limit as in the standard Carnot engine. This difference appears
because the equilibration mediated by the enzyme exists only within cells that grow through enzyme and
membrane synthesis. Optimal nutrient uptake is also confirmed by protocell models with many chemical
components synthesized through a catalytic reaction network. The possible relevance of the identified optimal
uptake to optimal yield for cellular growth is also discussed.
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I. INTRODUCTION

A cell is a system that transforms nutrients into substrates
for growth and division. By assuming that the nutrient flow
from the outside of a cell is an energy and material source,
the cell can be regarded as a system to transform energy
and matter into cellular reproduction. It is important to
thermodynamically study the efficiency of this transformation
[1–5]. Regarding material transformation, the yield is defined
as the molar concentration of nutrients (carbon sources) needed
to synthesize a molar unit of biomass (cell content) and has
been measured in several microbes [6–10]. As the conversion
of nutrients to cell content is not perfect and material loss to the
outside of a cell occurs as waste, the yield is generally lower
than unity. The yield also changes with nutrient conditions
and measurements in several microbes show that the yield is
maximized at a certain finite nutrient flow rate. The basic logic
underlying the optimization of yield at a finite nutrient flow
rate rather than at a quasistatic limit is not fully understood.

A cell can also be regarded as a type of thermodynamic
engine to transform nutrient energy into cell contents. It is
necessary to study the thermodynamic efficiency or entropy
production during the process of cell reproduction. The
thermodynamic efficiency of metabolism has been measured
in several microbes under several nutrient conditions [9,11–15]
and Westerhoff and co-workers computed it by applying the
phenomenological flow-force relationship of the linear ther-
modynamics to catabolism and anabolism [4,16] to show that
the efficiency is optimal at a finite nutrient flow. Although such
a phenomenological approach is important for technological
application, a physiochemical approach is also necessary to
highlight the difference between cellular machinery and the
Carnot engine by characterizing the basic thermodynamic
properties in a simple protocell model. Indeed, when viewed
as a thermodynamic engine, a cell has remarkable differences
from the standard Carnot-cycle engine.

The cell sits in a single reservoir, without a need to switch
contacts between different baths. The cell grows autonomously
to reproduce. To consider the nature of such a system, it is
necessary to establish the following three points distinguishing
the cell from the standard Carnot engine [17].

First, cells contain catalysts (enzymes). The enzyme exists
only within a compartmentalized cell encapsulated by a
membrane and thus enables reactions to convert resources
to intracellular components to occur within a reasonable time
scale within a cell but not outside the cell. Without the catalyst,
extensive time is required for the reaction. Thus, the reaction
is regarded to occur only in the presence of the catalyst. This
leads to an intriguing nonequilibrium situation: Let us consider
the reaction R + C ↔ P + C with R the resource, P the
product, and C the catalyst. Then, under the existence of C,
the system approaches an equilibrium concentration ratio with
[R]/[P ] = exp[−β(μR − μP )] and μR and μP the standard
chemical potentials of the resource and product, respectively,
and β the inverse temperature. In contrast, outside the cell, R

and P are disconnected by reactions within the normal time
scale; [18] therefore, their concentration ratio can take on any
value. In this sense, a cell can be regarded as a machine that
has the ability to equilibrate the extracellular environment.

Second, while considering the dynamical process, it is
important to note that the catalysts are synthesized within the
cell as a result of catalytic reactions. The time scale to approach
equilibrium can depend on the abundance of the catalyst,
which depends on the reaction dynamics themselves. Based
on the first and second points mentioned above, the approach
to equilibrium in the intracellular environment depends on
catalyst abundance, which also depends on the flow rate of
nutrients from outside the cell. Hence, the thermodynamic
efficiency could show a nontrivial dependence upon the
nutrient flow.

Third, cell-volume growth results from membrane synthesis
from nutrient components, facilitated by the catalyst, whereas
the concentrations of the catalyst and nutrient are diluted
by cell growth, which results in a nonstandard factor for
thermodynamic characteristics.

