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Pulling-force-induced elongation and alignment effects on entanglement and knotting
characteristics of linear polymers in a melt
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We employ a primitive path (PP) algorithm and the Gauss linking integral to study the degree of entanglement
and knotting characteristics of linear polymer model chains in a melt under the action of a constant pulling force
applied to selected chain ends. Our results for the amount of entanglement, the linking number, the average
crossing number, the writhe of the chains and their PPs and the writhe of the entanglement strands all suggest
a different response at the length scale of entanglement strands than that of the chains themselves and of the
corresponding PPs. Our findings indicate that the chains first stretch at the level of entanglement strands and
next the PP (tube) gets oriented with the “flow.” These two phases of the extension and alignment of the chains
coincide with two phases related to the disentanglement of the chains. Soon after the onset of external force
the PPs attain a more entangled conformation, and the number of nontrivially linked end-to-end closed chains
increases. Next, the chains disentangle continuously to attain an almost unentangled conformation. Using the
linking matrix of the chains in the melt, we furthermore show that these phases are accompanied by a different
scaling of the homogeneity of the global entanglement in the system. The homogeneity of the end-to-end closed
chains first increases to a maximum and then decreases slowly to a value characterizing a completely unlinked
system.
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I. INTRODUCTION

Polymer melts solely composed of macromolecules exhibit
time-dependent mechanical properties, termed viscoelastic
because of the combination of viscous flow at long times
and elastic response at short times. Beyond the linear flow
regime, a variety of structural, rheological, and topological
properties are found to display significant deviations from
their corresponding equilibrium behaviors [1–3]. Presently,
nonequilibrium viscoelastic processing flows cannot be easily
characterized (or even formulated) within one macroscopic
model due to the myriad of relaxation phenomena occurring
at multiple length and time scales within these materials [4,5].
Given that polymer chains cannot cross each other, dynamics
in entangled polymers differ substantially compared to unen-
tangled systems due to the existence of topological interactions
dominating their rheological behavior [6]. A fundamental
understanding of the entanglement relaxation mechanisms and
phenomena occurring across these scales is thus a prerequisite
for predicting the response of these systems to an applied flow
field [7–13].

Edwards [1] suggested that entanglements effectively re-
strict individual chain conformations in a curvilinear tubelike
region enclosing each chain [14]. At very short time scales,
chain segments are allowed to freely fluctuate in all directions
until their displacements become commensurate with the tube
diameter, which is the end-to-end distance of a portion of
the polymer chain, called the entanglement strand. The axis
of the tube is a coarse-grained representation of the chain
and it is called the primitive path (PP). Several methods have
been developed for extracting the PP network [15–21]. Two
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geometrical methods capable of efficiently reducing computer
generated polymer models to entanglement networks are the
Z1 code [16,18,22,23] and the CReTA algorithm [17]. Despite
differences in their specific implementation, these methods
are reported to yield similar results for the average properties
of the PP network [16–18,24–29]. The nonlinear rheological
behavior of polymer chains in flow can be understood in terms
of yielding through disintegration of the chain entanglement
network. Therefore it is interesting to understand how the
entanglement network deforms with the test chain under the
influence of a strong deformation [5,8–11,13,21,30–35].

Under certain conditions, we can see the polymer chains
as simple mathematical curves in space. A knot (respectively,
link) is one (or more, respectively) simple closed curve(s)
in space without intersections. It has been shown [36] that
knots slow down the stretching of individual polymers. The
complexity (or topological state) of these knots or links is
related to their global entanglement and it can be measured by
using topological invariants such as knot or link polynomials
[37–39]. The topological invariants are properties of knots or
links, which remain invariant for isotopic configurations. In the
case of linear polymers, the notion of topological invariant does
not apply, since linear chains can be continuously deformed
to attain any configuration, as noted earlier [14,40]. Efforts
have been made to characterize the knotting of an open chain
[41–45]. A measure of entanglement that is meaningful both
for closed or open chains is the Gauss linking integral [40]. For
two closed chains (ring polymers) the Gauss linking integral
is a topological invariant that measures the algebraic number
of times one chain turns around the other. For two open chains
(linear polymers), it is a real number that is a continuous
function of the chain coordinates. The Gauss linking integral
can be also applied to one chain in order to provide measures
of self-entanglement of a chain, called writhe [46–51] and
average crossing number [47,52–55]. These are real numbers
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that change continuously under continuous deformations of a
chain. Thus, the writhe and the average crossing number are
very clearly not topological invariants, even for closed chains,
but, rather, they are quantities that depend on the specific
geometry of the chain, and are very sensitive to the specific
conformations that are analyzed.

In this work we study the entanglement characteristics
of linear chains in a melt under the action of directed
forces by combining the entanglement network properties
with tools from knot theory. We obtain information about the
motion of the chains, their PPs, and the entanglement strands.
We consider therefore this work as a step towards a more
comprehensive understanding of the topological interaction of
a polymer melt with a flow, a very complicated problem includ-
ing among others poorly understood components today, such
as what is the role of molecular architecture [56,57] and the role
of embedded nanoparticles [58,59]. The setup employed in this
work could represent future experiments involving magnetic
nanoparticles attached to terminal monomers [60–64].

More precisely, in Sec. II we describe the measures of
entanglement used in this study. In Sec. III we describe the
simulation method used to sample a polymer melt of linear
finitely extendable nonlinear elastic (FENE) multibead chains
under the action of pulling forces. In Sec. IV the results on
the PP network characteristics obtained by the Z1 algorithm,
the average crossing number, the writhe of the original FENE
chains, the Z1-reduced chains, the entanglement strands, and
the linking number and the linking matrix of the chains are
presented and analyzed.

II. MEASURES OF ENTANGLEMENT

A. Z1 algorithm

The Z1 algorithm [22] is a state-of-the-art geometric
algorithm which proceeds by transforming the physical picture
of topological interchain constraints as conceived by Doi and
Edwards [1] into a pure mathematical problem of identifying
the shortest multiple disconnected (primitive) path subject
to geometrical constraints arising from the configuration of
the corresponding atomistic system. More precisely, given a
polymer melt configuration, the algorithm minimizes the total
contour length of all chains, while all chain ends remain fixed
in space, by moving the beads sequentially in space while
maintaining the noncrossability of the chains. In this way the
chains become rectilinear strands coming together at kinks
where the entanglements occur. Unphysical disentanglement
is prevented by constraining moves of kinks to lie in the plane
of their adjacent segments [16]. In this study, to allow for
a direct comparison with previous works [65], we use the
version of Z1 that does not capture self-entanglements. One
has to be aware that even if self-crossings are allowed (which
are rare [24]), the global self-entanglement remains, due to the
uncrossability with other chains.

A direct consequence of the specific mathematical formu-
lation is that the Z1 algorithm provides as output the average
contour length of a PP, 〈LPP〉. The probability distribution of
LPP is practically Gaussian. Here and in the following, 〈 〉
denotes averaging over all chains of a given configuration. In
addition, by mapping the extracted interior nodes of each PP

into kinks, the average number of interior kinks (entangle-
ments), 〈Z〉, per chain is returned. The probability distribution
of 〈Z〉 has been approximated by a Poissonian [27,66–68]. We
will use the following notation for the average values of these
quantities over all chains: Z = 〈Z〉 and LPP = 〈LPP〉. Finally,
from the output of Z1 one can recover entanglement molecular
weights (Ne) in accordance with experiments [65].

B. The Gauss linking integral

The Gauss linking number L of two oriented curves l1
and l2, whose arc-length parametrizations are γ1(t) and γ2(s),
respectively, is defined as a double integral over l1 and l2 [69]:

L(l1,l2) = 1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t),γ̇2(s),γ1(t) − γ2(s))
|γ1(t) − γ2(s)|3 dtds,

(1)

where (γ̇1(t),γ̇2(s),γ1(t) − γ2(s)) = (γ̇1(t) × γ̇2(s)) · (γ1(t) −
γ2(s)).

