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Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of
fractional Brownian motion
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Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion.
Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper,
we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled
by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed
on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion.
Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement
for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst
exponent over time, which allowed us to identify points in time, where the correlation structure was distorted
(“outliers”). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence
on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal
scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger
persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.
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I. INTRODUCTION

Many motile eukaryotic cells move by extending pseudopo-
dia, i.e., temporary protrusions of the cell membrane that are
driven by the actin cytoskeleton [1]. Pseudopod formation
at the cell front is typically associated with cytoskeletal
contractions at the back, resulting in a displacement of
the cell’s center of mass. This concerted action of frontal
membrane protrusion, substrate adhesion, and back retraction
is generally known as amoeboid motion [2,3]. In the case of
many biological functions, like the healing of a wound or
the spreading of metastatic cancer cells, amoeboid motility is
guided by external cues [4–6]. Chemical gradients as well
as thermal, electrical, or mechanical stimuli may bias the
position and direction of pseudopod extension, such that
cells move, on average, in the direction of the external cues
[7]. A well-established and widely used model organism for
studies on eukaryotic motility is the soil amoeba Dictyostelium
discoideum [8]. For this single-celled microorganism the
receptor-mediated signaling pathways as well as the force
generating cytoskeletal machinery have been investigated in
great detail (see, e.g., [4] and references therein).

Besides the intracellular dynamics, the analysis of cellular
motion patterns has been a focus of motility research over the
past years. For example, data driven Langevin-based models
were introduced for the random motion of human keratinocytes
and fibroblasts [9] and have later been applied to describe
Dictyostelium motility [10–13]. Besides random locomotion in
isotropic environments, this method has also been extended to
chemotactic motion in the presence of a chemical gradient [14].

The analysis of experimental cell tracks showed that even
in the absence of directional cues, cells most likely extend
new pseudopodia in a direction similar to the prior direction of
movement, a phenomenon called persistence. An example of a
Dictyostelium trajectory can be seen in Fig. 2. Mathematically
such a behavior can be modeled by a correlated random

walk [15–19]. Persistence respectively antipersistence is a
characteristic property of Gaussian self-similar processes.
Self-similarity means that with some exponent H ∈ (0,1),
known as the Hurst exponent, and any rescaling factor a > 0
[20] we have

{X(at),t ∈ T } = d{aHX(t),t ∈ T }, (1)

where =d refers to identity in distribution (i.e., all the finite
dimensional distributions agree). In this paper we focus on the
only Gaussian self-similar processes, which is the fractional
Brownian motion. The Hurst exponent may then be used to
distinguish between antipersistent (H < 0.5) and persistent
(H > 0.5) behavior.

II. METHODS

A. Cell culture and experimental setup

Motility experiments were performed with the AX2 wild-
type strain of the soil amoebae Dictyostelium discoideum.
Cells were grown at 22◦ in an overnight shaking culture in
50-mL flasks containing HL5 medium (14 g/L peptone, 7 g/L
yeast extract, 13.5 g/L glucose, 0.5 g/L KH2PO4, and 0.5 g/L
Na2HPO4, ForMedium Ltd., Norfolk, UK). At the beginning
of every experiment, we diluted cells from the shaking culture
by 1:200 to a density of approximately 107 cells/mL using
HL5. A 1-mL droplet from the diluted suspension was then
dispersed onto the well of a culture dish (fluorodish cell
culture dish 35 mm, World Precision Instruments, Sarasota,
Florida, USA) and cells were given 10 min to attach to the
glass bottom. The dish was then mounted on the stage of
an inverted microscope (Olympus IX-71, Tokyo, Japan). To
follow cell motility on the glass surface, images were recorded
every 2 s for a duration of 180 min using an EoSens MC
1362/63 B/W camera (Mikrotron, Munich, Germany) and an
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Olympus UPFLN60XOI objective with settings for differential
interference contrast (DIC).

To extract the centroid position of each cell from the image
sequences, a customized segmentation algorithm was written
in MATLAB 8.0 R2012b (Mathworks, Natick, Massachusetts,
USA). First, a standard Sobel edge detection together with
an Isodata thresholding was applied on the original images
to detect the cell boundaries [21,22]. We then dilated the
resulting image with a 3 × 3 mask and used an internal MATLAB

function to fill regions inside the cell [23]. In a last step,
the cell shape in the image was corrected by four subsequent
convolutions with a 3 × 3 mask. After a second thresholding
based on the Isodata data algorithm (see above), the binary
images accurately captured the morphology of the cells, and
we could determine the centroid position of each cell from the
geometric center of the corresponding pixel ensemble.