These three issues, which are fundamental to cell repro-
duction, are mutually connected and thus inherent to a self-
reproducing, or autopoietic, system. In contrast to dynamical
system studies for self-reproduction in catalytic reaction net-
works [20–23], however, the thermodynamic characteristics
for such systems have not been fully explored.
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On the other hand, there are extensive studies on thermody-
namic efficiency for a system that operates at a nonequilibrium
condition with a finite velocity, as well as the optimality
on the power efficiency [24–27], with some applications to
molecular motors [28,29]. However, the above three issues
that are essential to reproducing cells have not been discussed
in the traditional thermodynamic context so far. In particular,
with the encapsulated catalysts that exist only within a cell,
reactions that do not exist on the outside of a cell can progress
within a cell within the normal time scale we are concerned.
In the standard time scale, the equilibration is possible only
within a cell whose speed is facilitated by the enzymes that
are produced as a result of the intracellular reactions. How
this autonomous regulation of the time scale together with the
cell-volume growth influences the thermodynamic efficiency
is the main concern of the present paper.

In the present study we determine these characteristics
using simple reaction dynamics consisting of the nutrient,
catalyst, and membrane. In Sec. II we consider a simple
protocell model consisting of a membrane precursor and
catalyst under a given nutrient flow. The entropy production by
chemical production per unit-cell-volume growth is shown to
be minimized at a certain finite nutrient flow. The mechanism
underlying this optimization is discussed in relation to the
above-mentioned three characteristics of a cell. The entropy
production by material flow is discussed in Sec. II A and
basically does not change the conclusion described above. A
protocell model consisting of a variety of catalysts that form
a network, together with nutrients and membrane precursors,
has been investigated to confirm that the conclusion described
above is not altered. The biological relevance of our results is
discussed in Sec. III.

II. ENTROPY PRODUCTION OF AN AUTOPOIETIC CELL

A. Two-component model

We study the entropy production rate σ resulting from
the intracellular reaction for the minimal protocell model
consisting only of the synthesis of the enzyme and membrane
precursor from the nutrient, which then leads to cellular growth
[8,30–32] (see Fig. 1 for a schematic representation).

The model consists of the nutrient, membrane precursor,
and enzyme, where the enzyme and membrane precursor
are synthesized from the nutrient under catalysis by the
enzyme. Moreover, by assuming that the diffusion constant
of the nutrient is sufficiently large, the internal nutrient
concentration is regarded as being equal to the external
nutrient concentration. Based on the rate equation for chemical
kinetics, our model is given by the two-component ordinary
differential equations

dx

dt
= κxx(kr − x) − xλ,

dy

dt
= κyx(lr − y) − φy − yλ. (1)

where the variables x and y denote the concentrations of the
enzyme and membrane precursor, respectively, and λ ≡ 1

V
dV
dt

denotes the cell-volume growth rate to be determined. Here
the first terms with κ in both equations represent the change

FIG. 1. (Color online) Schematic representation of our three-
component protocell model. Here N, M, and E denote nutrient,
membrane precursor, and enzyme, respectively. The nutrient is taken
up from the extracellular nutrient pool by diffusion, indicated by a
blue arrow. All chemical reactions, indicated by black solid arrows,
are reversible and catalyzed by the enzyme, as indicated by dashed
arrows. Membrane precursors are transformed to the membrane as
indicated by the green ring with some leaks. The membrane growth
results in an increase in cell volume.

in the concentrations by the reactions N ↔ E and N ↔ M ,
respectively, the term φy is due to the consumption of the
membrane precursor molecules to produce the membrane
(M → membrane), and the last terms represent the dilution
of the concentrations of all chemical species due to the
volume expansion with the rate λ. The notation of the
parameters is defined as follows: r is the nutrient (i.e., resource)
concentration; k = e−β(μx−μr ) and l = e−β(μy−μr ) are the rate
constants of each chemical reaction, with μr , μx , and μy

the standard chemical potentials of the nutrient, x, and y,
respectively; κi is the catalytic capacity of the enzyme for the
component i (i = x,y) [33]; and φ is the consumption rate of
the membrane precursor to produce the membrane such that
the volume growth rate λ is given by λ = γφy, where γ is the
conversion rate from membrane molecules to the cell volume.