The writhe W of an oriented curve l with arc-length
parametrization γ (t) is thus alternatively and more conve-
niently defined by the Gauss linking integral over a curve

W (l) = 1

2π

∫
[0,1]∗

∫
[0,1]∗

(γ̇ (t),γ̇ (s),γ (t) − γ (s))
|γ (t) − γ (s)|3 dtds, (2)

where [0,1]∗ × [0,1]∗ = {(x,y) ∈ [0,1] × [0,1]|x �= y}.
The average crossing number (ACN) of a curve l, parame-

terized by γ (t), is defined as

ACN(l) = 1

2π

∫ 1

0

∫ 1

0

|(γ̇ (t),γ̇ (s),γ (t) − γ (s))|
|γ (t) − γ (s)|3 dtds. (3)

The geometrical meaning of the ACN, the writhe, and the
linking number is the same for open or closed curves. Without
loss of generality, we can assign an orientation to the chains.
Then in a random projection direction one can see crossings
of the type shown in Fig. 1. Then for one (respectively, two)
oriented curve(s), the writhe (respectively, the linking number)
is the average over all projection directions of the algebraic sum
of crossings (or intercrossings, respectively), in the projection
of the curve (or curves, respectively). Similarly, the ACN is
the average sum of crossings (without signs) in a generic
orthogonal projection over all possible projection directions.
When applied to open chains all these measures are continuous
functions in the space of configurations. Furthermore, as the
end points of the curves move towards coincidence, these
measures tend to their values for the resulting closed knots

FIG. 1. (a) +1 crossing and (b) −1 crossing. By assigning a sign
to each crossing, one recovers information concerning which arc
comes over and under.
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FIG. 2. (Color online) A system generated by two chains. For the
computation of LK(I,J ) we have LK(I,J ) = L(I0,J0) + L(I0,J1) +
L(I0,J2) + L(I0,J3).

or links. In the case of closed chains the linking number is a
topological invariant.

In the following we will take averages of the ACN, the
writhe, and the linking number of polymer chains in melts
simulated with the use of a periodic box. The periodic box
is replicated in space to form a large bulk system; we call
it the periodic system [21,70,71]. For a system with M

generating chains in a periodic box, there are only M different
conformations in the periodic (bulk) system that the box
generates and infinitely many images (i.e., copies) of these
conformations (see Fig. 2 for an illustrative example). For
measuring the mean values of the absolute writhe or the mean
ACN of a chain in a system of M chains in a periodic box it
suffices to measure the absolute writhe or the ACN of the M

different unfoldings and divide by M , since there are only M

different conformations.
In the case of the linking number, the situation is different,

since there are infinitely many pairs of chains in the periodic
system in different relative position [70,71]. Obviously, it does
not make sense to compute the linking numbers of all the
infinite numbers of different pairs of images in the periodic
system. In [70] a new linking measure for chains in PBC
was introduced—the local periodic linking number: For two
simulation chains I,J , their local periodic linking number is
equal to

LK(I,J ) =
∑

u∈unf(I1)

L(I1,Ju), (4)

where Ju is an image of J that intersects the cells in which I1

unfolds [we denote u ∈ unf(I1)]; see Fig. 2 . The local periodic
linking number takes into account all the linking imposed
to one chain in its vicinity by images of another chain with
no repetitions. Also, this is independent of I1, i.e., the same
for all the images of I , and it is symmetric, i.e., LK(I,J ) =
LK(J,I ) [70].

Accordingly, for our estimation of the mean absolute
linking number we take the average of all the absolute values of
the linking numbers of the pairs of chains (I1,Ju), u ∈ unf(I1),

for all pairs of generating chains I,J (i.e., the average of
all summands in LK(I,J ) of all possible pairs of generating
chains).

C. The linking matrix

For measuring the homogeneity of the global entanglement
in the system, we employ a measure of entanglement that takes
into consideration all the global pairwise linking in the system.
We define a linking matrix for a cell of n generating chains as
the n × n matrix with components LK(I,J ), the local periodic
linking number of the I and J chain. The diagonal component
LK(I,I ) is the local periodic linking number of I with its own
images [40,71].

We consider the absolute linking matrix as an adjacency
matrix of a weighted graph whose vertices correspond to the
generating chains and the weight of the edge that connects
the ith and j th vertex is the local periodic linking number of
the corresponding generating chains. Using tools from graph
theory, such as the Cheeger constant, hG, we can detect the
expansion property of the graph, and use it as a measure of
homogeneity of the global linking in the system [71]. This
measure of entanglement does not provide information about
the distribution of kinks in space, but it detects whether there
are sets of chains highly linked with each other, and poorly
linked with the chains in the complement of that set. A
direct calculation of hG is computationally expensive; below
we instead report results for the second eigenvalue of the
Laplacian of the absolute linking matrix, λ2, which is related
to the dimensionless Cheeger constant via the inequalities
2hG � λ2 � h2

G/2 [72]. Moreover, we present the maximum
eigenvalue of the Laplacian, λmax, which has the property
λmax = 2 if and only if G has a connected component that
is bipartite and nontrivial.

III. SIMULATION METHOD

To study the pulling-force-induced flow behavior of model
polymer melts, we have performed nonequilibrium molecular
dynamics (NEMD) computer simulations at constant bead
number density, volume, and temperature (NV T ensemble) in
a cubic cell with periodic boundary conditions. More precisely,
we study a classical multibead FENE chain system [73] with a
dimensionless number density 0.84 at temperature T = 1, with
M = 100 linear chains, where each chain consists of N = 100
beads. All the beads interact with a purely repulsive part of
the Lennard-Jones potential, and all dimensionless values are
given in Lennard-Jones (LJ) units involving the depth of the
LJ potential ε, its characteristic length σ , and the bead mass
m. All dimensionless numbers can be readily converted to
dimensional numbers [74], since for any dimensional quantity
Qphys with SI units [Qphys] = kgα mβ sγ one has Qphys =
Q × Qref with Qref = mα+γ /2σβ+γ ε−γ /2, and we mention
dimensionless values Q throughout. For beads which are
bonded neighbors along the chain (for N > 1), an attractive
potential (FENE potential) is added. With the choice for the
finite extensibility of the FENE spring, R0 = 1.5 and k∗ = 30,
we follow previous investigations [73,75].

The simulation of elongational flow experiments in polymer
melts usually involves a change of the shape of the periodic
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FIG. 3. (Color online) (a), (b) Selected sequences of snapshots for individual chains contained in the melt, artificially shifted vertically
with time. The marked head groups experience a constant force in the x direction. Chains tend to either unravel completely (chain A, whose
absolute writhe decreases from 2.246 to 0.130), or to tighten existing knots (chain B, whose |W | increases from 0.237 to 0.820); the shrinkage
in the y direction of not yet unfolded chain ends is caused by the invisible surrounding chains. The stretched terminal part containing the
force-bearing end group is responsible for an initial increase of the number of entanglements, which are subsequently destroyed upon unraveling.
(c) Absolute displacement of the force-bearing bead in the x direction for the two chains shown in (a) and (b), as well as 〈|x(t) − x(0)|〉 obtained
as an average over all chains. The initial quick increase terminates when 〈|x(t) − x(0)|〉 exceeds 40, which corresponds to roughly half of
the length of a stretched entanglement strand. This regime is followed by a regime of constant speed of the polymer’s center of mass,
v = 〈|x(t) − x(0)|〉/t ≈ 0.0078 = F/ζN2 with ζ ≈ 0.64 reflecting Stokes friction.

box. The change of the shape of the simulation cell affects
the periodic structure of the system. As has been pointed out
in previous studies [21,70,71], the periodicity of the system
affects the entanglement of the chains. Here, we are interested
in the changes of the entanglement characteristics of the system
due to the alignment of the chains. Thus, to reduce the effect of
the change of the periodicity of the system on the entanglement
of the chains, we choose to make simulations where the shape
(and the size) of the simulation cell are fixed.

To create samples that largely differ in their number of
entanglements, while N and the simulation box size remain
constant, we apply a constant force of magnitude F = 50
pointing into the negative (positive) x direction to all those
terminal beads (a randomly selected one for each chain) that
are initially located in the left (right) half of the simulation
box. We use a time step 
t = 0.005 and configurations are
kept each 50 iterations. The bond lengths fluctuate between
0.6 and 1.45 during such runs, and since the Boltzmann
weight related to the LJ potential evaluated at R0/2 is about
exp(−100/T ) ≈ 10−44, it is practically impossible for chains
to slip through each other. Periodic boundary conditions are
applied during all the simulations to the simulation box of
fixed size; the monomer density thus remains constant.

With time the chains tend to be pulled straight (while
remaining within the periodic simulation box) as a result of
the enforced overall deterministic motion of their selected ends
(Figs. 3 and 4). Thus, the simulated system gives insight to the
situation where the sample is deformed at an increasing rate in
the x direction. A peculiarity of this simulation setup is that one
can reach a state of almost fully elongated chains, while going
through all intermediate states of partial elongation quickly
compared with the situation encountered in conventional
elongational flows, where the flow-induced alignment is
caused by thermostatting with respect to an affine deformation.
Still, the corresponding experiment could in principle be
performed with linear polymers subjected to electromagnetic
fields, which carry single molecule magnetic or charged

particles or optical tweezers at their end groups [77,78],
while experiments involving such nanoparticles are also of
biomedical interest [60–64].

