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Contact time periods in immunological synapse
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This paper resolves the long standing debate as to the proper time scale 〈τ 〉 of the onset of the immunological
synapse bond, the noncovalent chemical bond defining the immune pathways involving T cells and antigen
presenting cells. Results from our model calculations show 〈τ 〉 to be of the order of seconds instead of minutes.
Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the
integrin:ligand pair (�2 ∼ 40–45 nm) and the T-cell receptor TCR:peptide-major-histocompatibility-complex
pMHC bond (�1 ∼ 14–15 nm), 〈τ 〉 grows monotonically with increasing coreceptor bond length separation δ

(= �2 − �1 ∼ 26–30 nm) while 〈τ 〉 decays with �1 for fixed �2. The nonuniversal δ-dependent power-law
structure of the probability density function further explains why only the TCR:pMHC bond is a likely candidate
to form a stable synapse.

DOI: 10.1103/PhysRevE.90.042706 PACS number(s): 87.16.dj, 05.40.−a, 87.18.Tt

I. INTRODUCTION

Cell to cell contacts define key chemical pathways that
articulate immune response signaling through cellular signal
transduction [1]. Signals are transported in the event of
attached integrin-ligand pairs, whereupon they are carried
through intracellular signaling pathways. Such biomechanical
signaling, mediated by surrounding coreceptor molecules
(CD4, CD8, CD45) proliferates an immune response in the
body through cellular level interactions [2], often resulting in
the formation of the immunological synapse (IS) bond between
the immune cells (T and B cells) and the antigen presenting
cells (APC). In T cells, some of these signaling pathways are
directed toward the nucleus, where conformal changes lead
to cell proliferation and triggering of the immune effector
functions.

The T-cell:APC bond, a “close contact” patch between
the membranes, is known to have a diameter ∼10 μm and
contains a large number of membrane bound molecules [3].
Important cell surface molecules on the T cell include the
T-cell receptor (TCR) and the leukocyte function associated-
1 adhesion molecule (LFA-1). The T-cell receptor (TCR)
binds with peptide bound major histocompatibility complexes
(pMHC) on the APC. Similarly, the integrin LFA-1 molecule
has a natural ligand in the intercellular adhesion molecule-1
(ICAM-1) on the APC surface.

Nascent TCR:pMHC and LFA-1:ICAM-1 bonds begin to
form following the initial cellular attachment. Fluorescent
tagging reveals heterogeneous segregation and aggregation
of the surface molecules throughout the interface [3,4], a
result that is attributed to the presence of multiple length
scales (∼14–15 nm for TCR:pMHC and ∼40–45 nm for LFA-
1:ICAM-1 [5,6]) leading to the dynamic reorganization of the
cell surface molecules as a pathway towards IS formation [7–
9]. Initially, the longer bonds (LFA-1:ICAM-1) localize at
the center of the contact zone, with small patches of shorter
bonds (TCR:pMHC) toward the edge of the contact zone. Such
nonlinear patterning have been studied in details [10,11] with
theoretical models convincingly proving that the dynamical
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reorganization is the result of the presence of multiple length
scales in the problem along with descriptions of conditions in
which such changes in receptor configurations [3] occur. In
what follows, we will use this fact as an input but otherwise
focus on a different aspect of quantifying the strength of the
immunological synapse bond that was beyond the scope of
either of these papers.

From the binding assay measurements, we know that the
affinity of the TCR-pMHC complex may vary drastically
depending on the proliferated peptide, TCR sequences, and the
MHC allele. What triggers the sequential patterning process
leading primarily to the aggregation-segregation mechanism,
followed by binding of the IS bond, are defined by the
binding energies of the respective of the emergent synapse.
While such a binding affinity is not exactly proportional to
the separation length of the individual cell membranes, it
has now been proved [12] that the TCR:pMHC interaction
has to be long enough to complete proximal signaling while
the dissociation rates have to be sufficiently short to allow
multiple TCRs engaging with the same pMHC. As explained
in [12], following an initial clustering of the TCRs on the
cell surface, affinity rates are affected by the average “dwell
times” with affinity increasing monotonically as dwell times
up to a threshold followed by a saturation regime; so while
it would be ideal to model the TCR:pMHC interaction with
affinity as the switch, defining the average dwell time as our
regulation “order parameter” allows for more direct theoretical
modeling of the IS dynamics and in turn the patterning process.
At this minimalist level, we are considering only one-no-one
TCR-pMHC interactions which is why TCR intensity resulting
from the aggregation on the cell membranes will only linearly
affect the IS kinetics.