In the stationary state, λ takes a positive constant value of
y > 0 for r > 0 [34]. Thus, the protocell volume increases
exponentially in time. We define the entropy production
rate per unit volume at this steady-growth state as σ . In
computing σ , spatial inhomogeneity is not considered through
the assumption of local homogeneous equilibrium. Thus, the
entropy produced during the doubling in the cell volume is
given by

S =
∫ T

0

∫
V (t)

σ dV dt =
∫ T

0
V0e

λtσ dt = σ

λ
V0, (2)

where V0 is the initial cell volume and T is doubling time of
the cell [35].

We denote by η ≡ σ/λ the entropy production per unit-cell-
volume growth. Generally, if η is smaller, the thermodynamic
efficiency for a cell growth is higher. For larger η, more
energetic loss occurs in the reaction process. Hereafter, we
study the dependence of η on the nutrient condition and the
growth rate λ.

In this section we consider only the entropy production
by the chemical reaction; the entropy production by the
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flow of chemicals from the outside of the cell will be
considered in the next section. The calculation of the entropy
production rate among different components is performed by
virtually introducing chemical baths for different components
that are mutually in disequilibrium and then applying linear
nonequilibrium thermodynamics for calculation. This may
result in stringent requisites; however, this step is adopted
to address the thermodynamic efficiency of a cell with growth,
as general steady-state thermodynamics are not established
currently.

Then the entropy production rate by the reactions is given
by σ = ∑

i Ji
Ai

T
, where Ji is the chemical flow and Ai is the

affinity for each reaction. Here we set T = 1 without loss of
generality.

For the calculation we assume that κx and κy are identical
for simplicity, denoted by κ . Then, by rescaling the variables
as

x̃ = xγ, ỹ = yγ, r̃ = lrγ, τ = tφ, (3)

Eq. (1) is written as

dx̃

dτ
= κ̃ x̃(k̃r̃ − x̃) − x̃ỹ,

dỹ

dτ
= κ̃ x̃(r̃ − ỹ) − ỹ − ỹ2, (4)

where κ̃ = κ
φγ

and k̃ = k/l. The stationary solution of the
equation for κ̃ = 1 is given by

x̃ = k̃r̃(1 + k̃r̃)

1 + r̃ + k̃r̃
, ỹ = k̃r̃2

1 + r̃ + k̃r̃
.

Following this assumption, the entropy production rate by the
chemical reaction σ at the stationary state is calculated as
σ = σx + σy with σi = Ji

Ai

T
for the enzymatic reaction i = x

and the membrane reaction i = y. The flows are given by
J̃x = κ̃ x̃(k̃r̃ − x̃) and J̃y = κ̃ x̃(r̃ − ỹ), whereas the affinities
are given by Ax = T ln(k̃r̃/x̃) and Ay = T ln(r̃/ỹ). We omit
the tilde for affinities because the affinities are not affected by
the scale transformation. Therefore, we obtain

σ̃ = κ̃ x̃(k̃r̃ − x̃) ln(k̃r̃/x̃) + κ̃ x̃(r̃ − ỹ) ln(r̃/ỹ).