FIG. 4. (Color online) Visualization of the final elongated melt
state. Only the parent images of the total 100 chains are shown.
Subset of chains with (a) |W | < 0.5 and (b) |W | � 0.5. As expected,
most of the chains with |W | > 0.5 contain local tight knots [76].
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IV. RESULTS AND DISCUSSION

We aim at characterizing the entanglement of a polymer
melt sample of linear chains under the influence of external
pulling forces, as already described. By analyzing the results
obtained by the Z1 algorithm, the ACN, the writhe, and the
linking number of the chains in time, we provide information
on the entanglement and the motion of the chains, the tube,
and the entanglement strands. Later below we use the linking
matrix to extract information concerning the global pairwise
homogeneity of the entanglement in the system.

A. The end-to-end distance

We first examine the end-to-end distance of the chains,
Ree, which serves as a simple indicator for the elongation of
the chains. There have been three main models proposed for
the end-to-end distance of the chains in classical elongational
flow. First, King and James [79] proposed that in transient flow,
polymer chains “freeze” in partially extended conformations,
because of the presence of self-entanglements or knots. This
implies a very slow and nonaffine response. Next, Ryskin [80]
suggested that in a supercritical flow the chain is stretched
near the center of the molecule and curled up at the ends.
In this model a nearly affine response should prevail until
the molecule is nearly fully extended. Finally, Rallison and
Hinch [31] and Larson [32] observed that soon after onset of a
strong elongational flow, the polymer molecule is driven into a
highly folded or kinked state which suggests that the response
might be affine until the chain is stretched to perhaps five times
its equilibrium length and thereafter the chain might stretch at
perhaps one-third the flow rate of the solvent, also supported
by experimental studies [6]. Our results indicate a behavior
similar to the latter.

Figure 5(a) shows Ree = 〈R2
ee〉1/2 as a function of time.

The plateau value is Ree ≈ 93, i.e., ∼ 93% of the value
corresponding to the fully aligned conformation whose bonds
remain at the equilibrium bond length ≈1. The behavior is in
qualitative agreement with other simulations and experiments
of chains subjected to flow where it is attributed to chain
rotation, tumbling, and flow alignment under shear or elon-
gation [13,33,34,73,81–85], while the force-induced pulling
does not give rise to tumbling or rotation except partially
in a very early stage of disentanglement. We observe that
Ree initially increases rapidly with time, in analogy to the
case of an applied shear or elongational flow. A simultaneous
chain alignment is visually obvious from the snapshots in
Figs. 3 and 4. Up to Ree ≈ 60 (t � 150) the end-to-end
distance shows an affine increase. This time is small compared
with the longest relaxation time τ ≈ 0.39N2 + 0.005N3 ≈
0.39[1 + (N/78)]N2 ≈ 8900 of our FENE polymer melt
chains, according to [10]. Next, a transition to a nonaffine
transformation occurs and the increase in the chain dimensions
gradually slows down leading eventually to the plateau. The
slowing down of the increase of the end-to-end distance may
be due to the increasing effect of intermolecular collisions [34],
and also due to the existence of knotted configurations [36].
Figure 5(b) shows the double logarithmic plot of Ree versus t .
We observe that Ree is approximately constant for t < 10, as
expected, since a polymer under tension begins to deform when

the force due to hydrodynamic friction across the molecule
exceeds the entropic elasticity that tends to coil it [6].

B. The number of entanglements per chain

In this paragraph we discuss the transient behavior of
the PP network during elongation as it is captured by the
Z1 algorithm. Figure 6(a) shows the mean number of kinks
Z as a function of time, where a decrease of Z signals a
disentanglement process. The initial value of Z at t = 0 for
the sample under consideration is approximately Z(0) ≈ 2.2,
which is in accordance with values obtained in previous
studies for the same systems in equilibrium [14]. For t < 8 the
number of entanglements remains almost constant around its
equilibrium value. For t < 150, Z increases monotonically up
to Z(150) ≈ 5.3. Next Z decreases and we observe a change
of slope at t ≈ 450. Notice that Z(450) ≈ Z(0) indicating
that the extra entanglements are lost. Later on, Z continues
to decrease and we observe a change of slope at t ≈ 600. We
find Z(600) ≈ 1, suggesting that at t > 600 the chains have
disentangled completely, whileZ = 0 corresponds to a system
of perfectly rodlike chains.

Thus, we have observed four phases which can be described
also as (1) creation of extra entanglements, (2) loss of extra
entanglements, (3) disentanglement of original entanglements,
and (4) loss of all entanglements. The duration over which Z
initially increases seems to coincide with that of the affine
increase of the end-to-end distance, while a perfectly affine
deformation of the configuration should not alter the amount
of entanglement. Figure 6(b) shows the double logarithmic
plot of Z versus t . There is one crossover at t ≈ 150 and
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FIG. 5. (Color online) (a) Square root of the mean squared end-
to-end distance, Ree = 〈R2

ee〉1/2, as a function of time. (b) The
corresponding double logarithmic plot.
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FIG. 6. (Color online) (a) Number of entanglements computed by the Z1 algorithm. The vertical dashed line is at t = 150. (b) Double
logarithmic plot of Z = 〈Z〉 with t . (c) Probability distribution of Z in the course of time. (d) Average contour length of the PP, LPP = 〈LPP〉.
(e) Double logarithmic plot of LPP vs t . (f) Probability distribution of LPP in the course of time.

eventually a second one at t ≈ 450. We note that at t < 3, the
degree of entanglement is almost constant, in agreement with
the results on Ree. At 3 < t < 25, Z increases and its increase
slows down at 25 < t < 150.

The increase of Z is a surprising result since one expects
that the network will disentangle as the chains stretch in
time [34]. This has been observed also before for knotted
configurations [36]. The excess in Z may be an effect of the
particular protocol, where the chain ends are pulled into the
initially stationary matrix of the other chains and, thus, as
the chains stretch out, there is more available length where
contacts with other chains can occur (Figs. 3 and 4). On the
other hand, this transient increase of entanglement correlates
with the overshoot of the viscosity in elongational flows [86],
and we expect the overshoot to be less dominant at smaller
force strengths. Rallison and Hinch [31] showed that a polymer
of modest to high molecular weight in a strong extensional flow
collapses within about three Hencky strain units to a kinked
state with a few to a few hundred kinks, due to the slow
unfolding of back-loops [32]. Such back-loops, characterized
by strong alignment, but incomplete extension, may contribute
to the overshoot.

Our NEMD results for the probability distribution of P (Z)
of the number of entanglements as a function of time is shown
in Fig. 6(c). At equilibrium, the distribution is Poissonian (very
similar to the Gaussian one for large values of the mean),
which is consistent with previous analysis of linear polymer
melts [4,33]. As the time increases, the P (Z) curves are seen
to move to larger Z values characteristic of more and more
entanglements per chain. As the elongation time is increased
even further, the P (Z) curves seem to move to smallerZ values
characteristic of less and less entanglements per chain. At t ≈
675, P (Z) attains a non-negligible value for Z < 1, revealing

the existence of chains completely devoid of entanglements.
This indicates that at high elongation rates a significant number
of chains are not entangled with other chains, which in turn
implies chains with a collapsed overall structure.

C. The PP contour length

Figures 6(d)–6(f) show LPP and its distribution in time as
it is computed by the application of the Z1 algorithm. Note
that it was observed that LPP mirrors the behavior of the
intramolecular LJ energy [34]. We observe that the quantity
increases rapidly with time in accordance with previous studies
of similar systems [33,34]. For our system, however, this
scaling is surprising when compared to the behavior of Z
which is not monotonic. This suggests that even though
both Z and LPP are calculated by the reduced network and
concern entanglement information per chain, they provide
complementary information.

We observe a similarity between the behavior of LPP, the
mean contour length of the PPs, and that of their end-to-end
distance Ree, while the two measures certainly do not capture
the same information (Fig. 7). For t < 600, LPP increases
monotonically, changing slope at t ≈ 150. For t < 150, LPP

increases at a rate larger than that ofRee. This happens because
for t < 150, both Z and Ree increase as well. For t > 150
there are two competing effects: the increase of the chain
dimensions which tends to increase LPP and the decrease in
the degree of topological interactions as the chains are aligned
more and more with the flow which tends to decrease LPP. We
observe that for t > 150, LPP increases, thus chain stretching
is more pronounced than the loss of entanglements. Note that
the plateau value for LPP is LPP ≈ 93 ≈ Ree, which indicates
that there are almost no entanglements at large t , as expected.
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FIG. 7. The mean primitive path contour length, LPP, versus the
square root of the mean squared end-to-end distance, Ree.

However, while the asymptotic value of Ree is approximately
nine times larger than the equilibrium one, the maximum value
of LPP is only at about 4.5 times larger than the corresponding
equilibrium value. Similar results were observed in [33] and
it is understood that the assumed increase in LPP associated
with the increase in Ree is largely compensated by the loss of
topological interactions due to chain alignment.