The early patterning signals cause polarization of the
microtubule organizing center, effectively stopping T-cell
migration and orienting the internal machinery toward the
contact area. At a time scale of up to 5 min, the pattern inverts
such that the TCR:pMHC bonds migrate to the center of the
initial close-contact patch and the LFA-1:ICAM-1 bonds form
a tight adhesion ring around the periphery [3]. Such a pattern
inversion is strictly a “nonuniversal” feature, since dynamic
interactions (kinapses) between the cells are also shown to
initiate immune effector functions [13,14].
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It has been largely recognized that the mature synapse is
required to trigger the immune effector function [9]. A primary
objective of this study is to focus on the kinetic behavior at
the start of this dynamical bond formation process. When the
TCR is attached to an agonist pMHC, intracellular signaling
molecules can phosphorylate the cytoplasmic portion of the
TCR and signal transduction occurs. However, it is not well
understood if signaling continues after the TCR has disengaged
from the pMHC, although some studies indicate this may be
possible [7]. Recent studies have also identified TCR micro-
clusters, small patches of membrane enriched in TCR and
signaling molecules, continuously forming at the periphery
of the synapse throughout the contact duration[15]. Signaling
from these microclusters peaks while in the periphery and
diminishes as they migrate toward the center of the synapse.
The time dynamics of these signals are in the order of seconds,
consistent with upregulation of Ca2+ levels, before the synapse
matures minutes later [13].

The strength and start time of the IS bond patterning
is defined by the average time the two randomly forced
(due to thermal fluctuations) fluctuating membranes (T cell
and APC) remain in contact with each other above a min-
imum threshold � that is defined by the bond lengths of
the participating molecules, a model that was successfully
implemented previously [16] in estimating the average lengths
scale of the interacting T Cell:pMHC patch sizes. In line
with the Chattopadhyay-Burroughs’ model [16], here we
analyze the average time of contact of these close-contact
patches, at the start of patterning, based on an analogous
one-membrane–two-threshold model (theoretical architecture
follows [16]). This is a linearized (around the linearly stable
fixed point) version of the nonlinear reaction-diffusion model
due to Qi et al. [10,11,17,18] in line with our previous
work in this sequel [16]. Numerical analysis of the nonlinear
models [10,17] have been shown to be in near quantitative
agreement with the early images of the synapse [3,4]. Our
linearized model portrays the nonstationary state dynamics
of a fluctuating membrane φ(x,t) close to the linearly stable
point and across a range of mean separation distances defined
by the bond lengths of relevant coreceptor molecules (15–
45 nm). As shown in [10,19], incorporation of the first
nonlinear (cubic) perturbation in the linearized (stochastic)
model predicts a Hopf-bifurcation point below which the linear
regime dominates and above which nonlinear patterning [17]
takes over. Our focus here is to study the crossover from the
linear to the nonlinear regime.

II. THE TCR:APC MEMBRANE FLUCTUATION MODEL

The dynamics that we are studying here stems from the
interaction of two stochastically driven membranes. With a
membrane separation distance designated by φ(x) where x is
any point on the membrane observed at time t , our linearized
stochastic continuum model can be written as

Mφ̇ = −B∇4φ + γ∇2φ − λφ + η(x,t). (1)

Here B is the coefficient of the membrane rigidity, γ

is the surface tension, λ quantifies the linearized relaxation
kinetics close to equilibrium, and M is the membrane damping
constant. As in a standard membrane dynamics, the membrane

rigidity term and the surface relaxation terms create a force
balance by working against each other while the contribution
from the surrounding coreceptor molecules is encapsulated in
the linear −λφ term. The thermal noise η(x,t) is assumed to be
a spatio-temporally independent Gaussian white noise defined
through fluctuation-dissipation kinetics [16]:

〈η(x,t)〉 = 0, (2a)

〈η(x,t)η(x′,t ′)〉 = 2kBT Mδ(x − x′)δ(t − t ′). (2b)

Although broadly argued from a thermodynamic per-
spective, the above stochastic (model) has its origin in a
more detailed nonlinear dynamical system architecture as
propounded in [10,11]. The linearized model focuses on the
contact events (TCR:APC synapse) and arises from a linear
stability analysis of the nonlinear model defined in these
references close to the equilibrium point. Detailed descriptions
of the linear stability criteria and its application are available
in [11] and have been previously employed in [16]. It must
be mentioned that the range of validity of this linear model is
limited to the start of the immunological synapse patterning
and can not account for the eventual self-organized criticality
leading to the mature synapse formation.

A. The two threshold model

Our starting model is a generalized version of the model
described in [16]. In this earlier work, we defined a one
membrane model fluctuating across a threshold as an analog
of our physical system. In that model, this single threshold
cloned the TCR:APC and other small coreceptor bond length
range but considered all larger length bonds (e.g., integrin-
ligand) as a constant. This present improved model considers
two thresholds �1 (TCR:pMHC) and �2 (integrin:ligand) in
acknowledgment of the presence of two different length scales,
one large and other small, in a reminder of [17]. Two opposing
points on the membranes are said to be within close contact if
the separation distance is less than −�i nm (i = 1,2), that,
in the one membrane model, translates to a configuration
of a fluctuating membrane staying above a critical threshold
−�i nm through a certain average distance 〈X+〉 [16] and an
average time 〈τ+〉 (result from this article). Figure 1 explains
the time persistence behavior of the fluctuating membrane
where t±�i

(i = 1,2) gives the “bottom-up/up-bottom” cross-
over times across the lines φ = �i , where the duration of time
for close contact is given by t−−�i

= t2 − t1. In accordance with
the reflection symmetry of this model, t+�i

= t2 − t1 represents
the close-contact duration under the conditions

φ(t1) = φ(t2) = �i, (3a)

φ(t) � �i, t1 < t < t2. (3b)

We shall use the latter definition for notational purposes, as
detailed in the Fig. 1 caption.

B. Sec. II A for a two threshold model

As in [16], we assume each successive crossing of the
φ = �i line to be statistically independent {independent
interval approximation (Sec. II A) [21,22]}. The time
persistence characteristics between two thresholds �1 and
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t

φ (t)

FIG. 1. t+
� and t−

� regions: The time evolution of the separation
distance for a point in the membrane interface, φ(x,t). The t+

�i
regions

are periods of time where close contact exists between the membrane
surfaces at distances �i (i = 1,2) and during the t−

�i
period the

membrane separation distance is not favorable for ligand-receptor
bond formation. The shaded regions indicate the time persistence [20]
between two thresholds, �1 and �2.

�2 (�2 > �1) that are separated by a distance δ = �2 − �1

represents a set of four different events where a signal φ persists
between the two thresholds (Fig. 1): (a) the fluctuation enters
the δ region from below the lower threshold, persists within
the δ region, and returns below the lower threshold t11; (b) the
fluctuation enters the δ region from below the lower threshold,
persists, and becomes larger than the upper threshold t12;
(c) the fluctuation enters the δ region from above the upper
threshold, persists, and exits below the lower threshold t21;
and finally, (d) the fluctuation enters from above the upper
threshold, persists, and exits above the upper threshold
t22. A consummate representation of the average time of
persistence considering all four scenarios together can then be
defined as

〈tδ〉 =
2∑

i,j=1

wij (δ)〈tij (δ)〉, (4)

where wij (δ) is the δ-dependent probability of occurrence of
the event tij , with

∑2
i,j=1 wij (δ) = 1. Detailed quantitative

depictions of statistics in each of these zones will be detailed
in the following section. In the numerical simulation of
the model, the above normalization condition was always
adhered to.