The dependence of η̃ ≡ σ̃ /ỹ = γ η upon k̃ and r̃ thus obtained
is plotted in Fig. 2 for κ̃ = 1. As shown, the entropy production
per unit growth shows a nonmonotonic dependence on the
nutrient concentration and is minimized at a nonzero nutrient
concentration. Because the nutrient uptake rate is a monotonic
function of the nutrient concentration, this result means that
the entropy production per unit growth η is minimal at a finite
nutrient uptake rate. This result is in strong contrast with the
thermal engine, where the entropy production is minimal at a
quasistatic limit.

Figures 3(a) and 3(b) shows the entropy production per unit
growth σ̃x/λ̃ and σ̃y/λ̃ for each reaction that produces compo-
nents x and y, respectively. This shows that the nonmonotonic
dependence on the nutrient in Fig. 2 is attributable to σ̃y/λ̃.
As mentioned above, an important characteristic of cells is
that intracellular reactions are facilitated by enzymes that are
autonomously synthesized. Thus, the equilibrium distribution
of chemicals in the presence of enzymes is different from the
external chemical distribution. The decrease in η under low
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FIG. 2. (Color online) Logarithm of η̃ plotted as a function of
scaled nutrient concentration r̃ and k̃ = k/l, the ratio between two
rate constants, with the color code given in the side bar. It is calculated
from the solutions of Eq. (4). The parameter κ̃ is chosen to be 1.0.
For given k̃, there is an optimal nutrient concentration that gives the
minimum η̃.

nutrient concentrations is explained accordingly: The extra-
cellular concentrations of the nutrient and of the membrane
precursor are far from equilibrium in the presence of catalysts.
Therefore, their intracellular concentrations under conditions
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FIG. 3. (Color online) Logarithm of the rescaled entropy produc-
tion rate per unit rescaled growth rate σ̃x/λ̃ and σ̃y/λ̃ for the enzyme
and membrane precursor synthesis reactions, respectively, plotted
as a function of the rescaled nutrient concentration r̃ and the ratio
between rate constants k̃, computed by Eq. (4): (a) σ̃x/λ̃ for the
enzyme producing reaction and (b) σ̃y/λ̃ for the membrane precursor
producing reaction.
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of low nutrient uptake remain far from equilibrium and still
similar to the external concentrations because of insufficiency
of the enzyme. However, when the amount of nutrient uptake
increases, the amount of enzyme increases and the system
approaches intracellular equilibrium; therefore, the entropy
production per unit growth decreases.

In contrast, with further increases in nutrient uptake, the
entropy production rate increases as a result of the increase in
cellular growth; the entropy production rate σ = ∑

i Ji
Ai

T
of

the reaction increases linearly with the reaction speed Ji . In the
steady state, the reaction speed Ji is roughly estimated by λpi ,
with pi the concentration of the product of the ith reaction,
because the dilution due to the cell-volume expansion and
the production of the chemical reaction should be balanced.
For example, the dynamics of the enzyme concentration are
given by dx

dt
= x(kr − x) − λx. At steady state, the enzyme

production rate x(kr − x) is balanced with λx according to
Eq. (1). Thus, σx increases with λx. In summary, for a cell with
a high growth rate, increased enzyme abundance is needed,
which, however, leads to a higher entropy production rate
[36,37].

In contrast, if the enzyme concentration is fixed externally,
the entropy production per unit growth η is minimized at
the zero limit of the nutrient concentration. In this case, the
reaction dynamics (1) are reduced to

dy

dt
= c(lr − y) − φy − φy2, (5)

where c is a constant representing the concentration of the
enzyme. In this case, the stationary solution is given by y =
1
2 {−(1 + c/φ) +

√
[1 + (cφ)2] + 4clr/φ} and, accordingly,

η−1 = (1 + y) ln(lr/y). There is no optimal nutrient concen-
tration in this expression because ∂η−1

∂r
is always positive for

any r,l > 0. This is consistent with the explanation mentioned
above for Eq. (4). If the enzyme abundance is fixed to be
independent of the nutrient uptake, the speed of approaching
equilibrium is not altered by the nutrient condition; therefore,
the entropy production just increases monotonically because
of the cell-volume growth.