At equilibrium the probability distribution of LPP [Fig. 6(f)]
is practically Gaussian. The distribution shifts to the right
indicating relatively higher LPP values compared to those in
equilibrium. As time increases, the distribution becomes
increasingly asymmetric with respect to its most probable
value suggesting significant variations from the Gaussian
shape. A qualitatively similar trend had been reported for the
case of shear flow [33], where the asymmetry appears more
gradually.

D. The length of an entanglement strand

It had been repeatedly suggested that the tube diameter
and distance between entanglements should be affected by
deformation [11]. Accordingly, one expects that as the chains
disentangle the tube diameter increases. Within this picture
the average number of monomers in an entanglement strand,
i.e., the entanglement length, denoted Ne, increases as well.
During the deformation protocol used here initial random
walk conformations are transformed into extended, rodlike
conformations; a meaningful Ne estimator has to get both the
coil and rod limits correctly, and to be able to predict stress
relaxation, e.g., due to convective constraint release [87,88].
The Z1 code returns for each chain value for Z, LPP, and
Ree, by which various Ne estimators, denoted Ne(N ), can
be computed [65]. Their interpretation for the case of a
nonequilibrium situation had not yet been explored in the
literature, with one exception that concerns the degree of
entanglement in the presence of confinement [89].

There are estimators derived from moments of the distribu-
tions of LPP and Ree values based on a consideration of the PP
as a random coil. These are the classical S-coil estimator

Ne(N )S-coil = (N − 1)

〈
R2

ee

〉
〈LPP〉2

, (5)

and the modified S-coil estimator

Ne(N )modS-coil = (N − 1)

(〈
L2

PP

〉
〈
R2

ee

〉 − 1

)−1

. (6)

There are also estimators based on Z , such as the classical
S-kink estimator

Ne(N )S-kink = N (N − 1)

Z(N − 1) + N
, (7)

and the modified S-kink estimator

Ne(N )modS-kink = N

Z . (8)

In [14] a new Ne estimator was introduced for semiflexible
chains of equilibrium stiffness parameter κ (related to persis-
tence length), as

W2
e = 0.029 19

(Ne

κ

)1.18

, (9)

whereW2
e denotes the mean squared writhe of an entanglement

strand. In the nonequilibrium situation where the chains get
distorted due to the pulling force, they no longer behave like
semiflexible chains of a constant stiffness parameter κ = 2.34
in equilibrium [14]. The discrepancy is caused by the polymer
chains that are increasingly stretched and aligned during the
pulling experiment. The chains locally stiffen in the course
of time. A nonequilibrium analog to κ related to the average
scalar product between adjacent bond vectors ui and ui+1,
κ(t) ≈ 1

2 − 1/ ln〈ui · ui+1〉 could be used in Eq. (9) to capture
this effect. The analysis of κ on our data shows that it basically
linearly increases up to κ ≈ 20 at t = 900.

Note that the estimators based on Z are also called
topological estimators, while the estimators based on LPP

are sometimes called plateau estimators or coil estimators
(more counterintuitively also termed rheological estimators)
to highlight the fact that the two give different results and that
the plateau estimators had been shown to be in good agreement
with experimental values of the entanglement length contained
in the plateau modulus for equilibrium systems [90]. The
classical coil and kink estimators all identify straight PP
sections with entanglement strands. This remains, of course,
an unproven simplification and it has been shown that there are
numerical prefactors between the number of monomers in an
entanglement strand, and the corresponding plateau modulus,
i.e., the length scale where topological effects of entanglements
are felt [90]. The estimator based on writhe and Z has the
advantage that it does not depend directly on the exact locations
where the kinks occur, nor on the value of LPP. For systems in
equilibrium, this estimator gives values between the kink and
coil estimators, and is in good agreement with experimental
data on Ne, i.e., it is a good approximation of the rheological
entanglement length [90].

Results for all four classical Ne estimators, when applied to
a nonequilibrium situation, are shown in Fig. 8. Except at t =
0, these estimators do not provide a measure for an equilibrium
Ne. Apparently, the estimators based on kinks and on coils give
different results at each time with the latter being almost twice
as large as the former. This suggests that the “topological”
and “rheological” estimators are roughly proportional to each
other also in the present nonequilibrium situation, while it is
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defined in Eqs. (5)–(8). The latter two estimators exceed N = 100 at
large times. Values for all four estimators in equilibrium (t = 0) had
been obtained for a large set of initial configurations in [65].

obvious that the assumptions underlying the definition of Ne

from coils must fail in an anisotropic situation. Still, due to the
relevance of the coil picture in the literature and for a complete
comparison of the equilibrium results we have chosen to
present results for the coil estimators as well. The modified
S-coil and the modified S-kink estimators clearly exceed N

as t increases. This apparently unplausible feature is due to
the fact that the modified estimators only serve to provide an
upper bound for Ne, while the unmodified versions provide a
lower bound, as discussed in [65]. We observe that N S-coil

e

increases monotonically while N S-kink
e first decreases and

reaches a plateau after which it monotonically increases. Note
that N S-kink

e exceeds its equilibrium value at t ≈ 450. Note that
N S-coil

e and N S-kink
e reach the values 100 and 70, respectively,

which are typical for chains of length 100 [33,34]. According
to our previous analysis of entanglement, we expect that for
t < 150, where Z increases, the length of the entanglement
strands decreases, while for t > 150, Ne increases, as the
number of entanglements decreases. This suggests that the
tube gets thinner fast at first and after a characteristic time the
tube disintegrates. We observe that N S-kink

e is the only classical
estimator that clearly agrees with the scaling of Z .

Our data on the Ne-estimator based on writhe (Fig. 9)
suggest that this estimator, when κ is replaced by varying
stiffness κ(t), gives values intermediate between the N S-coil

e

and N S-kink
e estimators also in nonequilibrium. Moreover, for

t < 150, we observe that the entanglement length decreases,
as expected for a more entangled system, while it increases for
t > 150, showing a jump to values greater than 100 at about
t ≈ 700. It is worth noticing that this estimator does not show
a plateau as the N S-kink

e estimator. It attains a minimum at the

time Z reaches a maximum; furthermore the value of NW2
e

e at
t ≈ 300 coincides with its equilibrium value.

E. The ACN

The ACN is the simplest measure of entanglement
that has been most commonly used by mathematically in-
clined researchers to study entanglement in physical systems
[47,52–55]. The ACN is very sensitive on the motion of the
chains and on their length. The average 〈ACN〉 = 〈ACN〉 taken
over all chains in the melt decreases monotonically in time
[Fig. 10(a)], with a change of slope at about t ≈ 150. Overall,

0 500 1000
0

20

40

60

80

100

t

N
W

2 e
e

FIG. 9. (Color online) The entanglement length as obtained by
the estimator involving the writhe and Z , Eq. (9), using the
equilibrium value κ = 2.34 (black data points). The yellow line is a
smoothed version of the data (averaged over 
t = 50) and the green
line shows the values of the Ne estimator obtained using the measured
nonequilibrium analog to bending stiffness, κ(t) = 2.34 + 0.02 t in
Eq. (9). The estimator gives values intermediate between the N S-coil

e

andN S-kink
e estimators (Fig. 8), but shows also a jump to values greater

than 100 at about t ≈ 450.

we observe that the stretching of the chains dominates the
behavior of 〈ACN〉. Recall that the stretching of the chains also
dominates over Z the behavior of LPP. Figure 10(b) shows
the variation of 〈ACN〉 versus LPP during the flow. We find
that 〈ACN〉 decreases as LPP increases almost linearly. Notice
that a relation between the two measures is not expected at
first since 〈ACN〉 concerns the original FENE chains, while
LPP concerns their PPs. However, both 〈ACN〉 and LPP are
measures of entanglement that depend on the geometry of the
chains and are affected by the stretching of the chains and by
the loss of kinks.

F. The writhe

The writhe is a measure of global self-entanglement of
the chains, more informative than the ACN. However, it
also depends on the particular configuration and changes
with the motion of the chains. By combining the results
of the Z1 algorithm with the writhe of the original FENE
chains and the writhe of the corresponding PPs, we can
examine separately the global self-entanglement of the chains,
the global self-entanglement of their PPs, and the global
self-entanglement of the entanglement strands.

