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Simplified lattice model for polypeptide fibrillar transitions
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Polypeptide fibrillar transitions are studied using a simplified lattice model, modified from the three-state Potts
model, where uniform residues as spins, placed on a cubic lattice, can interact with neighbors to form coil,
helical, sheet, or fibrillar structure. Using the transfer matrix method and numerical calculations, we analyzed the
partition function and construct phase diagrams. The model manifests phase transitions among coil, helix, sheet,
and fibril through parameterizing bond coupling energy εh,εs,εf , structural entropies sh,ss,sf of helical, sheet,
and fibrillar states, and number density ρ. The phase diagrams show the transition sequence is basically governed
by εh, εs , and εf , while the transition temperature is determined by the competition among εh, εs , and εf , as
well as sh, ss , sf , and ρ. Furthermore, the fibrillation is accompanied with an abrupt phase transition from coil,
helix, or sheet to fibril even for short polypeptide length, resembling the feature of nucleation-growth process.
The finite-size effect in specific heat at transitions for the nonfibrillation case can be described by the scaling
form of lattice model. With rich phase-transition properties, our model provides a useful reference for protein
aggregation experiments and modeling.
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I. INTRODUCTION

Amyloidosis is a general name for a group of amyloid-
related diseases, including Alzheimer’s disease, Creutzfeldt-
Jakob disease, Parkinson’s disease, Huntington’s disease,
diabetes mellitus type 2, etc. [1], which are known for their
incurability and invariably fatality. Though the clinical symp-
toms of these diseases differ, they share similar characteristics
that there are generally abnormal aggregated proteins that
deposit in extracellular spaces of tissues and organs in the
patient’s body, which are usually toxic [2]. The depositions
of amyloidosis are mainly composed of insolvable protein
fibrillar structures, which are generally long, unbranched, and
about 10 nm in diameter [3,4]. They appear as extensive
β-sheet structures in the analysis of x-ray diffraction [4,5] and
possibly aggregate to hairpinlike structures [6–10]. Since the
aggregated proteins of various diseases differ markedly in the
primary structures of native states [1], there must exist general
rules for the aggregation processes and inherent structure
formation.

Recently, there have been extensive studies on protein
aggregation, both from experimental observations and the-
oretical modeling. Remarkably, analysis on the native state
of several amyloid-like proteins shows that helices observed
in experiments are predicted as β sheets by secondary
structure predictors [11], implying helix-to-sheet transitions
before fibrillation. Further, numerical simulations [12] on
aggregation of separated non-native proteins to fibril suggest
that aggregation may be the result of a nucleation-growth
(NG) mechanism [13,14] and a template-assembly (TA)
process [15–17]. It is proposed that nucleation speeds up
aggregation, while the fibrillar surface forms templates to
induce fibrillation of nonfibrillar proteins.
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This study is aimed at constructing a model for protein
aggregation capable of reproducing the properties mentioned
above. The model assumes the effective interactions at the
molecular level, incorporating features of multiple chain
interactions, homogeneous residues, and helix-to-sheet, helix-
to-fibril, and sheet-to-fibril transformations. We have been
aware of the recent studies based on lattice models which
offer physical pictures to understand the transition from
“normal” structures to fibrils in a relatively simple but
heuristic way. Among others, the Wako-Saitô-Muñoz-Eaton
(WSME) model [18–22] is a course-grained but solvable
model which assumes residues are basic units in native and
non-native states and that interactions among residues exist
only for native states. Following similar concepts, Schreck
and Yuan [23] proposed an alternative based on the three-state
Potts model [24–26], in which phase transition is possible
among secondary structures and coil. However, they did not
explicitly define the fibrillar structure in the model due to
the tendency of fibrillation from a sheet structure and hence
higher transition probability for the cases with β-sheet-rich
structures. On the other hand, Zamparo et al. [27] extended
the WSME model and introduced a toy (while exactly solvable)
model for the transitions from the helical structure to the
fibrillar structure. This model does not take into account the
existence of sheet structures in an individual polypeptide,
hence there is no transition from the “normal” sheet structure
to the fibrillar structure. Here we propose to take advantage
of the two models to introduce a new one to account
explicitly for the coexistence of sheet and fibrillar structures.
The model is essentially a three-state Potts model [24–26],
constituted by multiple polypeptides, each of which consists
of uniform residues occupying a finite number of lattice
sites in a layer, and multiple layers form a three-dimensional
lattice.

We analyzed the partition function of the model with
the help of the transfer matrix method and from which we
numerically calculated the average fractional contents of coil,
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helix, sheet, and fibril and the specific heat of phase transitions.
The phase diagrams were then constructed to explore the
effects of bond coupling energy, structural entropy, and system
concentration. For the case without a fibrillar phase, numerical
calculations can be implemented on relatively larger system
sizes (under the constraint of our computational power), and
the finite-size effect in specific heat was also analyzed.

The paper is organized as follows. In Sec. II, a simplified
model for polypeptide fibrillar transition is introduced. The
exact expression of solution of the model, which is amenable
to detailed numerical analysis, is derived in Sec. III. The
parameter choices and procedures of numerical calculations
are explained in Sec. IV, and the numerical results in-
cluding phase diagrams of various typical realizations are
presented and discussed in Sec. V. Finally, we conclude briefly
in Sec. VI.

II. THE MODEL

The system under consideration is a plurality of polypep-
tides in solvent, and each polypeptide is a single chain
consisting of a finite number of residues. Before fibrillation,
a polypeptide may be composed of coils, or fold to form
helices and sheets, while after the fibrillar transition, most
polypeptides are collectively in a state composed of coils, he-
lices, sheets, and fibrillar structure. To simulate the transition,
we adapt the three-state Potts model [24–26], in which N

polypetides are placed on a three-dimensional square lattice;
each polypeptide consists of L uniform residues as spins
occupying L lattice sites in a plane (see Figs. 1 and 2). A
residue can be in a state σ , corresponding to the coil, helical,
sheet, or hairpinlike fibrillar structure, specified by interactions
to be introduced below. The system is open and properly
described by the grand-canonical ensemble. The energy func-
tion is composed of the energy contribution from individual
polypeptides, contact energy of fibrillar structure, entropic
cost of fibrillation, and the chemical potential accounting for
the polypeptides involved in the system. Detailed interactions
including the H-bonds, van der Waals, polar interactions,
and hydrophobic interactions are represented by effective
structural bond coupling energies [23]. Then the partition

FIG. 1. (Color online) Schematic illustration of a typical hair-
pinlike fibril (N = 4, L = 12) on a cubic lattice of 4×2×6. Each
polypeptide is placed on a distinct 2×6 square lattice. Fibrillar
structure is highlighted by a bold line (green). Dotted lines (blue)
represent fibrillar bonds.