B. Additional entropy production by material flow

Thus far, we have considered only entropy production
by chemical reactions. In addition, the material flow also
contributes to entropy production, which is taken into account
now.

To discuss the flow of nutrients, the dynamics of the nutrient
concentration cannot be neglected. By including the temporal
evolution of the nutrient concentration, the dynamics of the
cellular state are given by

dr

dt
= −κxx(kr − x) − κyx(lr − y) − rλ + D(rext − r),

dx

dt
= κxx(kr − x) − xλ, (6)

dy

dt
= κyx(lr − y) − φy − yλ.

where x, y, and r are the enzyme, membrane precursor, and
nutrient concentration, respectively, and λ = 1

V
dV
dt

= γφy.

The rate constants k and l are determined by the standard
chemical potential of each chemical. Additionally, the nutrient
is taken up with rate D from the extracellular environment with
a concentration rext.

The entropy production by chemical flow is derived from
nutrient uptake and membrane consumption, which (again
by assuming linear nonequilibrium thermodynamics) are
given by �Jr · �∇(−μr/T ) and �Jy · �∇(−μy/T ), respectively,
where �Ji is the material flow of component i and μ is the
chemical potential. Integration of the terms with the spatial
gradient over a space results in D(rext − r) rext−r

r
/T and φy/T

[38,39]. We neglect the entropy production of the solvent
with the assumption that the intra- and extracellular solvent
concentrations are identical [40]. The contribution of dilution
of the nutrient resulting from cellular growth is approximated
as σd,r ≈ rλ by using the formula of entropy change resulting
from the isothermal expansion of an ideal solution [41]; for
other species, we use the same formula.

We set κx , κy , D, γ , and φ equal to unity and l = k, for
the sake of simplicity. Indeed, the characteristic behavior of η

is independent of this choice. Then, the fixed-point solutions
of Eq. (6) are obtained against two parameters k and rext.
From the solution, the entropy production per unit growth is
computed, as shown in Fig. 4(a). We note that here again the
minimal η is achieved for a finite nutrient uptake, i.e., under
nonequilibrium chemical flow. In Fig. 4(b) we plotted (σmf +
σd )/λ, the entropy production excluding that derived from the
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FIG. 4. (Color online) Entropy production plotted as a function
of the external nutrient concentration rext and the rate constant k (=l),
calculated from the fixed-point solution of Eq. (6): (a) the logarithm of
total entropy production per unit-cell growth η and (b) the logarithm
of the entropy production per unit growth by material flow σmf/λ

and dilution σd/λ only. The parameters are chosen to be κx = 1.0,
κy = 1.0, D = 1.0, φ = 1.0, γ = 1.0, and l = k.
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FIG. 5. (Color online) Thermodynamic efficiency for the model
(6) plotted as a function of the external nutrient concentration rext and
the rate constant k (=l). The parameters are set as μr = 0.0, D = 1.0,
φ = 1.0, γ = 1.0, and κx = κy = 1.0. The standard concentrations
are chosen to be 10−8.

chemical reaction. It increases monotonically with the external
nutrient concentration. Entropy production is primarily derived
from chemical reactions; therefore, the conclusion of Sec. II A
is unchanged.

Note that the so-called thermodynamic efficiency is defined
as ηth = − Ja�Ga

Jc�Gc
, where Jc and Ja are the rates of catabolism

and anabolism and �Gc and �Ga are the affinities of
catabolism and anabolism [4,11]. Here the optimality with
regard to entropy production η also leads to the optimal
thermodynamic efficiency, which, in the present case, is
computed by ηth = Jyμy

Jrμr
, where Jr = D(rext − r) and Jy = φy

are the absolute values of the uptake (and consumption) flow
of chemical species r (and y) and μi is the chemical potential
of the ith chemical species. It is computed by using the
chemical potential of the nutrient μr = μ0

r + T ln(r/r0), with
μ0

r the standard chemical potential for the nutrient and r0 its
standard concentration (the chemical potentials for x and y are
computed in the same way). This thermodynamic efficiency
also takes a local maximum value at a nonzero nutrient uptake
rate (see Fig. 5).