The cell positions in each frame were then linked together to
form trajectories in time using the particle tracking algorithm
of Crocker and Grier [24]. Similar to a next neighbor algorithm,
the tracking process consisted of calculating and minimizing
the sum over the squared displacements of all possible links
between the cell positions in two subsequent frames. Note that
during an experimental recording, cells may enter or leave the
field of view. Also, when two cells come into contact with each
other, the image segmentation program can no longer separate
them. In this case, one of the two tracks will end and a new
one will start, once the cells separate again. Finally, tracks may
end when the segmentation program loses a cell due to image
quality problems. Once the cell is detected again, a new track
will start. Taken together, these different scenarios result in
a distribution of tracks of different length with most of them
shorter than the total measurement time.

B. Fractional Brownian motion

Fractional Brownian motion (fBm) is a self-similar, con-
tinuous, zero-mean Gaussian process which starts at zero. Its
covariance at time points t and u is [25,26]

Cov
(
BH

t ,BH
u

) = 1
2 (|t |2H + |u|2H − |t − u|2H ). (2)

The parameter H ∈ (0,1) is the Hurst exponent. Fractional
Brownian motion {BH

t ,t ∈ R} with Hurst exponent H is the
only self-similar process with self-similarity exponent H in the
class of Gaussian processes [20]. Recall that Gaussian process
means that all finite-dimensional distributions are multivariate
Gaussian distributions. Larger values of the Hurst exponent
imply a smoother, less volatile, and less rough behavior. For
0.5 < H < 1 the behavior of the process is persistent, whereas
for 0 < H < 0.5, it is antipersistent. Antipersistence means
that the increments of the process are negatively correlated
with correlations quickly decaying to zero, and the process
becomes a so-called short-memory process:

∞∑
n=1

E
[∣∣(BH

1 − BH
0

)(
BH

n+1 − BH
n

)∣∣] < ∞. (3)

In contrast to this, persistent behavior is characterized by
positive correlation of two consecutive increments and a slow
decay of the correlation function [20,27]: The dependence
between BH

1 − BH
0 and BH

n+1 − BH
n decays slowly as n tends

to infinity and

∞∑
n=1

E
[(

BH
1 − BH

0

)(
BH

n+1 − BH
n

)] = ∞. (4)

For the time-series analysis, we consider the following
model for each of the coordinates of the trajectory,

Y t = Ftβ + λBH
t = β1 + β2t + λBH

t , (5)

with a 1 × 2 system matrix Ft = [1,t] at time t , linear trend
coefficients β = [β1,β2]T ∈ R2 with offset β1 and slope β2,
amplitude λ ∈ R+, and a fBm with Hurst exponent H . The
linear trend coefficients allow one to account for an overall
trend in the experimental track data. In the absence of any cues,
we would expect β2 = 0, i.e., there is no preferred direction.
Note that this kind of model has the structure of a linear mixed
effect model, where the fixed effects that are common to all
time points are the offset and slope, whereas the random effects
are correlated fluctuations around this common behavior.

This linear mixed effect structure becomes more transparent
through the following matrix-vector notation. Observing the
processes at times t1, . . . ,tN yields the vector-valued version,

Y = Fβ + λu, u ∼ N (0,�H ), (6)

with Y = [Y t1 , . . . ,Y tN ]T and a N × 2 system matrix F

whose kth row is Ftk = [1,tk]. The covariance matrix �H =
(�H ;i,j ) is obtained from Eq. (2) as

�H ;i,j = 1
2 (|ti |2H + |tj |2H − |ti − tj |2H ). (7)

We consider prior distributions for β, for λ, and for H and
apply the Bayesian formula to invert for these parameters
from observed data. See [28] for general background on
mixed effects models and [29,30] for details on the Bayesian
estimation of H from the observation of Y . As in this reference,
for the analysis of the experimental Dictyostelium discoideum
cell track data, we took a scaling invariant Jeffreys-like prior
for λ [31] with density π (λ) ∼ λ−1, a flat, (or diffuse) prior
for β with density π (β) � 1, as well as a flat prior for H

with density π (H ) = χ[0,1] [32]. This results in the posterior
distribution of H given Y with density,