FIG. 2. (Color online) A typical polypeptide (L = 12) with sec-
ondary structures on a 3×4 square lattice. (a) A helix with length of
eight residues is highlighted in red. Two examples of sheet structure
are represented with blue, (b) the width R = 3 and maximum strand
M = 4, and (c) R = 4,M = 3.

function of the system reads as

Z =
∑
{σ }

exp[−βH (σ )], (1)

with

H =
N∑

n=1

γnHn, (2)

Hn = Q(mn,cn,cn−1) −
[

2cnεf + 1

β
Sf (cn)

]
− μ, (3)

where β = 1/kBT , kB = 1.38×10−23 (J/K) is the Boltzmann’s
constant, H is the energy function of the system, and Hn is
the energy function of the nth polypeptide. For the lth residue
of the nth polypeptide, the state variable σ is conveniently
characterized by the parameters γn, mn(l), and cn. γn is a
binary; γn = 1 if the nth polypeptide is involved in the system
and 0 otherwise. Hence, Nγ = ∑N

n=1 γn, a nonfixed quantity,
is the number of polypeptides involved in the system. Q

is the energy function for structures within a polypeptide.
mn(l) specifies the structure where the lth residue of the
nth polypeptide locates, and mn(l) = 0 for coil, 1 for helix,
and 2 for sheet or fibril. 2cnεf represents that there are
2cn fibrillar bonds between two adjacent, nth and (n + 1)th
polypeptides, each has a bond coupling energy εf , and here
the free boundary condition c0 = cN = 0 is considered. For
a hairpinlike structure, cn satisfies 0 � cn � L/2. Sf is the
entropic cost for structure conversion of a polypeptide in
fibrillation, and Sf (cn = 0) = 0, Sf (cn �= 0) = sf L, under the
assumption of most of the entropic loss at the formation of just
two fibrillar bonds (i.e., cn = 1) [27] and the simplification of
length dependence of Sf . μ is the chemical potential of the
system.

The explicit form of Q is specified by the model. Here we
assume that a coil does not have any bond coupling among
residues, a helix is constituted by at least four consecutive
residues, and sheets and fibrils have at least two bonds. Figure 2
illustrates typical helical and sheet structures for a polypeptide
of length L = 12 in a plane. The bonds of helix, sheet,
and fibril are specified by distinct bond coupling energies.
Further specifications include the width of sheet which is to
be fixed throughout the calculation of a realization, and the
arrangement of fibrillar bonds, which is assumed to distribute
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sequentially and symmetrically from the middle [(L/2)th and
(L/2 + 1)th residues] to the two ends (1st and Lth residues)
(see Fig. 1). Then Q is written as

Q = −εh

L−3∑
k=1

k+3∏
l=k

δ(mn(l),1) − 1

β
sh

L∑
r=1

δ(mn(r),1)

− εs

R∑
r=1

M−1∑
p=1

δ(mn(ur,p),2)δ(mn(ur,p),mn(vr,p))

− 1

β
ss

L∑
r=1

δ(mn(r),2) − E(c), (4)

where εh and εs are bond coupling energies for helical and
sheet structures, respectively, and sh and ss stand as the
entropies for helical and sheet structures, respectively. R is
the width of the sheet in the range from 1 to L/2 (L even),
and M is the maximum number of strands for a polypeptide of
length L, defined via the ceiling function M = �L/R� that
takes the smallest integer M � L/R. u and v are residue
sequence numbers of sheets in the given polypeptide and are
defined as ur,p = 1 − r + R(p + 1) and vr,p = r + R(p − 1).
The last term, E(c), where c = max(cn−1,cn) = 0,1, . . . ,L/2,
is the energy of the parts that have formed fibrillar structures.
If c = 0, then E = 0, indicating that no resides in the given
polypeptide are a part of the fibril. If c �= 0, then E �= 0 and it
must be subtracted from Q. The function E reads as

E = −εh

min( L
2 +c,L−3)∑

l=max( L
2 −2−c,1)

l+3∏
k=l

δ(mn(k),1)

− εs

R∑
r=1

M−1∑
p=1

δ(mn(u),2)δ(mn(u),mn(v))

+ εs

R∑
r=1

M ′−1∑
p=1

δ(mn(u),2)δ(mn(u),ml(v))

+ εs

R∑
r=1

M ′−1∑
p=1

δ(mn(u′),2)δ(mn(u′),mn(v′)), (5)

where M ′ = �L′/R�, L′ = (L − 2c)/2, u′ = u + L/2 + c,
and v′ = v + L/2 + c. In other words, when a polypeptide is
partially involved in fibrillation, part (2c) of its sheet structures
form fibrillar bonds with neighboring polypeptides, while the
remaining parts are symmetric segments that can be regarded
as two shorter (L′) polypeptides with helical and/or sheet
structures. The two shorter segments are to be considered
as they were independent polypeptides. Further, the fibrillar
structures are essentially in sheet state, such that the function
E does not involve entropic contribution.

III. CALCULATION OF THE PARTITION FUNCTION

In this section, we calculate the partition function of our
model, following the scheme in Refs. [23,27], which exploits
the transfer matrix method. The transfer matrix method,
illustrated in Fig. 3, recombines the configuration sum of
the partition function into boundary and inner parts. The

FIG. 3. (Color online) Illustration of the recombination scheme
of the transfer matrix method. The partition function of the system is
to be represented as a product of boundary parts w1(p1) and wM (pM ),
and the transfer matrix Ti(pi,pi+1). pi is a parameter used to label
the sequence.

boundary parts w1(p1) and wM (pM ) can be represented as
a 1×ℵ matrix, while the inner part is the transfer matrix
Ti(pi,pi+1) with dimension ℵ×ℵ. Such recombination can be
achieved on the basis of the property of short-range interaction
and translational symmetry. The calculation of the partition
function then reduces to the calculation of the transfer matrix.

Let us first observe our model for the case of γn = 0; there is
no need to consider mn(l), and it is equivalently set to mn(l) =
0 for all l, denoted by δmn0 for the nth polypeptide. This is
taken into account to avoid overestimating the configuration
sum of the partition function by rewriting Eq. (1) as

Z =
∑

{mn(l)}

∑
{cn}

G({mn(l)},{cn}) (6)

and

G =
∑
{γn}

N∏
n=1

[
γn + (1 − γn)δmn0

]
exp(−βHn)

=
N∏

n=1

[
δmn0 + exp β(μ− Q)

]
exp[2βcnεf + Sf (cn)]. (7)

Furthermore, fibrillar bonds cn will only form in sheet state
when cn � Bn,n+1,

Bn,n+1 = min(ϕn,ϕn+1), (8)

with

ϕn =
L
2∑

i=1

L+1−i∏
l=i

δ(mn(l),2). (9)

Then Eq. (7) is written as

G =
N∏

n=1

[
δmn0 + exp β(μ − Q)

]
exp(2βcnεf + Sf )