III. EXTENSION TO A MULTICOMPONENT MODEL

It is worthwhile to check the generality of our result for
a system with a large number of chemical species as in the
present cell. For this purpose, we introduce a model given by

dx1

dt
=

N∑
j=1

N−1∑
k=2

[C(1,j ; k)k1j xj − C(j,1; k)kj1x1]xk

+ (X1 − x1) − x1λ,

dxi

dt
=

N∑
j=1

N−1∑
k=2

[C(i,j ; k)kij xj − C(j,i; k)kjixi]xk

− xiλ (1 < i < N − 1),

dxN

dt
=

N∑
j=1

N−1∑
k=2

[C(N,j ; k)kNjxj − C(j,N ; k)kjNxN ]xk

−φxN − xNλ, λ = xN, (7)

where the variables x1, xN , and xi (1 < i < N) denote
the concentrations of the nutrient, membrane precursor, and
enzymes, respectively, and X1 is the external concentration of
the nutrient. Each element of the reaction tensor C(i,j ; k)
is unity if the reaction of j to i catalyzed by k exists;
otherwise, it is set to zero. Here the nutrient and the
membrane precursor cannot catalyze any reaction, whereas the
other components i = 2, . . . ,N − 1 form a catalytic reaction
network [21,42–44]. All chemical reactions are reversible in
our model; therefore C(i,j ; k) is equal to unity if and only if
C(j,i; k) equals unity. For the sake of simplicity, we assume
that the catalytic capacity, nutrient uptake rate, membrane
precursor consumption rate, and conversion rate from the
membrane molecule to the cell volume are unity. The standard
chemical potential μi for each chemical species is assigned by
uniform random numbers within [0,1], whereas kij is given by
min{1, exp[−β(μi − μj )]} accordingly [43].

Numerical simulations reveal that there again exists an
optimal point of η for each randomly generated reaction
network of N = 100. The dependence of η on the nutrient
concentration is plotted in Fig. 6(a), overlaid for different
networks. Although the nutrient concentration to give the
optimal value is network dependent, it always exists at a finite
nutrient concentration; therefore, the entropy production is
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FIG. 6. (Color online) Entropy production and deviation from
equilibrium calculated from the steady-state solution of the multi-
component model (7) plotted as a function of the external nutrient
concentration: (a) entropy production rate per growth rate η and (b)
Kullback-Leibler divergence of the steady-state distribution from the
Boltzmann distribution defined in Eq. (8). The results of ten randomly
generated networks are overlaid. The number of chemical species is
set as 100, whereas the parameter φ is chosen to be unity, and the
ratio of the average number of reactions to the number of chemical
species is set to 3.
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minimized at a nonzero nutrient concentration. To determine a
possible relationship with the optimality of η and equilibrium
in the presence of a catalyst we also compute the Kullback-
Leibler (KL) divergence of the steady-state distribution from
the equilibrium Boltzmann distribution [17] as a function of
the external nutrient concentration, expressed as

DKL(p||q) =
N∑

i=1

pi ln
pi

qi

, (8)

where pi and qi are pi = e−μi /
∑

j e−μj and qi = xst
i/

∑
j xst

j ,
respectively (xst

i is the concentration of the ith chemical
species in the steady state) [45]. The KL divergence for each
network shows nonmonotonic behavior, as shown in Fig. 6(b).
Although the optimal nutrient concentration does not agree
with the optimum for η, each KL divergence decreases in
the region where η is reduced. In this sense, it is suggested
that the reduction of η in our model (7) is related to the
equilibration process of abundant enzymes synthesized as a
result of a relatively high rate of nutrient uptake as discussed for
Eqs. (1) and (6).