1. The writhe of the original chains

Figures 11(a) and 11(b) show the transient behavior of the
mean absolute writhe averaged over all chains in the melt. The
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FIG. 10. (a) 〈ACN〉 vs time. (b) 〈ACN〉 vs LPP.
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FIG. 11. (Color online) (a) Mean absolute writhe, 〈|W |〉 vs time. The vertical dashed line is at t = 150. (b) Corresponding double logarithmic
plot. (c) Probability distribution of W in the course of time. (d) Mean absolute writhe of the PPs, 〈|WPP|〉 vs time. The two vertical dashed
lines are at t = 50 and t = 300, respectively. (e) Corresponding double logarithmic plot. (f) Probability distribution of WPP. (g) Mean absolute
linking number, 〈|L|〉 (vertical dashed line at t = 150). (h) Corresponding double logarithmic plot. (i) Probability distribution of L. We find
〈|L|〉 ≈ 10−1.5t0.16 for t ∈ [15,150], 〈|L|〉 ≈ 10−0.8t−0.15 for t ∈ [150,350], and 〈|L|〉 ≈ 101.1t−0.86 for t ∈ [400,700].

mean absolute writhe of the original FENE chains decreases
monotonically with time. This is expected, since the chains
stretch and the writhe gives on average smaller absolute value
for more extended configurations [91]. We observe that the
slope changes at t ≈ 150, where the decrease weakens; the
corresponding logarithmic plot reveals a possible additional
crossover at t ≈ 450.

The writhe and the number of kinks in a chain are not related
in general, since a chain (in the original state) with Z = 0 (in its
reduced state) may have the same writhe with a chain with Z �=
0 (for an example, see [14]). The writhe can measure the global
entanglement complexity of a conformation, whileZ measures
the number of contacts with other chains. However, one may
expect that on average, the two measures follow a similar
trend. For systems in equilibrium, a relationship between the
number of kinks in a system of freely jointed chains of tangent
hard spheres and the probability of knotting has been proposed.
Specifically, it is conjectured that in equilibrium the population
of entanglements and knots follow the same scaling laws at

all volume fractions [41,42]. Moreover, in [14] it was shown
that both the writhe and Z increased with N and it was shown
that for the same systems at equilibrium the following relation
holds:

〈|W |〉 ≈ 1.245(Z − 0.679)0.5

+ 0.0504(Z − 0.679)−0.5 − 0.5013. (10)

Figures 12(a)and 12(b) show 〈|W |〉 with respect toZ for our
chains in time under the action of a pulling force. Obviously,
Eq. (10) does not hold when the chains are out of equilibrium.
A deviation from relationships satisfied in equilibrium for
chains subjected in flow had been observed recently [33]. For
t < 150, asZ increases, 〈|W |〉 decreases and we observe an in-
verse linear relation, i.e., the number of kinks increases, while
the global self-entanglement of a chain decreases. For t < 150
there are two competing effects to the writhe of the original
chains. On one hand the increase of Z suggests that the con-
formations of the chains become more complex, which would
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FIG. 12. (Color online) (a) Writhe versus Z and the (b) corresponding double logarithmic plot. We find 〈|W |〉 ≈ 102.34Z−3.59 for t ∈
[25,150] and 〈|W |〉 ≈ 10−0.64Z0.49 for t > 150. (c) Mean absolute writhe of the PP versus Z and (d) corresponding double logarithmic plot.
We find 〈|WPP|〉 ≈ 100.06Z−0.94 for t ∈ [25,50], 〈|WPP|〉 ≈ 10−0.85Z0.45 for t ∈ [50,150], 〈|WPP|〉 ≈ 10−0.89Z0.51 for t ∈ [150,350], 〈|WPP|〉 ≈
10−1.09Z0.79 for t ∈ [350,700], and 〈|WPP|〉 ≈ 10−1.2Z1.46 for t > 700. (e) Mean writhe of an entanglement strand, We. The line at t ≈ 700
indicates the transition of Z to values Z < 1. (f) Corresponding double logarithmic plot. We find We ≈ 100.005Z−0.46 for t ∈ [25,150] and
We ≈ 10−1.64Z0.22 for t > 150.

tend to increase 〈|W |〉. On the other, the chains stretch out. The
variation of the writhe indicates that the stretching of the chains
has a more pronounced effect on the complexity of individual
conformations. For t > 150 the two measures are similarly
decreasing following a linear relation. It is interesting to
remark that the crossovers are observed at integer values of Z .

These results, and especially those for the t < 150 regime,
clearly confirm that the two measures capture different
entanglement information. The writhe is a measure of the
global geometrical complexity of the chains, while the number
of kinks is a local measure of topological constraints.

We further investigated the behavior of the probability
distribution P (W ) [Fig. 11(c)]. In equilibrium, the distribution
is Gaussian, which is consistent with previous analysis of
linear polymer melts. But as the time increases, the P (W )
curves become asymmetric and more narrow around zero.
This is consistent with the fact that 〈|W |〉 decreases with t .
At t > 600, however, we observe that P (W ) exhibits small
peaks at large values of W . This indicates that while most
chains are not self-entangled at this time, there still exist some
with nonvanishing writhe, such as chain B in Fig. 3 and all
chains shown in Fig. 4(b).

2. The writhe of the PPs

The writhe of the PP is a quantity that characterizes the
global geometrical/topological complexity of the PP. The
writhe of the PP is expected to provide information about

the motion of the surrounding tube. It is therefore of particular
interest to compare it to that of the original chain. Moreover,
the writhe of the PP in addition to Z, could provide further
information on the nature of the kinks in a chain, i.e.. whether
they are simple contacts, or they alter the topology of the
conformation, possibly indicating the presence of persistent
entanglements [14,92,93].

Figures 11(d)–11(f) show the transient behavior of the mean
absolute writhe of all PPs in the PP network obtained by the
application of the Z1 algorithm. For a short duration after
the onset of the pulling force the mean absolute writhe of
the PPs increases monotonically, to reach a plateau at t ≈ 50.
For t < 300, 〈|WPP|〉 fluctuates around the constant value 0.3.
〈|WPP|〉 starts to decrease at t ≈ 300 and slows down after
t > 750. Importantly, the increase of 〈|WPP|〉 for t < 50 and
the decrease for t > 300 is in accordance with the behavior of
Z in the same time intervals. Figure 12(c) shows the variation
of the writhe of the PP with respect to Z . The data are very
well represented by a linear relation. This relation is similar
to the one that had been reported in equilibrium [14]. The
corresponding double logarithmic plot [Fig. 12(d)] resolves
several crossovers. In point of fact, for t < 25 the writhe
increases as expected for a coil of an increasing number of
edges. This indicates that the created entanglements are not
all simple contacts, but that the conformations of the PPs
get indeed more complex. At t ≈ 50 〈|WPP|〉 drops quickly
to a local minimum [visible in Figs. 11(e) and (6)b, less
visible in Fig. 12(c) because of the re=entrance at larger t],
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something that has no analog in the behavior ofZ . Furthermore
we observe that for 50 < t < 300 〈|WPP|〉 is almost constant
while Z increases. At t > 50, the mean absolute writhe of
the PP returns to its value at t ≈ 25 and remains almost
constant up to t ≈ 150, while Z continuously increases in
this time. Thus, 〈|WPP|〉 deviates from the writhe of a random
coil of Z + 1 edges in the interval 50 � t � 300. In other
words, the creation of new kinks in this interval does not
affect the global self-entanglement of the PPs. Our results
thus demonstrate that only a portion of the newly created
entanglements under tension contribute to a more complex
global conformation of the tube. It might be interesting to
examine if the overshoot in viscosity for polymer melts after
startup of flow relates to only the portion of newly created
entanglements, which are related to the global entanglement of
the tube. We observe that 〈|WPP(150)|〉 ≈ 2〈|WPP(0)|〉, while
Z(150) ≈ 2.5Z(0). Also, we find pronounced discontinuities
at Z ≈ 4,3,2. This indicates that the writhe of the PP shows
a crossover when a kink is lost, which suggests a fast
rearrangement of the configuration to a more linear one.
At t ≈ 450 the quantities 〈|WPP(450)|〉 and 〈|WPP(0)|〉 are
approximately equal, in analogy with the case of Z .

It is worth emphasizing that the behaviors of 〈|W |〉 and
〈|WPP|〉 differ substantially. For t < 150, 〈|W |〉 decreases
while 〈|WPP|〉 increases. This indicates that the chains contin-
uously stretch out while the tube gets more entangled. For t <

350, 〈|W |〉 decreases while 〈|WPP|〉 is almost constant. During
that period, the chains continue being stretched while the
tube remains in an unaltered conformation. For t > 450 both
〈|W |〉 and 〈|WPP|〉 follow the same scaling, both decreasing.
Interestingly, 〈|W (t)|〉 > 〈|WPP(t)|〉, for all t . This suggests
that even at large t , when the PPs have stretched out, chains
have eventually not stretched out in a comparable fashion due
to self-entanglement or knotting of the original chains (chain
B in Fig. 3 and also chains shown in Fig. 4).

Our NEMD results for the probability distribution of
P (WPP) of the number of entanglements as a function of
time are shown in Fig. 11(f). At equilibrium, the distribution
is Gaussian, which is consistent with previous analysis of
linear polymer melts. P (WPP) follows a less symmetric
distribution at larger t , and as time proceeds further, the
P (WPP) curves become more narrow, reflecting the pathway
towards unentangled PPs.