× θ (Bn,n+1 − cn), (10)

where θ (x) is the Heaviside step function, satisfying the
condition θ (x � 0) = 1 and θ (x < 0) = 0. The function B

implies that the fibrillar structure grow symmetrically to
a width cn from the turning loop to the two ends of the
polypeptide. θ can be expressed alternatively as

N∏
n=1

θ (Bn,n+1 − cn) =
N∏

n=1

θ (ϕn − cn)
N∏

n=1

θ (ϕn+1 − cn)

=
N∏

n=1

θ (ϕn − c), (11)
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and we have

G =
N∏

n=1

θ (ϕn − c)
[
δmn0 + exp β(μ − Q)

]
× exp(2βcnεf + Sf ). (12)

It is straightforward to sum over mn(l) in Eq. (6) and to follow
the recombination scheme of Fig. 3 to express the partition
function as

Z =
∑
{cn}

w1(c1)T (c1,c2) · · · T (cN−2,cN−1)wN−1(cN−1)

= (w1,TN−2wN−1), (13)

where wn is a 1×(L/2 + 1) matrix with the entry

wn = 
(cn) exp
[
βcnεf + 1

2Sf (cn)
]
, (14)

taking the value cn = 0,1, . . . ,L/2. T is the transfer matrix
with entries T (cn−1,cn) defined as

T = 
(c) exp
{
βεf (cn−1 + cn) + 1

2 [Sf (cn−1) + Sf (cn)]
}
,

(15)

with


(c) =
{

1 + eβμZ̃L, if c = 0,

eβμ+2css Z̃2
L
2 −c

, if 1 � c � L/2,
(16)

where Z̃L̃ is the partition function of the homogeneous and
noninteractive polypeptide with length L̃. The first case of
c = 0 in Eq. (16) corresponds to the situation of no fibrils in
the system, and the second case refers to the coexistence of
fibril and secondary structures and thus L̃ is the length of one
of the two equal segments of the nonfibrillar parts and is not
necessarily an even number. For convenience, either the full-
length polypeptides or remaining segments of nonfibrillar parts
are regarded as independent polypeptides. Using pi consisting
of 3R elements to indicate the strand number of sheets, the
expression of Z̃L̃ can be obtained by modifying directly Eq. (1),
and, again in the recombination form of Fig. 3,

Z̃L̃ =
∑
{m}

exp[−βQ(m,0)]

=
∑
{m}

w̃1(p1)T̃ (p1,p2) · · · T̃ (pM̃,pM̃+1)w̃M̃+1(pM̃+1)

= (w̃1,T̃M̃w̃M̃+1), (17)

where w̃ is a 1×3R matrix with the entry w̃p+1(p + 1),

w̃p+1 = exp

⎧⎨
⎩1

2

(p+1)R∑
r=pR+1

[shδ(m(r),1) + ssδ(m(r),2)]

⎫⎬
⎭ , (18)

taking the value m = 0,1,2, M̃ = �L̃/R�, and T̃ is the transfer
matrix of dimension 3R×3R , with entries T̃p+1(p + 1,p + 2)
and p = 0, . . . ,M̃ − 1,

T̃p+1 = exp

⎧⎨
⎩

(p+1)R∑
r=pR+1

[
βεh

3∏
n=0

δ(m(r + n),1)

]⎫⎬
⎭

FIG. 4. (Color online) Illustration for the treatment of the bound-
ary with incomplete residue sets for the case of L̃ = 14 and R = 3.
The blue dotted line indicates interactions between residues in the
sheet state, while the orange solid line indicates the helical state.
Residues of number 15, 16, 17, and 18 do not exist in the system. The
transfer matrices T̃ are defined by the recombination scheme.

exp

⎧⎨
⎩

(p+1)R∑
r=pR+1

βεsδ(m(r),2)δ(m(2(p + 1)R − r + 1),2)

⎫⎬
⎭

exp

⎧⎨
⎩1

2

(p+2)R∑
r=pR+1

[shδ(m(r),1) + ssδ(m(r),2)]

⎫⎬
⎭ , (19)

where m(r) = 0 if r > L̃, to account for the overestimation of
the incomplete residue sets at the boundary. For example, in
the calculation of polypeptide chains with length L̃ = 14 and
sheet length R = 3 (see Fig. 4), we have

Z̃14 =
∑
{m}

w̃1(p1)T̃ (p1,p2) · · · T̃ (p5,p6)w̃6(p6) (20)

and m(15) = m(16) = m(17) = m(18) = 0.

A. Average fractional contents of structures

Having the partition function of the system ready, one can
now calculate thermodynamic variables by using Eq. (13). The
grand potential density φN defined as

φN = − 1

LNβ
ln Z, (21)

is useful in our framework. At the thermodynamic limit of
N → ∞, φ∞ (abbreviated as φ hereafter for simplicity) is
calculated through the largest eigenvalue τ of the transfer
matrix T, i.e.,

φ = − 1

Lβ
ln τ = − 1

Lβ
ln(w̄,Tw̄), (22)

where w̄(c) is the corresponding eigenvector. The number
density ρ, defined as the average number of polypeptides 〈Nγ 〉
involved in the system divided by the system size N → ∞, is
the derivative of the grand potential density φ with respect to
the chemical potential μ,

ρ ≡ lim
N→∞

〈Nγ 〉
N

= −L
∂

∂μ
φ(Q,Sf ,μ), (23)
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which can be calculated through the derivative of the transfer
matrix in Eq. (15),

ρ = 1

βτ

(
w̄,

∂T
∂μ

w̄
)

= 1 − w̄2(0)

τ
, (24)

where w̄(0) takes the value of the first entry of the eigenvector
w̄. Further, the average fractional content of the fibril Pf ,
coil Pc, helix Ph, and sheet Ps of the system, defined as the
probabilities of the corresponding structures to show up in the
system, can be calculated according to

Px = − 1

ρ

∂

∂λ
φ(Q − λζx,Sf ,μ)|λ=0

= 1

Lβρτ

(
w̄,

∂T(λ,ζx)

∂λ
w̄

)
λ=0

, (25)

where the subscript x denotes one of fibril (f ), coil (c), helix
(h), and sheet (s). The function ζx is defined as

ζf (c) = 2c, (26)

for fibril and

ζq(m,c) =
L
2 −c∑
k=1

δ(m(k),q) +
L∑

k= L
2 +c+1

δ(m(k),q), (27)

with q = 0,1,2 for coil, helix, and sheet, respectively. For the
case of Pf , only c �= 0 in Eq. (16) is considered. Then the
relation

∂

∂λ
T (λ,cn−1,cn)|λ=0 = βζf (c)T (cn−1,cn) (28)

holds, and we have

Pf = 1

Lρτ
(w̄,ζf Tw̄). (29)

For the case of Pq , we have to consider secondary structures in
polypeptides with and without segments in fibrillar structures.
Accordingly, we have

Pq = eβμ

Lβρτ

(
w̄,

T



∂Z̃L(λ,ζq)

∂λ
w̄

)
λ=0

(30)

if c = 0 and

Pq = 2eβμ+2css

Lβρτ

(
w̄,

T



Z̃L
2 −c

∂Z̃ L
2 −c(λ,ζq)

∂λ
w̄

)
λ=0

(31)

if c = 1 ∼ L/2, where

∂Z̃L̃

∂λ

∣∣∣∣
λ=0

=
∑
{m}

β

L̃∑
k=1

δ(m(k),q) exp (−βQ(m(k),0)), (32)

which can be calculated by plugging β
∑L̃

k=1 δ(m(k),q) into
Eq. (17). Subsequent calculations will be carried out by
numerical approach in the next section.