III. ANALYSIS

The theoretical routine focuses both on the analytical as
well as on the numerical aspects. For the former, the target
is to recast the model solutions within a Gaussian stationary
process (GSP) framework. For the latter, Euler integration of
the stochastic model is followed by the estimation of the
probably density function of the persistent crossings. The
following subsections detail these separately.

A. On to GSP

In the Fourier transformed space, Eq. (1) admits of a
stochastic solution

φ(x,t) = 1

2πM

∫
dk

∫ t

0
e−α(k)(t−t ′)+ik·xη̃(k,t ′)dt ′ + φ̃0, (5)

where α(k) = Bk4+γ k2+λ

M
under initial conditions φ̃0. φ(x,t)

is a Gaussian process with zero mean, whereupon it can be
entirely characterized by the two point correlation function
(vide [16] for detailed reference; notations are in line with this
parent article)

c12(t1,t2) = 〈φ(x,t1)φ(x,t2)〉

= kBT

(2π )2M

∫
dk

e−α(k)(|t2−t1|)

α(k)

− kBT

(2π )2M

∫
dk

e−α(k)(t1+t2)

α(k)
, (6)

where 0 < t1 < t2. In the large time limit, where any of t1 or t2
is large with |t2 − t1| still being finite, the second integral term
tends to zero and we have a form that is solely dependent on
τ = |t2 − t1|, which is a Gaussian stationary process (GSP),
with the following correlation functions:

c12(τ ) = kBT

(2π )2M

∫
dk

e−α(k)τ

α(k)
, (7)

c12(0) = c11 = kBT

(2π )2M

∫
dk

1

α(k)
. (8)

The above is the representation of our linearized nonequi-
librium model in the Gaussian stationary state limit. Since
we are only interested in close-contact times, we intro-
duce the formalism of a conditional correlator for an
arbitrary time t during cell-to-cell contact by using the
variable σ = sgn(φ(x,t) − �i), that changes sign about
φ(x,t) = �i [21]. The conditional correlator A+(φ1,φ2) =
〈sgn(φ(x,t1) − �i) sgn(φ(x,t2) − �i)〉 for states where φ >

�i can be expressed as

A+(φ1,φ2) = N

∫ ∞

�i

dφ1e
− detc

2c11
φ2

1

∫ ∞

�i

dφ2e
− c11

2 (φ2+ c12
c11

φ1)2

,

(9)

with detc = c2
11 − c2

12 and the normalization factor

N =
√

detc

acot
(

c12√
detc

) .

As before, φj = φ(x,tj ) (j = 1,2) and the curly brackets “〈〉”
refer to ensemble averages over all noise realizations. In the
limit of Sec. II A, the probability that the field φ has crossed
the line φ = �i in a small enough time interval τ will be given
by τ

〈τ+〉 , leading to the relation A+ = 1 − τ
〈τ+〉 [21,22]. This

leads to

〈τ+〉 = − 1

A′+
, (10)

where A′+ is the partial derivative of A+ with respect to τ .
In practice, due to the lack of a closed form solution, A′+ =
∂A+
∂c12

· ∂c12
∂τ

is being evaluated numerically.
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B. Numerical scheme

Continuum Eq. (1) is discretized and simulated using a
first-order forward difference Euler scheme

φi,j (t + �t) = φi,j (t) + �tφ̇i,j (t) (11)

on a two-dimensional mesh with �x = �y = 1, using peri-
odic boundary conditions. We use the experimental parameter
settings in accord with cellular membranes [16]: M = 4.7 ×
106 kB T s μm−4, B = 11.8 kB T, γ = 5650 kB T μm−2,
and λ = 6.0 × 105 kB T μm−4. For each term to contribute
to the dynamics, simple dimensional analysis will show that
B∇4[φ] ∼ γ∇2[φ] ∼ λ[φ]. The numbers here are all in energy
units that help us to nondimensionalize the eventual outcomes.
The noise in this case is perturbative whose strength is just
enough to stimulate dynamical fluctuations. In what follows,
we compare results obtained from the approximate analytical
solutions (Sec. II A based) with the numerical evaluation of
the starting model equation.