3. The writhe of the entanglement strands

Next we characterize the writhe of the entanglement
strands. This measure provides further information on the
disentanglement process of the chains, at a length scale that
has not been discussed so far.

In [14] a method to estimate the mean writhe of an
entanglement strand had been introduced:

We =
〈∑Z+1

i=1 W (ei)

Z + 1

〉
=

〈
W (I ) − WPP(I )

Z + 1

〉
, (11)

where I denotes a chain in the melt, W (I ) denotes its writhe,
WPP(I ) the writhe of the corresponding reduced chain, and
ei,i = 1, . . . ,Z + 1 denote the entanglement strands in I . The

mean squared writhe of an entanglement strand is given by [14]

W2
e ≈

〈
[W (I ) − WPP(I )]2

Z + 1

〉
. (12)

We stress that these are semianalytical formulas and for
their computation only the writhe of the original and reduced
chains is used, andZ . The definition (12) relates only indirectly
parts of the chains between entanglements to entanglement
strands. Both Eqs. (11) and (12) hold for chains both in
equilibrium and nonequilibrium. Still, under nonequilibrium
conditions, there may be a significant deviation of the writhe of
an entanglement strand from this average, since the assumption
underlying Eq. (12) that all the entanglement strands are
similar may no longer hold. Recall that bothWe andW2

e vanish
by definition for rodlike polymers, where W = WPP = Z = 0.
On the other hand, when the polymer chains inside a rodlike
tube are not fully elongated, i.e., when WPP = Z = 0, but
W �= 0, then We,W2

e are nonzero and they equal W and W 2,
respectively.

The results of our data are shown in Figs. 12(e) and 12(f).
We observe that We and W2

e both decrease monotonically
for t � 150. Next, they show a small increase for t < 700.
At t ≈ 700, however, we observe a jump to a larger value and
then for t > 700, they decrease continuously. Obviously, as the
chains stretch the entanglement strands must stretch as well,
and thus their writhe decreases. Moreover, for t < 150 the
PPs get more entangled and as the number of entanglements
increases, the length of the entanglement strands decreases
and thus their writhe decreases to that of a coil of smaller
length. At times t > 150, the chains disentangle, since both
Z and W , WPP decrease and Ree increases slowly, which
is strongly supported by our data. But we observe that the
writhe of the entanglement strands remains almost constant
at WPP(150). Again there may be two competing effects: As
Z decreases the length of the entanglement strands increases
causing an increase to the writhe of an entanglement strand,
as a longer coil. On the other hand, as the chains continue
to stretch, the writhe of the entanglement strand decreases.
Moreover, we find that We shows several peaks at t ≈ 450
and t ≈ 700 which coincide with the decrease of Z below its
integer values. These suggest that in the destruction of a kink,
the new entanglement strand that is created has only a small
amount of writhe, which gets reduced as the entanglement
strand stretches out fast. Interestingly, for t > 500, WPP(t) <

We(t). This inequality indicates that when the PPs are almost
stretched, the entanglement strands have still not stretched
out. Consequently, the chains contain knots at the level of
entanglement strands.

The writhe of the entanglement strands reaches a plateau
value at t ≈ 200 and thus shows very different behavior
compared with the writhe of the PPs. This suggests that newly
created entanglements contain entanglement strands different
from those created in equilibrium. They are less twisted, more
extended, and they straighten further when the PP straightens.

The observed discontinuity at t ≈ 700 is absent inZ , 〈|W |〉,
and 〈|WPP|〉. This may signal the complete destruction of the
tube. Notice that at t ≈ 700, Z = 1, and the chains are getting
close to rodlike polymers (Z = 0). In this limit the writhe
of an entanglement strand by definition [Eq. (11)] equals
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W (I ) − WPP. Inspecting our values for 〈|W |〉, 〈|WPP(I )|〉, and
We, this is perfectly confirmed.

G. The linking number

So far we discussed the entanglement properties of indi-
vidual chains. Next, we examine the linking number, being a
measure of pairwise entanglement. To this end we are going to
focus on the mean absolute linking number of a pair of chains
in a melt and that of the corresponding end-to-end closed
chains. We recall that for open chains the linking number
is a continuous function in the space of configurations and
it may be nonzero even for chains whose topological cells
are disjoint, giving smaller values with increasing distance of
the chains centers of mass. For closed chains it is an integer
topological invariant that can resolve different link types up to
link homotopy, and it is exactly equal to zero for chains that
are unlinked.

Figure 13(a) shows the mean absolute linking number,
〈|L|〉, of the chains in time. We observe that for t < 150,
〈|L|〉 increases and reaches a plateau value and remains
almost constant for all t > 150. There are two factors that can
contribute to the increase of |L|: the decrease in the distance
of each pair of chains and the increase of the entanglement
complexity. Our previous analysis suggests that for t < 150 the
chains stretch out and create more contacts with other chains.
Correspondingly, for t < 150, we observe a fast increase of the
mean absolute linking number, while there are two competing
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FIG. 13. (Color online) (a) Mean absolute linking number of the
original chains with all surrounding chains (black squares), with
images of other chains (white triangles) and with self-images (white
diamonds). The vertical dashed line corresponds to t = 150. (b) Same
as (a) for the corresponding end-to-end closed chains, and vertical
dashed lines at t = 50 and t = 300.

effects for t > 150: The chains disentangle, thus their linking
number should decrease, but as they stretch out, they also get
closer—accompanied by an increase of the linking number.
Above we demonstrated already that the chains exhibit only
a small writhe. The indicated collapsed structures of chains
suggest that contacts with other chains can be only with chains
whose center of mass is close by. Due to the periodicity of the
system, the chains in the vicinity will mostly be translations of
the same image. Thus in the following we will determine the
chains in the vicinity of a chain, say I , by exactly the periodic
images of I that intersect the cells in which I unfolds. The
same Fig. 13(a) shows separately the mean absolute linking
number of a chain with images of the other chains, denoted as
|L(I,J )|, and the mean absolute linking number of a chain with
its own images, denoted by |L(I,I )|. Both quantities increase
in a similar fashion only up to t ≈ 50.

The mean absolute linking number over images of other
chains, 〈|L(I,J )|〉, reaches its maximum at t ≈ 150 and
subsequently decreases almost monotonically, reminiscent of
the behavior we observed for Z and the mean absolute writhe
of the PPs. This type of behavior, characteristic for the present
setup, suggests that the information captured by Z may be
related to the linking number of the original chains with
images of other chains. We observe that 〈|L(I,J )(150)|〉 ≈
3〈|L(I,J )(0)|〉, to be compared with Z(150) ≈ 2.5Z(0) and
〈|WPP(150)|〉 ≈ 2〈|WPP(0)|〉. It is worth remarking that the
probability distribution of L(I,J ) [Fig. 11(i)] is Gaussian for
all t and does not show a significant distortion from that shape
for t > 600, as was observed for the writhe of the PPs.

On the other hand, |L(I,I )|, the mean absolute linking
number with self-images, increases for all t . This suggests
that, even when the entanglements are lost, the decrease of
the distance between a chain and the chains in its vicinity
has a more pronounced effect to their linking. Notice that if all
chain contours were parallel, L(I,I ) would vanish, but our data
indicate that the chains do not attain parallel conformations,
in accordance to our finding 〈|W (t = 900)|〉 �= 0.

Figure 13(b) shows the mean absolute linking number of
the closed chains that result by direct end-to-end closure of all
the chains in the melt (black squares). The linking number of
closed chains is a topological invariant; it remains unchanged
if the chains are not allowed to cross each other. However,
here we examine the end-to-end closed chains at each time
step and not physical ring polymers, so we expect their linking
number to change in time, but the corresponding value now
is indicative of different link types, and it is exactly zero for
unlinked chains. Again, we observe an increase of the mean
absolute linking over all surrounding chains and a different
behavior for the linking with images of others than that of the
linking with self-images. First of all, the average absolute value
of the linking number increases for t < 50 and remains almost
constant for t > 50. This suggests that the increase observed
in the mean absolute linking number of the original chains is
not an effect of the tightening of the pairwise configurations,
but shows that the new entanglements change the topology.
For t > 50, the linking with chains in its vicinity (linking with
self-images) increases to a greater value and reaches a plateau.
This is caused by the fact that the chains in the vicinity are
not completely aligned, thus showing this nontrivial linking.
While both quantities increase up to t ≈ 50, for 50 < t < 300,
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we observe that 〈|L|〉 is constant. This indicates that only
a portion of Z alters the topology of the melt in a large
scale and that the rest of the topological constraints are only
simple contacts with chains in the vicinity. Note that a similar
conclusion derives from the analysis of WPP. For t > 300
the mean absolute linking number of the end-to-end closed
chains with images of other chains tends to zero.