B. Specific heat

Another interesting quantity, the specific heat of the system
at thermodynamic limit, is calculated through the Helmholtz

free energy, represented here in terms of the grand potential φ

and the number density ρ,

cV

kB

= β2 ∂2

∂β2

(
−βφ − βμ

ρ

L

)
. (33)

Substituting the results of φ in Eq. (22) and ρ in Eq. (24), we
have

cV

kB

= β2

L

∂2

∂β2

(
ln τ + βμ

w̄2(0) − τ

τ

)
. (34)

This quantity is to be analyzed numerically.

IV. PARAMETER CHOICES AND PROCEDURES
OF NUMERICAL CALCULATIONS

In our numerical analysis, the values (or ranges of the
values) of some parameters are determined in advance. These
include two structural entropies (sh, ss), three bond coupling
energies (εh, εs , εf ), and sheet width (R). Before preceding
to the results section, here we explain how the parameters are
chosen and the procedures of numerical calculations.

The structural analysis involves secondary structure for-
mations and corruptions, which are associated with entropic
change. When a polypeptide folds to a secondary structure,
it reduces configuration entropy due to the lost of spacial
degree of freedom. For a nonspecified sequence, we determine
the entropic change as a result of a structural transition by
calculating the size difference of the configuration space of
the structure with respect to the entire allowed domain in a
Ramachandran plot [28]. In a typical statistics on 121 870
residues from 463 structures [29] in the protein data bank [30],
sheet structures have a larger configuration space than helices,
such that sh < ss is assumed for homogeneous sequence,
while this is not necessarily true for a particular sequence.
Specifically, under the assumption of homogeneous sequence,
the Ramachandran plot of Fig. 5 in Ref. [29] is divided into a
matrix of 36×36 cells; each cell represents a structure state.
Then there are totally 910 cells for the allowed region. It
follows that the entire allowed region (covering 910 cells)
is assumed for coil, among which helices distribute in 58
cells and sheets occupy 84 cells. Thus, we have structural
entropy sc = ln(910/910) = 0 for coils, sh = ln(58/910) =
−2.7530 for helices, and ss = ln(84/910) = −2.3826 for
sheets. There is no preliminary knowledge to determine the
fibrillar structural entropy, thus different values of structural
entropy of fibril sf will be used in this work.

Furthermore, the bond coupling energy εh,εs,εf param-
eterizing competitive interactions in structure formation are
properly chosen to have the transitions located around room
temperature. This reduces the parameter space to a sig-
nificantly smaller one in which phase-transition behaviors
are usually typical and one of them will be presented for
demonstration. To further simplify parameter choices and
for comparison purpose, the same values of parameters will
be used in different cases if changing parameters are not
necessary. Meanwhile, as mentioned in Sec. II, a particular
value of R is selected and then fixed in the calculation of a
realization.

Within the parameter space, we calculate the transfer matrix
T of Eq. (15), from which the largest eigenvalue τ and
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the corresponding eigenvector w̄ are obtained. Then, using
Eqs. (23) and (24), we derive the polypeptide number density ρ

and four average fractional contents (Pc, Ph, Ps , Pf ), expressed
by Eqs. (29)–(31). Finally, we calculate the specific heat cV

numerically according to Eq. (34), using the central difference
method.

V. RESULTS AND DISCUSSIONS

Now we present the results of numerical calculations
of the average fractional contents and the specific heat of
the transitions among secondary structures and fibril. To
demonstrate the average fractional contents of structures of
polypeptides consisting of residues which can be in various
state configurations, a system is called an x phase if the average
fractional content of a structure Px exceeds 50%.

A. The case without fibrillation (s f = 0,ε f = 0)

First, we consider the case without fibrillation, in which
there is no fibrillar structural entropy (sf = 0) and fibrillar
bond coupling energy is zero (εf = 0), and the number
density ρ = 1.0 is set. When εf = 0 is considered, only
coil, helical, and sheet structures are involved in the system,
and the system reduces to the model proposed by Schreck
and Yuan in Ref. [23]. We chose εh = 1.827 kcal/mol and
εh = 1.566 kcal/mol such that there are two transitions around
room temperature: one at around 280 K corresponds to the
helix-to-sheet transition, while the other at around 295 K is
for the sheet-to-coil transition. This generally represents that
our model can reproduce the results of Ref. [23]. Specifically,
Fig. 5 shows heat capacity per polypeptide L×cV /kB and the
average fractional contents Px of the system as functions of
temperature T for sheet width R = 3,4,5,6 and polypeptide
length L = 300,400,500,600. Here R and L have been chosen
to have a product of 100 transfer matrices. The general features
are, with the decrease of temperature, that the system from high
to low temperatures undergoes a first transition from coil to
sheet and then a second transition from sheet to helix. With
the increase of system size, the height of the transition curve
becomes higher and higher, and the sheet-to-helix transition
temperature shifts from 278 K to 280 K, and the coil-to-sheet
transition temperature shifts from 294 K to 295 K [see the
insets in Fig. 5(a)]. The much smaller change in height and shift
in transition temperature for the coil-to-sheet transition com-
pared to the sheet-to-helix transition is a consequence of only
a relatively smaller amount of structure changes and a slower
process with respect to temperature change of the former.

It is interesting that the structure change from sheet to helix
is mostly around the transition temperature [see Fig. 5(b)],
such that there is a sharp peak in specific curves [Fig. 5(a)].
For comparison, Fig. 6 shows the specific heat as a function
of temperature T for different sheet widths R = 3,4,5,6 but a
fixed polypeptide length L = 256 and number density ρ = 1.0.
The longer the sheet width R, the shaper the first transition peak
(at around 280 K) and the more flat and smooth the second
transition (at around 295 K). This is a result of the corruption
of more sheet bonds for larger R in a transition from sheet
to helix such that more energy (heat) is needed for such a
transition.

FIG. 5. (Color online) (a) Heat capacity per polypeptide
L×cV /kB and (b) the average fractional contents Px of the sys-
tem as functions of temperature T for sheet width R = 3,4,5,6
and polypeptide length L = 300,400,500,600. Here the structural
entropy sh = −2.7530,ss = −2.3826,sf = 0, bond coupling energy
εh = 1.827 kcal/mol, εs = 1.566 kcal/mol, εf = 0, and number
density ρ = 1.0. Each realization has two phase transitions: one at
around 280 K is for the helix-to-sheet transition, and the other at
around 295 K is for the sheet-to-coil transition. The insets in (a) are
enlarged view for the second transition. The transition temperatures
are indicated near curves.