IV. SUMMARY AND DISCUSSION

To discuss the thermodynamic nature of a reproducing cell,
we have studied simple protocell models in which nutrients
are diffused from the extracellular environment and neces-
sary enzymes for the intracellular reactions are synthesized
to facilitate chemical reactions, including the synthesis of
membrane components, which leads to the growth of the cell
volume. In the models, cell growth is achieved through nutrient
consumption by the reactions described above. We computed
η, which is the entropy production per unit-cell-volume growth
and found that the value was minimized at a certain nutrient
uptake rate. This optimization stems from the constraint
that cells have to synthesize enzymes to facilitate chemical
reactions, i.e., the autopoietic nature of cells. In general,
the concentrations of nutrients and membrane components
in extracellular environments are different from those in
equilibrium achieved in the presence of enzymes and the
intracellular state moves towards equilibrium by synthesizing
enzymes to increase the speed of chemical reactions. The
equilibration reduces the entropy per unit chemical reaction.
However, faster cell-volume growth leads to a higher dilution
of chemicals; therefore, faster chemical reactions are required
to maintain the steady-state concentration of chemicals.
Because the entropy production rate of the reaction increases
(roughly linearly) with the frequency of net chemical reactions,
η then increases for a higher growth range. Thus, the existence
of an optimal nutrient content is explained by the requirement
for reproduction mentioned in the Introduction, i.e., equilibra-
tion of nonequilibrium environmental conditions facilitated
by the enzyme, autocatalytic processes to synthesize the
enzyme, and cell-volume increase resulting from membrane
synthesis.

In the present model, all chemical components thus
synthesized are not decomposed; they are only diluted.
However, each component generally has a specific decom-
position time or deactivation time as a catalyst. We can
include these decomposition rates, which can also be re-

garded as diffusion to the extracellular environment with a
null concentration. Then the equilibration effect is clearer,
although the results regarding optimal nutrient uptake are
unchanged.

Note that in the present cell model, there is only a single
stationary state, given the external condition. In a complex
reaction system, as in the present cell, there can be multiple
stationary states with different growth rates and the selection
process among them is also important [46,47]. A comparison
of thermodynamic efficiency among different states will also
be important [48].

In the present study we focused on the case with a single
entropy production that corresponds to dissipated energy per
unit growth. In microbial biology, however, material loss is
discussed as biological yield, as mentioned in the Introduction,
and it is thus reported that the optimal yield is achieved at a
certain finite nutrient flow. Material loss is not directly included
in the present model; therefore, we cannot discuss the yield
derived directly from entropy production. However, it may be
possible to assume that energy dissipation is correlated with
material dissipation.

For example, the stoichiometry of metabolism is suggested
to depend on dissipated energy [49]. Here metabolism con-
sists of two distinct parts: catabolism and anabolism. For
catabolism, the energy is transported through energy currency
molecules such as ATP, NADPH, and GTP, which are synthe-
sized from the nutrient molecule. In this process, molecular
decomposition also occurs, leading to the loss of nutrient
molecules. In addition, the abundance of energy-currency
molecules and the utilized energy are correlated. Hence,
for both catabolism and anabolism, the energy dissipation
and material loss are expected to be correlated. Indeed,
a linear relationship between the yield and the inverse of
thermodynamic loss (i.e., a quantity similar to 1/η here) is
suggested from microbial experiments [49,50].

Considering the correlation between energy and matter,
the minimal entropy production at a finite nutrient flow that
we have shown here may provide an explanation for the
finding of optimal yield at a finite nutrient flow. Future studies
should examine the relationship between minimal entropy
production and optimal yield by choosing an appropriate
model that includes ATP synthesis and waste products in
a cell. Currently, although our models are too simple to
capture such complex biochemistry in a cell, they should
initiate discussion regarding the thermodynamics of cellular
growth.
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