H. The linking matrix—Effect on homogeneity

Here we employ the linking matrix to test the homogeneity
of the global pairwise entanglement in the system. Spatial
inhomogeneities had been discussed earlier in the context of
elongational flow for the FENE polymer melts [8].

Figure 14(a) shows the average second smallest eigenvalue
λ2 of the Laplacian of the periodic linking matrix, which is
related to the vertex expansion of the periodic linking graph;
it takes larger values for “well-connected” graphs. Recall that
λ2 is related to the Cheeger constant hG by the inequality
2hG � λ2 � h2

G/2. Our results suggest that 0.3 � hG � 1 for
all t . This measure reveals that the upper and lower bounds
of the homogeneity of the global pairwise entanglement for
the original open chains is almost constant, showing a small
tendency for an initial decrease of global entanglement inho-
mogeneity, to be compared with an observed small increase
of local spatial inhomogeneity reported in [8]. Similarly, the
averaged maximum eigenvalue λmax of the Laplacian of the
linking matrix does not exhibit dramatic changes [Fig. 14(b)].
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FIG. 14. (Color online) (a) The mean second smallest eigenvalue
λ2 of the Laplacian of the [inking matrix of open (squares) and end-
to-end closed (diamonds) chains. (b) The maximum eigenvalue λmax

of the Laplacian of the periodic linking matrix for open (squares) and
end-to-end closed (diamonds) chains. Vertical dashed lines are drawn
at t = 50, t = 300, and t = 450.

The underlying reason for the overshoot is that the chains get
entangled with more chains as they stretch out. For t > 150,
we observe that the homogeneity remains constant, while the
chains disentangle. This counterintuitive result is probably due
to the increased linking of chains with chains in their vicinity.

A different behavior we observe for 〈λ2〉 and 〈λmax〉 of
the Laplacian of the linking matrix of the corresponding
end-to-end closed chains [Figs. 14(a) and 14(b)]. Our results
indicate that the global linking inhomogeneity increases for
t > 150. Moreover, at t ≈ 300 we find that λ2 attains the value
0 for the first time, representing a disconnected system, and
showing that there exist collections (clusters) of chains that are
entangled with chains from the same collection, but not with
chains from other collections. For all t > 450, λ2(t) identically
vanishes. On the other hand λmax increases for t > 300 and for
t > 450 the 〈λmax〉 approaches 2 with time, which is the value
that corresponds to a completely disconnected system [72].
Actually, this is expected, since the linking number of closed
chains exactly vanishes for unlinked chains. As the chains
disentangle, the end-to-end closed chains in the vicinity of a
chain are linked with it, while the rest is not, implying that
chains are preferentially arranged in disconnected layers.

V. CONCLUSIONS

Overall we conclude that the degree of chain entanglement
is affected by the imposed external force in a rather com-
plicated way due to effects associated with chain extension,
which tends to initially create more entanglements, and chain
alignment, that acts in the opposite direction. Results are thus
affected by differences in local and global alignment [8].
On the basis of the results shown here, the extension effect
dominates alignment up to t < 150, i.e., after having traveled
over a distance of about 40 bond lengths, beyond which the
situation is reversed.

We find that both Z and 〈|L|〉open increase up to their
maximum values at t ≈ 150 clearly signaling that the PPs get
more entangled with each other during a relevant fraction of
the pulling experiment. Our results for 〈|WPP|〉 and 〈|L|〉closed

reveal that during the early phase, t < 50, chains do not
only create more contacts with each other, but also alter
the topology of the melt. However, during an intermediate
stage, 50 < t < 150, the newly created entanglements do
not increase the entanglement complexity of the melt. At
large times, t > 150, the amount of entanglement decreases
continuously and ultimately tends to result in conformations
of trivial linking.

Results we obtained for Ree, LPP, 〈ACN〉, 〈|W |〉, and We

indicate that all these quantities vary monotonically in the
course of time, changing slope at t ≈ 150. At times t < 150 the
chain extension dominates the creation of more entanglements.
We observe an affine transformation of chain dimensions
and our results on 〈|W |〉, 〈|WPP|〉, and We highlight that
the stretching of the chains at t < 150 occurs at the level of
entanglement strands. At t > 150, where the disentanglement
of the PPs sets in, the entanglement strands continue to stretch
more slowly, without reaching a fully disentangled state, which
may suggest the presence of local knots [94].

Our measurements of Ne imply that the tube disintegrates in
time during the pulling experiment. The Ne estimators based on
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kinks and coils give different results at each time with the latter
being almost twice as large as the former. We have introduced
a method to compute the Ne estimator based on writhe and
we find that it gives values intermediate between the N S-coil

e

and N S-kink
e estimators also in nonequilibrium. Moreover, our

results show that the new entanglements increase the system’s
global entanglement homogeneity, as the chains have only a
very small linking with all the chains in the melt.

Having chosen a setup that allows one to vary the
amount of entanglement very quickly, compared with a more
conventional and time-demanding nonequilibrium study, and
in contrast with an equilibrium study that needs to extract
information from fluctuations only, this work sheds light on
the relationship between quantities that characterize different
conformational and topological aspects of a melt of linear

polymer chains all the way from maximally entangled to un-
entangled or a tight knot. Results presented here may provide
insight to future experiments involving optical tweezers or
magnetic molecules that allow one to transmit a force to
individual monomers embedded in an entangled polymeric
system.

Note added. Recently it came to our attention that a slightly
different setup than ours (application of opposing constant
forces to end beads in a polymer melt) had been studied by
Qin and Milner [95].
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[10] M. Kröger and S. Hess, Phys. Rev. Lett. 85, 1128 (2000).
[11] G. Marrucci and G. Iannniruberto, Macromolecules 37, 3934

(2004).
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Bausch, Phys. Rev. Lett. 110, 108302 (2013).
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(2000).
[87] G. Marrucci, J. Polym. Sci. B 23, 159 (1985).
[88] G. Marrucci, J. Non-Newtonian Fluid. Mech. 62, 279 (1996).
[89] D. M. Sussman, W.-S. Tung, K. I. Winey, K. S. Schweizer, and

R. A. Riggleman, Macromolecules Macromolecules 47, 6462
(2014).

[90] R. Everaers, Phys. Rev. E 86, 022801 (2012).
[91] E. J. Rawdon, J. C. Kern, M. Piatek, P. Plunkett, A. Stasiak, and

K. C. Millett, Macromolecules 41, 8281 (2008).
[92] S. Anogiannakis, C. Tzoumanekas, and D. N. Theodorou,

Macromolecules 45, 9475 (2012).
[93] D. G. Tsalikis, T. Koukoulas, and V. G. Mavrantzas, React.

Funct. Polym. 80, 61 (2014).
[94] J. Cantarella, A. LaPointe, and E. J. Rawdon, J. Phys. A: Math.

Theor. 45, 225202 (2012).
[95] J. Qin and S. T. Milner, Macromolecules 46, 1659 (2013).