P(H |Y) = C|�H |−1/2
∣∣F T�−1

H F
∣∣−1/2

R2−N (H ), (8)

with some normalization coefficient C and expressions,

R2(H ) = (Y − Fβ∗(H ))T�−1
H (yY − Fβ∗(H )), (9)

β∗(H ) = (
F T�−1

H F
)−1

F T�−1
H Y . (10)

Note that �H is positive definite so that the square root of
R2(H ) is a well-defined positive real number. The quantity
β∗(H ) is identically to the best linear unbiased predictor
(BLUP) for the fixed effects β at given H and R(H ) is
the associated misfit of the slope measured in terms of the
covariance �H . As a point estimator of H we chose the mode
of the posterior distribution density,

Ĥ = argmaxHP(H |Y).

Moreover, the profiled (at Ĥ ) posterior distribution of the offset
and slope parameters β are Gaussian with mode β∗(Ĥ ) and
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FIG. 1. (Color online) Estimated Hurst exponents along the X coordinate (top) and along the Y coordinate (bottom). The white dashed
line corresponds to a Hurst exponent of H = 0.5, separating the persistent area with H > 0.5 from the antipersistent area with H < 0.5. The
posterior density of H is color coded. Dark colors for low density values to increasingly brighter colors for higher values. The tracks are sorted
with increasing most probable Hurst exponent Ĥ . Therefore it is clearly visible that for larger tracks most of the Hurst exponents are in the
persistent region H > 0.

covariance matrix F T�−1
Ĥ

F . The marginalized and profiled (at

Ĥ ) posterior density,

p(λ) = Cλ1−N exp

(
−R2(Ĥ )

2λ2

)
, (11)

of the amplitude λ is obtained by integration over β.

III. RESULTS

We analyzed an ensemble of time-lapse microscopy data
of Dictyostelium movement in the absence of external cues
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FIG. 2. (Color online) (left) Illustrative original track (No. 683) and (right) reconstructed track data of the movement of a Dictyostelium
cell in the absence of external cues.
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TABLE I. The point estimation of the Hurst exponent H , trend
coefficients (offset, slope) β, and amplitude λ, estimated separately
based on the X and Y coordinates of a single track (No. 683, shown
in Fig. 2).

X coordinate Y coordinate

Ĥ 0.565 0.605
β̂ [301.28,−0.12]T [186.17,−0.039]T

λ̂ 1.45 1.65

by estimating the Hurst exponents (separately for the X and
Y coordinates) as well as the offset β1, slope β2, and the
amplitude λ. The posterior densities of the Hurst exponents
for all tracks with a length larger than 50 data points along
X and Y coordinates are shown in Fig. 1. For each track,
the posterior density distribution of H is color coded along
the vertical axis. The tracks are ordered by increasing Ĥ . The
width of the posterior density clearly depends on the length
of the signal, with more concentrated distributions resulting
from longer tracks. Thus, for the tracks with length more
than 500 data points, the estimator gave the sharpest results
(compare different panels in Fig. 1). Moreover, we see that
with increasing track length, the Hurst exponents displayed
most often a persistent behavior (H > 0.5).

In Fig. 2 (left), the coordinates of a single illustrative track
(No. 683) are depicted. The point estimates of the offset, slope,
and amplitude for this particular track are given in Table I.
As expected, the slope β2 is close to zero for both the X

and the Y coordinates. The Bayesian estimation of the Hurst
exponent is depicted in Fig. 4 (left). To investigate whether
the fBm model is capable of generating in silico tracks that
resemble features of the experimental tracks, we simulated the
fBm process based on the estimated parameters. A realization
of the simulated (reconstructed) track data jointly with the
corresponding experimental track is shown in Fig. 2. The
estimated parameter values on which this simulation is based

FIG. 3. (Color online) Projection of Bayesian estimation of the
Hurst exponent for the X coordinate of some Dictyostelium cell as a
function of time for some illustrative track (No. 683). In red color
we depicted posterior distributions before deletion of the outliers,
whereas in green they are shown after deletion. Shift to persistent
area is clearly observed.

FIG. 4. Posterior density of X (solid line) and Y coordinate
(dashed line) of an illustrative track (No. 683); based on original
track data (left) and after outliers were detected and deleted (right).

are given in Table I. A first visual inspection showed overall
similarities—a more detailed analysis requiring an in-depth
characterization of the features of the experimental tracks was
beyond the scope of the present paper.