Figure 7 shows the phase diagram of the case without
fibrillation at absolute temperature T = 290 K, with fixed
polypeptide length L = 256, structural entropy sh = −2.7530,

FIG. 6. (Color online) Specific heat of the case without fibrilla-
tion, as a function of temperature T , for sheet width R = 3,4,5,6
and fixed polypeptide length L = 256. Here the structural entropy
sh = −2.7530, ss = −2.3826,sf = 0, and bond coupling energy
εh = 1.827 kcal/mol, εs = 1.566 kcal/mol, εf = 0, and number
density ρ = 1.0. The inset is an enlarged view showing the second
transition.
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FIG. 7. (Color online) The phase diagram of the system without
fibrillation (sf = 0 and εf = 0) at absolute temperature T = 290 K
and fixed polypeptide length L = 256. Here structural entropy
sh = −2.7530,ss = −2.3826, and number density ρ = 1.0. The bold
black lines denote phase boundaries. A small region enclosed by the
boundaries corresponds to undefined phase with the average factional
content Px < 50% for coil, helix, and fibril. εm = 1.675 kcal/mol.
The slope of the phase boundary between the helix and sheet at the
large-εh regime is 1. The inset shows Px as function of εh/εm, taken
along the magenta dashed line with slope εs/εh = 0.857. The magenta
star (1.090,0.935) on the dashed line represents the case with bond
coupling energy εh = 1.827 kcal/mol and εs = 1.566 kcal/mol.

ss = −2.3826, and number density ρ = 1.0. The phase bound-
ary is determined by the average fractional content Px � 50%.
The region surrounded by the three phases is an undefined
phase where Px < 50% for helix, sheet, and coil. The slope
of the phase boundary between helix and sheet at large εh

is 1, which is a result of the same maximum number of
residues in helix and sheet for a given polypeptide length. For
convenience, we rescaled the axes by εm determined through
normalizing the phase boundary between the helical and coil
phases at εs = 0 to 1. The boundaries of helix and sheet merge
at εh/εm = 1.051 and εs/εm = 0.852. A typical composition
of the system in a chemical may correspond to the dashed
line in the diagram. Specifically, this line represents the ratio
of bond coupling energies εs/εh = 0.857. By adjusting the
chemical condition, the bond coupling energy changes and
structure phase transitions take place. For example, along the
dashed line in the phase diagram, the Px of coil becomes lower
and lower as the ratio εh/εm increases. With the decrease
of the fractional content of coil, more sheet structure forms
before εh/εm = 1.15, corresponding to a first transition from
coil to sheet. Interestingly, there is an abrupt change of Px

for a decrease of coil and sheet, while Ph increases from
very small (at around 0) to very large (at around 1.0) when
εh/εm approaches 1.15. The abrupt changes in Ps and in Ph

represent sharp structure phase transitions (a second transition
corresponding to a sheet-to-helix transition) at this ratio,
which manifests a thermodynamical-limit-like behavior of a
finite-size system for a particular range of εh/εm. It is clear that
from the phase diagram that only the system with particular
parameters has two phase transitions. Such a parameter choice

FIG. 8. (Color online) Finite-size scaling analysis of the transi-
tion temperatures and specific heat for the system without fibrillation.
(a) Specific heat cV /kB as a function of temperature T for different
polypeptide length L. (b) Decomposition of the specific-heat curve
into curve I and curve II, corresponding to transitions I and II,
respectively. (c) Maxima of specific heat cmax

V /kB and fittings.
(d) Transition temperatures TL as functions of L. (e) Scaling
of the transition temperatures. t is the reduced temperature de-
fined as t = (T∞ − TL)/T∞. Here structural entropy sh = −2.7530,

ss = −2.3826,sf = 0, bond coupling energy εh = 1.827 kcal/mol,
εs = 1.566 kcal/mol, εf = 0, fixed sheet width R = 3, and number
density ρ = 1.0. The inset in (a) is an enlarged view of the second
(II) transition at around 296 K. The numbers in (c) and (e) denote the
slops of the fittings.

must have two cross sections with two phase boundaries, such
as the situation represented by the dashed line in Fig. 7. The
magenta star on the magenta dashed line represents the case
with εh = 1.827 kcal/mol, εs = 1.566 kcal/mol, used in the
plots of Figs. 5, 6, and 8, where there are two phase transitions
for each specific-heat curve.

Furthermore, the properties of the transition peaks are also
associated with the polypeptide length. Figure 8(a) shows
the specific heat cV /kB as a function of temperature T for
different polypeptide length L. As previously mentioned,
the specific-heat curve involves two phase transitions, which
are visually distinguishable when L is large enough. Using
two-peak curve (Gaussian function) fitting, each specific-heat
curve can be decomposed into two curves: one corresponds to
the first (I) transition at lower temperature around 280 K and
the other to the second (II) transition at higher temperature
about 295 K. Figure 8(b) shows a typical decomposition of the
specific-heat curve of L = 16. The transition temperatures TL

of two transitions are shown in Fig. 8(d), and the heights of the
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maxima of specific-heat curves cmax
V /kB as functions of L are

shown in Fig. 8(c). Note that though the difference between
cmax
V /kB of the first (I) and second (II) transitions increases

with L due to the fact that the growth of cmax
V /kB of the former

is much faster, the variation of the difference between the two
transition temperatures is generally small.

To see the finite-size effects of the system, we analyzed the
specific-heat curves with different polypeptide lengthes, and
the results are shown in Fig. 8(c) and Fig. 8(e). The transition
temperatures of L = ∞ are determined through extrapolation
and in this case T I

∞ = 281.22 ± 0.07 K and T II
∞ = 305.87 ±

0.25 K for the two transitions, respectively. Employing the
concept of the scaling function of lattice model [31–34], we
assumed a scaling form involving ln L and 1/L terms for
the maxima of specific-heat curves of the first (I) transition.
We used a linear fitting for the curve at large L regime to
determine the coefficient of ln L and a curve fitting for the
curve at small L regime to determine the coefficient of 1/L,
and the result is
cmax
V

kB

≈ (64.74 ± 0.68) ln L− (296.8 ± 4.1) + (2248 ± 65)
1

L
.

(35)

In contrast, the maxima of the specific-heat curves of the
second (II) transition saturates at large L. We found that
cmax
V /kB as a function of temperature is well described by

cmax
V

kB

≈ (7.27 ± 0.02) − (30.0 ± 1.8)L−0.75±0.03. (36)

Likewise, the scaling form of the reduced temperature
is determined through the assumption of t = (T∞ − TL)/
T∞ ∼ L−ν . Using the linear fitting in the form of

ln t ≈ const − ν ln L, (37)

for both transitions, we determined ν = 0.95 ± 0.01 for
transition I and ν = 1.61 ± 0.03 for transition II [see Fig. 8(e)].
Since our model is not a primary three-state Potts model, there
is no reference for the values of ν.