IV. RESULTS

Figure 2 shows the ensemble average for the time persis-
tence above any of the (�1 or �2) thresholds keeping the other
fixed, for both the numerical and the scaled analytical solution.
The parameters used give rise to persistent close-contact
patches in the order of magnitude required for the biological
problem, that is, 10–50 nm. The numerical results (in dots:
Fig. 2) are consistent with the analytical solutions (continuous
line: Fig. 2), where the close-contact time decreases as the
separation distance increases, suggesting that the TCR:pMHC
bond persists longer than the LFA-1:ICAM-1.

The result shown in Fig. 2 can be qualitatively understood
from simple probabilistic considerations. As the threshold
value increases, it becomes more difficult for the randomized
(Gaussian) fluctuations to cross this threshold, resulting in
reduced average time spent above the threshold value. More
nontrivial, though, is the functional nature of the decay in
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FIG. 2. (Color online) Time persistence for different thresholds,
〈τ+〉 vs �i : The ensemble average for the time persistence above
the �i threshold. The dots show the result obtained by numerically
solving Eq. (1) based on the scheme detailed in Eq. (11) while the
solid line indicates the analytical result obtained from a solution of
Eq. (10). The results have been linearly scaled for comparison.
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FIG. 3. (Color online) Time persistence, 〈τδ〉 vs δ: The ensemble
average time persistence between two thresholds, where the distance
between the thresholds is given by δ.

the 〈τ+〉 value against �. As opposed to a simplistic (and
incorrect) visual impression, the decay profile here is not
exponential, rather it is defined through an intricate balance
between power-law scaled fluctuations against the statistics of
deterministically decaying membrane fluctuation modes.

A vital part of this model study is the analysis of the
dynamics of the randomly driven membrane in between the
two given thresholds. In line with the parlance used previously
as well as in [16], this can be represented by an estimation
of the time persistence between two threshold values, �1 and
�2, where �1 is the T-cell analog of the TCR:pMHC bond
length (∼15 nm) while �2 symbolizes the ICAM-1:LFA-1
bond separation length (∼45 nm).

The result for the variation of the average time between
the two thresholds as a function of the distance δ between the
thresholds is shown in Fig. 3. The calculations were done by
starting with �1 = 1 nm and then varying �2 between 1 and
50 nm. The results shown in Fig. 2 are the average over multiple
such initial choices of �1 and then varying �2 accordingly to
generate the appropriate range for δ.

As previously, the dotted points refer to the numerical
simulation results while the continuous line represents the
interpolation of the same to maintain continuity. The time
persistence initially increases as δ increases, then it saturates
and asymptotically approaches the 〈τ+〉�1 value. As δ → 0 the
average time persistence tends toward the smallest time length
scale used, for our case dt = 0.1. Once again, a quantitative
understanding of Fig. 3 can be had from the fact that an increase
in the δ value can be wrought about in either of the two possible
ways—an increase in �2 for fixed �1, or else a decrease in
�1 for a fixed �2. For the first case when �2 increases at a
fixed �1, it is easier for a fluctuation mode to remain within
the upper limit �2 than to cross it while for the second case,
with a fixed value of the upper threshold �2, a lowering of �1

increases the probability of a fluctuation mode crossing this
line resulting in an increased value of 〈τδ〉.

Figures 2 and 3, respectively, express the variation of
the average “persistent times” against bond lengths above a
critical threshold and that in between two thresholds (�1 and
�2). These results are subsets of a bigger ensemble defined
by a membrane that fluctuates across two thresholds �1

042706-4



CONTACT TIME PERIODS IN IMMUNOLOGICAL SYNAPSE PHYSICAL REVIEW E 90, 042706 (2014)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5

p(
)

 (sec)

21
22
12
11

FIG. 4. (Color online) Variation of the probability density func-
tion p(τ ) with τ for δ = 15 nm between two thresholds for the τ11,
τ12, τ21, and τ22 cases.