The length of the chosen track (No. 683 with 1969
time points) allowed us also to analyze a potential time
dependence of the Hurst exponent. We used a sliding window
in which we calculated the posterior distribution of the
Hurst exponent. The width of the window was 150 data
points and was chosen based on the validation test [29]. The
corresponding time evolution of the posterior probability for
the Hurst exponent of the X coordinate time series is shown
in Fig. 3. As can be seen in Fig. 3, the posterior densities
have some significant jumps from one point in time to the
next. This occurred whenever the correlation structure of the
analyzed signal gets destroyed by outliers.

To identify possible outliers, i.e., points where the cor-
relation structure is not compatible with the correlations of
a fBm, we consider the differences between neighboring
maximal posterior values of the Hurst exponent in the shifting
window estimates. A difference exceeding 0.1 was used as the
definition of an outlier. With this approach, we detected three
outliers in the illustrative track. For comparison, we deleted
the outliers from the track and re-estimated the individual
parameters. The difference before and after outlier deletion
is illustrated in Fig. 3. Outlier deletion clearly shifted the
posterior distribution of the Hurst exponent to the more
persistent regime (see Fig. 4 right). Furthermore, it can be
seen that now the posterior value of the Hurst exponent of
the X coordinate time series was almost equal to the one of
the Y coordinate time series of the original track. Note that
as far as only outliers along the X coordinate are deleted, this
will only influence the X coordinate. Whenever the track has
outliers along the X and Y coordinates simultaneously, the

TABLE II. The point estimation of the Hurst exponent H before
and after deleting outliers.

X coordinate Y coordinate X coordinate,
deleted outliers

Ĥ 0.565 0.605 0.595
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FIG. 5. (Color online) Posterior density of the Hurst exponent
obtained by the Bayesian approach applied to fBm with Hurst
exponent H = 0.595 (based on 1000 realizations).

deletion of them will also shift the posterior densities for X
and Y coordinates, respectively. Here, the same analysis for
the Y coordinate did not show additional outliers. Thus, the
value of the estimated Hurst exponent of the Y coordinate time
series was virtually unaffected by deleting the outliers (data
not shown).

Next, we analyzed the scale dependency of the Hurst
exponent to quantify to what extent the experimental cell track
data are scaling invariant. To this end, we down-sampled the
time series and analyzed the resulting coarse-grained time
series. A down-sampling by 2� is then called the signal at
level �.

If the time series where indeed self-similar, the same Hurst
exponent should be observed on all levels. This is indeed the
case for synthetic data: Based on a Cholesky decomposition
of �H = LT L with H = 0.595 (chosen as in Table II), we
generated the random noise using LT [e1, . . . ,eN ]T with iid.
standard Gaussian random variables e1, . . . ,eN . The resulting
posterior distributions of the Hurst exponent corresponding
to the scales a = 2� with levels � = 1, . . . ,4 are depicted
in Fig. 5. As can be seen, all posteriors are centered at the
chosen Hurst exponent of H = 0.595. For the experimental
Dictyostelium track data, however, we observed some vari-

FIG. 6. (Color online) Posterior density of the Hurst exponent
obtained by the Bayesian approach applied to the illustrative track
(No. 683); see Fig. 2 (left).

ation in posterior distributions for different levels of down-
sampling—with a shift towards more persistent behavior at the
larger scales, as can be seen in Fig. 6. We therefore speculate,
that random Dictyostelium movement does not fully resemble
fBm. While the Hurst exponent of fBm provides a useful way
to quantify the degree of persistence in our experimental cell
tracks, the property of self-similarity is not fully preserved
in our data, displaying a stronger persistence on larger time
scales. However, this approach provides a useful way to readily
explore the correlation structure of the cell tracks in order
to identify outliers in our data. Future work will concentrate
on improving our modeling approach in order to capture the
properties of our data in more detail.

IV. CONCLUSIONS

In this paper, we illustrated the application of a Bayesian
estimation of a self-similarity exponent (Hurst exponent)
to the analysis of experimental cell tracks of the amoeba
Dictyostelium discoideum. We used the statistical framework
of a linear mixed effects model based on fractional Brownian
motion. Our analysis allowed one to quantify the degree of
persistence in terms of the Hurst exponent, as well as its
dependence of different spatial and temporal scales. The latter
enable also the identification of possible outliers in the data.
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