The correlation length of the helical and sheet structures
were further analyzed using the definition of the correla-
tion function g(r) = 〈δ(m(i),q)δ(m(i + r),q)〉 − 〈δ(m(i),q)〉
〈δ(m(i + r),q)〉 on a polypeptide. g(r) has a maximum g0 at
r = 1, which will be used here as a self-normalization factor.
Figures 9(a) and 9(b) show the normalized correlation function
g(r)/g0 of the system with polypeptide length L = 128 at
different temperatures for helical and sheet structures. g(r)/g0

roughly decays in an exponential form for a realization
at temperature far from the transition temperature T128 ≈
273.5 K. When T approaches TL, g(r)/g0 decreases more
quickly before r = L. This scenario is clear in Fig. 9(c), where
g(r)/g0 for the helical structure at TL is plotted for different L.
g(r)/g0 at TL for L = 64 to 512 share the same function form
(have partial overlap). Consequently, the correlation length
ξ (T ) is calculated through fitting a preassumed function

g(r)

g0
∝ f (r) exp

[
− r

ξ (T )

]
, (38)

where f (r) is a function characterizing the interactions in the
system. The correlation length ξ (T ) as a function of T is shown

FIG. 9. (Color online) The normalized correlation function
g(r)/g0 as a function of separation r between two residues for the
system with polypeptide length L = 128 at different temperatures
T for (a) helix and (b) sheet. The transition temperature is T128 =
273.5 K. (c) g(r)/g0 as a function of r at the transition temperature
TL for different L. (d) Correlation length ξ (T ) as a function of T for
the system with L = 128.

in Fig. 9(d). Both ξ (T ) of helix and sheet reach maxima at the
transition temperature T128 ≈ 273.5 K. These results indicate
that the correlation length at the transition temperature exceeds
the polypeptide length even for a small system. Due to the limit
of our computation power, our numerical data are insufficient
to determine the explicit function form of f (r).

B. The case with fibrillation and ss �= 0,εs = 0

To simulate the situation that fibrillation usually takes place
for sheet-rich molecules, we consider the case where forming
sheet structures is a signature of fibrillation. This is similar to
the situation considered by Zamparo et al. in Ref. [27]. Again,
our model can reproduce the features observed in Ref. [27].
Here we assumed sh = −2.7530,ss = −2.3826,sf = −0.75,
and εs = 0 and studied the effects of the competing bond
coupling energy of εh and εf . Figure 10(a) shows the
phase diagram of the system as a function of helical and
fibrillar bond coupling energy εh,εf at absolute temperature
T = 290 K, with polypeptide length L = 16 and number
density ρ = 0.6. Note that though εs = 0 is assumed, the
average fractional content of sheet Ps , by definition, is not
necessarily zero but very small [see insets in Fig. 10(a)]. There
is therefore no sheet phase in the phase diagram. The phase
diagram generally consists of three regions of coil, helical,
and fibrillar phases, separated by phase boundaries. There is
an undefined region between the coil and helical phases, in
which Px < 50% for both coil and helix for the existence of
minor sheet structures. Due to the limit of computing power,
we present only the calculation of the case with L = 16,
and the axes have been rescaled by εm = 1.995 kcal/mol,
determined through normalizing the phase boundary between
the coil and helical phases at εf = 0 to 1. Even for such a
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FIG. 10. (Color online) The phase diagram as functions of struc-
ture bond coupling energy and number density. (a) The phase
diagram of the system as a function of normalized helical and
fibrillar bond coupling energy εh/εm,εf /εm at absolute temperature
T = 290 K. Here the structural entropy sh = −2.7530,ss = −2.3826,

sf = −0.75, sheet width R = 3, and number density ρ = 0.6,
polypeptide length L = 16, sheet width R = 3. εm = 1.995 kcal/mol.
The slope of the phase boundary between helix and fibril at the
large-εh regime is 13/16. The left upper inset in (a) shows the average
fractional content Px as a function of εh/εm, taken along the purple
dashed line. The purple triangle on the dashed line represents the
case with εh/εm = 1.00, εf /εm = 1.02. The right bottom inset is
the same plot taken along the magenta dotted line. The magenta star
on the dotted line locates at εh/εm = 1.090, εf /εm = 1.0246. (b) The
phase diagram as function of ρ and εh/εm along the purple dashed
line in (a), and (c) is that along the magenta dotted line.

small system, rich phase-transition behaviors can be observed,
including a single-phase transition and successive two-phase
transitions. Depending on parameters of εh and εf chosen, the
phase transition of the system from high to low temperatures
can be the coil-to-fibrillar transition, a coil-to-fibril-to-helix
transition, or a coil-to-helix transition. Note that there is no
transition from coil to fibril to helix, because the slope of
the phase boundary between helix and fibril is 13/16. More
specifically, a parameter configuration of the system described
by a line in the phase diagram, with a slope greater than 13/16
and passing through origin, does not have an intersection with
the phase boundary between the fibrillar and helical phases.
The number 13/16 is associated with the ratio between the
maximum bond numbers of helix and fibril. For the system
with L = 16, the maximum number of helical bond is 13,
while it is 16 for the fibrillar bond.

One of the interesting features observed in this case is
successive two-phase transitions from coil to fibril to helix

with respect to the increase of εh/εm. This is shown in the
left upper inset of Fig. 10(a), which is taken along the purple
dashed line corresponding to εf /εm = 0.42εh/εm + 0.6. By
controlling εh while keeping the relationship between εf and
εh, the transition from the helical phase (Ph � 50%) to the
fibrillar phase (Pf � 50%) is forbidden. More specifically,
the transition sequence is determined by the slope (i.e., the
ratio εf /εh) of the line passing the origin through the point
of interest. The appearance of the fibrillar phase in this case
also depends on the number density ρ. Figure 10(b) shows the
phase diagram as function of ρ and εh/εm, taken along the
purple dashed line in Fig. 10(a). As is expected, the fibrillar
phase shrinks as ρ decreases and, finally, vanishes when ρ is
below a threshold where there exist insufficient polypeptides
for fibrillation. Thus, for a fixed εf /εh = 0.42, fibril is more
abundant for larger ρ. Below the threshold of ρ, the system
will undergo the transition from coil to helix directly, without
the fibrillar phase [see Fig. 10(b)]. Note in the figure that,
surrounded by coil, fibrillar, and helical phases, there is a
small region with Px < 50% for all structures.