042602-15

http://dx.doi.org/10.1007/s00454-004-2864-x
http://dx.doi.org/10.1007/s00454-004-2864-x
http://dx.doi.org/10.1007/s00454-004-2864-x
http://dx.doi.org/10.1007/s00454-004-2864-x
http://dx.doi.org/10.1088/0305-4470/38/35/001
http://dx.doi.org/10.1088/0305-4470/38/35/001
http://dx.doi.org/10.1088/0305-4470/38/35/001
http://dx.doi.org/10.1088/0305-4470/38/35/001
http://dx.doi.org/10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y
http://dx.doi.org/10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y
http://dx.doi.org/10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y
http://dx.doi.org/10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y
http://dx.doi.org/10.1088/0305-4470/39/26/005
http://dx.doi.org/10.1088/0305-4470/39/26/005
http://dx.doi.org/10.1088/0305-4470/39/26/005
http://dx.doi.org/10.1088/0305-4470/39/26/005
http://dx.doi.org/10.1088/0305-4470/39/14/003
http://dx.doi.org/10.1088/0305-4470/39/14/003
http://dx.doi.org/10.1088/0305-4470/39/14/003
http://dx.doi.org/10.1088/0305-4470/39/14/003
http://dx.doi.org/10.1142/S0218216508006786
http://dx.doi.org/10.1142/S0218216508006786
http://dx.doi.org/10.1142/S0218216508006786
http://dx.doi.org/10.1142/S0218216508006786
http://dx.doi.org/10.1103/PhysRevE.56.4516
http://dx.doi.org/10.1103/PhysRevE.56.4516
http://dx.doi.org/10.1103/PhysRevE.56.4516
http://dx.doi.org/10.1103/PhysRevE.56.4516
http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<848::AID-QUA34>3.0.CO;2-D
http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<848::AID-QUA34>3.0.CO;2-D
http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<848::AID-QUA34>3.0.CO;2-D
http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<848::AID-QUA34>3.0.CO;2-D
http://dx.doi.org/10.1088/0305-4470/36/46/002
http://dx.doi.org/10.1088/0305-4470/36/46/002
http://dx.doi.org/10.1088/0305-4470/36/46/002
http://dx.doi.org/10.1088/0305-4470/36/46/002
http://dx.doi.org/10.1007/s00397-008-0317-9
http://dx.doi.org/10.1007/s00397-008-0317-9
http://dx.doi.org/10.1007/s00397-008-0317-9
http://dx.doi.org/10.1007/s00397-008-0317-9
http://dx.doi.org/10.1088/0953-8984/24/46/464103
http://dx.doi.org/10.1088/0953-8984/24/46/464103
http://dx.doi.org/10.1088/0953-8984/24/46/464103
http://dx.doi.org/10.1088/0953-8984/24/46/464103
http://dx.doi.org/10.1021/ma102741r
http://dx.doi.org/10.1021/ma102741r
http://dx.doi.org/10.1021/ma102741r
http://dx.doi.org/10.1021/ma102741r
http://dx.doi.org/10.1021/ma202289a
http://dx.doi.org/10.1021/ma202289a
http://dx.doi.org/10.1021/ma202289a
http://dx.doi.org/10.1021/ma202289a
http://dx.doi.org/10.1016/j.biomaterials.2004.10.012
http://dx.doi.org/10.1016/j.biomaterials.2004.10.012
http://dx.doi.org/10.1016/j.biomaterials.2004.10.012
http://dx.doi.org/10.1016/j.biomaterials.2004.10.012
http://dx.doi.org/10.1038/nature03808
http://dx.doi.org/10.1038/nature03808
http://dx.doi.org/10.1038/nature03808
http://dx.doi.org/10.1038/nature03808
http://dx.doi.org/10.1021/ja801969b
http://dx.doi.org/10.1021/ja801969b
http://dx.doi.org/10.1021/ja801969b
http://dx.doi.org/10.1021/ja801969b
http://dx.doi.org/10.1088/0957-4484/17/23/023
http://dx.doi.org/10.1088/0957-4484/17/23/023
http://dx.doi.org/10.1088/0957-4484/17/23/023
http://dx.doi.org/10.1088/0957-4484/17/23/023
http://dx.doi.org/10.1063/1.3449089
http://dx.doi.org/10.1063/1.3449089
http://dx.doi.org/10.1063/1.3449089
http://dx.doi.org/10.1063/1.3449089
http://dx.doi.org/10.1103/PhysRevE.80.031803
http://dx.doi.org/10.1103/PhysRevE.80.031803
http://dx.doi.org/10.1103/PhysRevE.80.031803
http://dx.doi.org/10.1103/PhysRevE.80.031803
http://dx.doi.org/10.1021/jp808287s
http://dx.doi.org/10.1021/jp808287s
http://dx.doi.org/10.1021/jp808287s
http://dx.doi.org/10.1021/jp808287s
http://dx.doi.org/10.1063/1.1553764
http://dx.doi.org/10.1063/1.1553764
http://dx.doi.org/10.1063/1.1553764
http://dx.doi.org/10.1063/1.1553764
http://dx.doi.org/10.1021/ma9011329
http://dx.doi.org/10.1021/ma9011329
http://dx.doi.org/10.1021/ma9011329
http://dx.doi.org/10.1021/ma9011329
http://dx.doi.org/10.1143/PTPS.191.172
http://dx.doi.org/10.1143/PTPS.191.172
http://dx.doi.org/10.1143/PTPS.191.172
http://dx.doi.org/10.1143/PTPS.191.172
http://dx.doi.org/10.1016/j.piutam.2013.03.029
http://dx.doi.org/10.1016/j.piutam.2013.03.029
http://dx.doi.org/10.1016/j.piutam.2013.03.029
http://dx.doi.org/10.1016/j.piutam.2013.03.029
http://dx.doi.org/10.1122/1.550409
http://dx.doi.org/10.1122/1.550409
http://dx.doi.org/10.1122/1.550409
http://dx.doi.org/10.1122/1.550409
http://polyphys-s01.ethz.ch/cgi-bin/units
http://dx.doi.org/10.1016/j.physrep.2003.10.014
http://dx.doi.org/10.1016/j.physrep.2003.10.014
http://dx.doi.org/10.1016/j.physrep.2003.10.014
http://dx.doi.org/10.1016/j.physrep.2003.10.014
http://dx.doi.org/10.1088/1751-8113/44/27/275004
http://dx.doi.org/10.1088/1751-8113/44/27/275004
http://dx.doi.org/10.1088/1751-8113/44/27/275004
http://dx.doi.org/10.1088/1751-8113/44/27/275004
http://dx.doi.org/10.1364/OL.19.001807
http://dx.doi.org/10.1364/OL.19.001807
http://dx.doi.org/10.1364/OL.19.001807
http://dx.doi.org/10.1364/OL.19.001807
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1038/nature01935
http://dx.doi.org/10.1063/1.445274
http://dx.doi.org/10.1063/1.445274
http://dx.doi.org/10.1063/1.445274
http://dx.doi.org/10.1063/1.445274
http://dx.doi.org/10.1017/S0022112087001290
http://dx.doi.org/10.1017/S0022112087001290
http://dx.doi.org/10.1017/S0022112087001290
http://dx.doi.org/10.1017/S0022112087001290
http://dx.doi.org/10.1063/1.3271831
http://dx.doi.org/10.1063/1.3271831
http://dx.doi.org/10.1063/1.3271831
http://dx.doi.org/10.1063/1.3271831
http://dx.doi.org/10.1103/PhysRevB.79.144302
http://dx.doi.org/10.1103/PhysRevB.79.144302
http://dx.doi.org/10.1103/PhysRevB.79.144302
http://dx.doi.org/10.1103/PhysRevB.79.144302
http://dx.doi.org/10.1016/j.physleta.2008.12.062
http://dx.doi.org/10.1016/j.physleta.2008.12.062
http://dx.doi.org/10.1016/j.physleta.2008.12.062
http://dx.doi.org/10.1016/j.physleta.2008.12.062
http://dx.doi.org/10.1021/ma020710k
http://dx.doi.org/10.1021/ma020710k
http://dx.doi.org/10.1021/ma020710k
http://dx.doi.org/10.1021/ma020710k
http://dx.doi.org/10.1016/S0377-0257(03)00011-9
http://dx.doi.org/10.1016/S0377-0257(03)00011-9
http://dx.doi.org/10.1016/S0377-0257(03)00011-9
http://dx.doi.org/10.1016/S0377-0257(03)00011-9
http://dx.doi.org/10.1122/1.1308522
http://dx.doi.org/10.1122/1.1308522
http://dx.doi.org/10.1122/1.1308522
http://dx.doi.org/10.1122/1.1308522
http://dx.doi.org/10.1016/0377-0257(95)01407-1
http://dx.doi.org/10.1016/0377-0257(95)01407-1
http://dx.doi.org/10.1016/0377-0257(95)01407-1
http://dx.doi.org/10.1016/0377-0257(95)01407-1
http://dx.doi.org/10.1021/ma501193f
http://dx.doi.org/10.1021/ma501193f
http://dx.doi.org/10.1021/ma501193f
http://dx.doi.org/10.1021/ma501193f
http://dx.doi.org/10.1021/ma501193f
http://dx.doi.org/10.1103/PhysRevE.86.022801
http://dx.doi.org/10.1103/PhysRevE.86.022801
http://dx.doi.org/10.1103/PhysRevE.86.022801
http://dx.doi.org/10.1103/PhysRevE.86.022801
http://dx.doi.org/10.1021/ma801389c
http://dx.doi.org/10.1021/ma801389c
http://dx.doi.org/10.1021/ma801389c
http://dx.doi.org/10.1021/ma801389c
http://dx.doi.org/10.1021/ma300912z
http://dx.doi.org/10.1021/ma300912z
http://dx.doi.org/10.1021/ma300912z
http://dx.doi.org/10.1021/ma300912z
http://dx.doi.org/10.1016/j.reactfunctpolym.2014.01.011
http://dx.doi.org/10.1016/j.reactfunctpolym.2014.01.011
http://dx.doi.org/10.1016/j.reactfunctpolym.2014.01.011
http://dx.doi.org/10.1016/j.reactfunctpolym.2014.01.011
http://dx.doi.org/10.1088/1751-8113/45/22/225202
http://dx.doi.org/10.1088/1751-8113/45/22/225202
http://dx.doi.org/10.1088/1751-8113/45/22/225202
http://dx.doi.org/10.1088/1751-8113/45/22/225202
http://dx.doi.org/10.1021/ma302095k
http://dx.doi.org/10.1021/ma302095k
http://dx.doi.org/10.1021/ma302095k
http://dx.doi.org/10.1021/ma302095k