and �2, or else that of two membranes whose fluctuations
are measured across a single threshold �, that, as already
explained earlier, are equivalent analytical descriptions. In
line with our model of a single membrane fluctuating across
two thresholds detailed in the previous section and as depicted
in Fig. 1, the statistics can be classified in to four broad
zones—“11”, “12”, “21”, and “22”. While 11 defines the
fluctuation regime for a crossing from a region in φ < �1

across the line φ = �1 but for φ < �2, 22 encapsulates the
complementary regime for a crossing across φ = �2 from a
point φ > �2. 12 and 21 represent statistics when crossings
are restricted within �1 < φ < �2 as explained in Fig. 1.
Representing the corresponding average persistent time scales
by τij (i,j = 1,2), we find that due to reasons of reflection
symmetry in the time correlators [A+(t+,�1) = −A−(t−,�2)
and A−(t+,�1) = −A+(t−,�2)], τ11 and τ22 are identical, as
are τ12 and τ21. Comparing with the notations used previously,
τ12(=τ21) may be identified with τδ while τ11(=τ22) may be

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10

p(
12

)

12 (sec)

=15nm
=20nm
=25nm

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2

p(
11

)

11 (sec)

FIG. 5. (Color online) Variation of the probability density func-
tion p(τ12) with time τ12 between thresholds �1 and �2 for a range of
δ values. As expected, the smallest δ (=15 nm) turns up the highest
peak (represented by crosses), followed by δ = 20 nm (squares), with
δ = 25 nm showing the lowest peak with the maximum spread (solid
squares).

identified with 〈τ+〉 under the constraint φ < �2. For the same
reason (reflection symmetry), as shown in Fig. 4, the respective
density distributions too conform to these symmetry lines.

The result presented in Fig. 4 is not a special case, as shown
in Fig. 5, where the τ11 and τ12 scenarios are plotted for three
values of δ.

As δ increases, the probability density for the τ12 case shows
an increase in the probability for longer time persistence,
a result that matches with the observation presented earlier
through Fig. 3. On the other hand, the number of τ12 events
become less frequent as δ is increased. The τ11 densities also
change slightly, again showing an increase in the probability
for longer time persistence.

V. CONCLUSIONS

The analysis presented here has two major immunological
implications. First, Figs. 2 and 3 clearly prove that the onset
of patterning at the immature kinapse level, when the central
LFA-1:ICAM-1 bond gives way to the smaller TCR:pMHC
bond, occurs at the time scale of seconds. This discovery is
expected to confirm the start time of mature synapse formation.
Admittedly, though, the parameter values used make the result
a subjective case in that the time scale predicted for a different
membrane:membrane dynamics may as well be in minutes or
hours, instead of in seconds. Our calculation pins down the
time scale to within 2–4 s that is a further improvement on the
<12 s window as suggested in [12]. Second, the nonuniversal
character of the time correlation of the IS bond as evident in
the dependence on the separation length δ and separation times
τ , ensuring that the probability density p(t) is a function of
the system parameters along with being functions of δ (Fig. 3)
and τ12 (Fig. 5), confirms a widely acknowledged belief in the
community that the TCR:pMHC bond is non-self-organizing
in nature and hence is the only stable bond at this spatio-
temporal regime. An immediate impact of this can be seen in
the projected time scale for the crossover from the linear to the
nonlinear phase that, as is shown in Fig. 3, spans 2–4 s (peak
time of the PDF profile). The implication of this analysis is that
of a time scale difference of an order of magnitude related to
the start time of the “immature” IS bond formation, a time scale
that is also associated with the transition from the linear to the
nonlinear regime (and hence our emphasis on a study of the
linear stability regime of an otherwise nonlinear dynamics).
As to how such crossover is affected by kinase-phosphatase
pathways (these pathways act as signal transduction inhibitors
and thereby control the rate of the IS bond formation) and
what modification this may bring about in the prediction of
the time scale of a mature IS bond are some of the exciting
topics that we are presently working on. Results are shortly
to be communicated on the quantitative nature of the extremal
value statistics of these fluctuations and how such nonuniversal
exponents affect the life time and strength of IS bonds.
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[17] N. J. Burroughs, K. Köhler, V. Miloserdov, M. L. Dustin,
P. A. van der Merwe, and D. M. Davis, PLoS Comput. Biol.
7, e1002076 (2011).

[18] S. Raychaudhuri, A. K. Chakraborty, and M. Kardar, Phys. Rev.
Lett. 91, 208101 (2003).
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