Another successive two-phase transition can be seen by
considering the magenta dotted line in Fig. 10(a), which
corresponds to εf /εh = 0.94. The right bottom inset shows
the average fractional content Px as a function of εh/εm.
The abrupt changes of Px for helix and fibril can be found
at around εh/εm = 1.2. Remarkably, the two insets show
there is an interconversion between native intrachain and
fibril interchain sheet content, which likely implies that sheet
structure is a transitional state with respect to the variation of
εh/εm. Furthermore, when the ratio εf /εh = 0.94 is kept fixed,
fibrillation takes place even for small ρ, as seen in Fig. 10(c).
Only when ρ is extremely low does the system become too
“dilute” to form fibrillar bonds. In this condition, helix is the
last structure before structure corruption. More interestingly,
Fig. 10(c) shows that for a fixed parameter configuration except
ρ, a system primarily in the helical phase tends to form fibrillar
structure when the concentration of the system is increased.

The specific heat cV /kB and the average fractional con-
tent Px as a function of temperature T , with parameters
εh/εm = 1.00, εf /εm = 1.02, corresponding to the purple
triangle in Fig. 10(a), is shown in Fig. 11(a). From high to
low temperatures, the system undergoes a transition mostly
from the coil phase to the fibrillar phase at T = 307 K, and
some helical and sheet content to the fibrillar phase during
fibrillation [see Fig. 11(a)], but such a small amount of residues
are involved in them that these transitions are unobservable
in the specific-heat curves. The transition from coil phase
to fibrillar phase is rather sharp, indicating that a significant
amount of polypeptides collectively participate in this energy
consumptive process. This is due to the fact that the fibrillation
from coils involves formation of both sheet and fibrillar bonds,
and more than one polypeptides must present in the formation
of fibrillar bonds. The scenario has been found in all typical
realizations with fibrillation and this is considered as a feature
of NG process observed in some studies of aggregation [13,14].

As an example for comparison, Fig. 11(b) shows the specific
heat cV /kB and the average fractional content Px of the system
as functions of temperature T , with parameters εh/εm =
1.090, εf /εm = 1.0246, corresponding to the magenta star in
Fig. 10(a). From high to low temperatures, the system undergos
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FIG. 11. (Color online) The specific heat cV /kB and the average
fractional contents Px of the system as functions of temperature
T for sheet width R = 3 and polypeptide length L = 16. Here,
structural entropy sh = −2.7530,ss = −2.3826,sf = −0.75, bond
coupling energy εh = 1.995 kcal/mol, εs = 0, εf = 2.035 kcal/mol,
and number density ρ = 0.6. The plots of (a) and (b) correspond to
parameters of the purple triangle and the magenta star in Fig. 10(a),
respectively.

a transition from the coil phase to the helical phase at around
315 K and then another transition from the helical phase to the
fibrillar phase at around 290 K. The former transition is quite
smooth at this system size, while the later is sharp, resembling
the case in Fig. 11(a). Nevertheless, in contrast to the case
shown in Fig. 11(a), while the transition proceeds from the
coil phase to the helical phase, the sheet structure is corrupted
during the formation of the helical structure before fibrillation.
Thus, in this condition the structures transiting to the fibrillar
structure are mostly helices.

C. The case with fibrillation and ss �= 0,εs �= 0

Now we consider a more general case, in which ss �= 0 and
εs �= 0. This corresponds to a system of the coexistence of
sheet and fibrillar structures, which is the main design of our
model. In contrast to the previous cases, here the sheet and
fibrillar states are distinct. This explicitly indicates that not all
sheet structures are involved in fibrillation.

Figure 12(a) shows the phase diagram of the system as
a function of normalized helical and fibrillar bond coupling
energy εh/εm and εs/εm at absolute temperature T = 290 K.
The value of εm = 1.995 kcal/mol is determined through
rescaling the phase boundary of the coil phase and the helical
phase at εs = 0 to 1. Here, for convenience, but without losing
generality, the fibrillar bond coupling energy εf is assumed to
have a fixed relationship with the sheet bond coupling energy εs

and is determined through εf = 1.06εs . The other parameters
are structural entropy sh = −2.7530, ss = −2.3826, sheet
width R = 3, number density ρ = 0.6, polypeptide length
L = 16, and sheet width R = 3. The fibrillar structural entropy
sf = −0.75 is used to plot the phase boundaries in a bold
solid line, while other choices of sf have been shown for
comparison. The phase boundaries corresponding to sf = 0,
sf = −0.75, sf = −1.00, and sf = −1.50 are parallel to one
another in their common linear regimes according to the linear
relationship between εf and sf in Eq. (3). The slope of the
phase boundary between the fibrillar and helical phases at the

FIG. 12. (Color online) The phase diagram of the system (a) as
a function of normalized helical and sheet bond coupling energy
εh/εm,εs/εm, and (b) as a function of normalized helical and
fibrillar bond coupling energy εh/εm,εf /εm, at absolute temperature
T = 290 K. εm = 1.995 kcal/mol. Here, structural entropy sh =
−2.7530,ss = −2.3826, sheet width R = 3, and number density
ρ = 0.6, polypeptide length L = 16, sheet width R = 3. In (a), εf is
determined through εf = 1.06εs . The purple dashed line represents
the slope ((13/16)/1.06) of the straight line fitting the boundary curve
of sf = 0 at εh/εm > 1.5 regime. In (b), εs = 0.857εh is assumed.
The left upper inset and right bottom inset in (b) show respectively
the average fractional content Px and phase diagram as a function
of ρ and εh/εm, taken along the magenta dotted line. The slope of
the straight line fitting the boundary curve of zero fibrillar structural
entropy sf = 0 is 13/16.

large-εh regime is (13/16)/1.06. This number is associated
with the ratio between the maximum bond numbers of fibril
and helix for L = 16, as discussed in the previous subsection.
Remarkably, for the case with sf = 0, the region of fibrillar
phase expands to cover the whole region primarily occupied
by sheet phase for the case of sf = −0.75. This shows that
the system tends to form fibril instead of sheet structure if
there is no entropic difference between fibril and sheet. This
is similar to the case of nonexistent sheet structures in the
previous subsection.
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For comparison, in Fig. 12(b), the sheet bond coupling
energy εs is assumed to have a fixed relationship with
helical bond coupling energy εh, in which εs is determined
through εs = (1.566/1.827)×εh = 0.857εh. Again, the two
phase boundaries corresponding to sf = 0 and sf = −0.75
are parallel to each other. Thus, a lower fibrillar structural
entropy leads to a larger region for sheet phase. The slope of
the boundary separating fibrillar and helical phases is 13/16.
For a realization with the parameter configuration along the
magenta dotted line of εf = 0.92εh in Fig. 12(b), the average
fractional content Px as a function of εh/εm is shown in
the left upper inset of Fig. 12(b). Varying εh from small to
large, there are successive three-phase transitions from the
coil phase to the sheet phase, then from the sheet phase
to the helical phase, and, finally, from the helical phase to
the fibrillar phase. The slope of the line passing the origin
through the point of interest determines the phase transitions.
Thus, in this case, it is impossible to have a transition from
coil to helix without visiting the sheet phase. This is shown
more clearly in the right lower inset in Fig. 12(b), in which
the phase diagram as a function of ρ and εh/εm is shown.
Comparing with Fig. 10(c), the sheet phase in this case
partially occupies the region between coil and helical phases,
defining the phase transition sequence with respect to εh/εm.
Similar to the scenario discussed regarding Fig. 10(c), a system
primarily in helical phase tends to form fibrillar structure as
the concentration of polypeptide is increased, while the system
remains unchanged if it is in the coil or sheet phase.

To explore the effects of the fibrillar structural entropy
sf , the fibrillar coupling energy εf , and the number den-
sity ρ on fibrillation, we chose the parameter settings of
sf = −0.75, εh = 2.47 cal/mol, εs = 2.1366 cal/mol, εf =
2.2647 cal/mol, ρ = 0.6 corresponding to configuration rep-
resented by the magenta star on the magenta dotted line of
εs = 0.865εh in Fig. 12(a), as a reference, and varied sf , εf ,
and ρ one time per parameter to see changes in the specific-heat
curve cV /kB and the average fractional contents Px . Figure 13
shows cV /kB and Px of the system as functions of temperature
T for sf ranging from −0.75 to −0.6 [Fig. 13(a)], εf ranging
from 2.26 to 2.4 [Fig. 13(b)], and ρ ranging from 0.3 to
0.9 [Figs. 13(c) and 13(d)]. It turns out that the increases
of the fibrillar structural entropy sf , the fibrillar coupling
energy εf , and the number density ρ all lead to increases
of the transition temperature TL and the height of the peak of
the specific-heat curve cmax

V /kB . Typically, changing one of
the parameters, for example, sf , can lead to a change from
successive two-phase transitions to a single-phase transition,
as a result of shifting one transition from the fibrillar phase to
the helical phase toward the other transition from the helical
phase to the sheet phase and becoming a single transition from
the fibrillar phase to the sheet phase. Remarkably, according
to the relative variations of Px for coil, helix, sheet, and fibril
shown in Fig. 13, fibrillation is similar to a rolling snowball
that destroys all the other phases to grow itself. The parameters
control rolling of the snowball, resulting in corruptions of coil,
helix, and sheet and formation of fibrillar structures.

We further analyzed the average length of fibrils and
the average fraction of residues in the fibrillar state. The
average length of fibrils is temperature dependent. For a
given temperature, it increases abruptly from 2 to 1011 during

FIG. 13. (Color online) Specific heat cV /kB and the average
fractional contents Px of the system with as a function of tem-
perature T for (a) structural entropy sf = −0.75, − 0.7, − 0.6,
(b) for fibrillar bond coupling energy εf = 2.26,2.3,2.4, (c) for
number density ρ = 0.3,0.45,0.6, and (d) for ρ = 0.6,0.75,0.9.
Here, structural entropy sh = −2.7530,ss = −2.3826,sf = −0.75,
bond coupling energy εh = 2.47 kcal/mol, εs = 2.1366 kcal/mol,
εf = 2.2647 kcal/mol, sheet width R = 3 and polypeptide length
L = 16, taken along the magenta dotted line in Fig. 12(a).

fibrillation (for infinite N ) and then grows exponentially.
The average fraction of residues in fibrillar state nf during
fibrillation is analyzed by calculating the average number
of residues in fibrillar state in a polypeptide for different
polypeptide length L and normalizing the outcome by L,
and the result is shown in Fig. 14. It is interesting that at a
transition temperature TL, a longer polypeptide has a larger

FIG. 14. (Color online) Average fraction of fibrillar residues
in a polypeptide nf as a function of the reduced temperature
t = (T − TL)/TL.
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fraction of residues transiting from or to the fibrillar state with
respect to temperature change, which in turn results in a more
abrupt (sharper) transition. This is a consequence of a longer
polypeptide has a fewer residues at boundary that cannot be
arranged in fibrillar state. Thus, under the framework of a
hairpinlike fibrillar structure, it is easier to have a system with
longer polypeptides transition to the fibrillar phase.

VI. CONCLUSIONS

We have proposed a polypeptide fibrillar transition model
based on the three-state Potts model on cubic lattice and
analyzed the model using the transfer matrix method and
numerical calculations. Through parameterizing the compet-
ing bond coupling energy and structural entropies of helical,
sheet, and fibrillar states, and concentration of the system,
the model manifests phase transitions among coil, secondary
structures, and fibril. We systematically analyzed the average
fractional content of structures at phase transitions and
constructed the phase diagrams to explore the transitions. The
phase diagrams show the transition sequences are governed
by the bond coupling energy, while the transition temperature
is determined by the competition among the bond coupling
energy of helix, sheet, and fibril, as well as the structural
entropies, and concentration of the system. Depending on the
parameters, there can be a single-phase transition, successive
two-phase transitions, and successive three-phase transitions.
No matter what the transition sequence is, the fibrillation
is accompanied with an abrupt transition from the coil or
secondary structure phase to the fibrillar phase, even for short
polypeptide length. For the case without fibrillation, numerical
data suggest that the finite-size effects in specific heat can
be roughly described by the scaling form of the lattice Ising
model.

Specifically, our model is able to mimic the following fea-
tures: (i) Nucleation-growth-like behavior, which is revealed

from the abrupt transition in fibrillation; (ii) relatively easier
fibrillation for sheet-rich polypeptides (Fig. 12); (iii) succes-
sive two- and three-phase transitions, governed by parameters
adjustable in experiments; (iv) forbidden transitions from high
to low temperatures, such as the fibrillar-phase-to-sheet-phase
transition in the phase diagram of Fig. 12. In addition, our
model shows the possibility of the transition from the fibrillar
to the helical phase for particular bond coupling energy
(Fig. 12), suggesting a route of fibrillation control. Meanwhile,
our model is limited by the simplification of homopolypeptides
and assumption of hairpinlike fibrillar structure. A more
realistic model without these limits will be a topic of our
further study.

In conclusion, our studies on polypeptide phase transitions
using a simplified lattice model based on a three-state Potts
model provide useful information to understand fibrillation.
Here we remark that our model reduces to the model proposed
by Schreck and Yuan [23] at the limit of zero fibrillar bond
coupling energy and zero fibrillar structural entropy and can
reproduce the features observed in Ref. [23]. On the other
hand, our model can also simulate the features of polypeptide
fibrillation observed by Zamparo et al. in Ref. [27] when
the sheet bond coupling energy is set to zero. The features
revealed in the generalized version between the two limit
cases show that our model offers richer phase-transition and
physical properties of polypeptide fibrillation. Our model
may be useful to raise the possibility of related experiments
in protein aggregation, providing a way to design chemical
conditions to make fibrillation control become possible.
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