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Theory of skyrmion states in liquid crystals
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Within the Oseen-Frank theory we derive numerically exact solutions for axisymmetric localized states in chiral
liquid crystal layers with homeotropic anchoring. These solutions describe recently observed two-dimensional
skyrmions in confinement-frustrated chiral nematics [P. J. Ackerman et al., Phys. Rev. E 90, 012505 (2014)]. We
stress that these solitonic states arise due to a fundamental stabilization mechanism responsible for the formation
of skyrmions in cubic helimagnets and other noncentrosymmetric condensed-matter systems.
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I. INTRODUCTION

The concept of nonsingular multidimensional topological
solitons (commonly referred to as skyrmions) plays an impor-
tant role in many branches of modern physics [1]. Particularly,
specific skyrmionic states can arise in condensed-matter
systems with intrinsic and induced chirality [2,3]. During the
past two decades regular solutions for such chiral skyrmions
have been derived for different classes of noncentrosymmetric
magnets [4–7] and liquid crystals [3,8,9]. In experiment, first
indirect evidences for the existence of multidimensional chiral
modulations have been reported in the precursor region of a
helimagnet MnSi (see, e.g., contributions of Ref. [10] and a
discussion and the bibliography in Ref. [11]). The following
direct observations of chiral skyrmions in nanolayers of a
cubic helimagnet (Fe0.5Co0.5)Si [12] have triggered intensive
investigations of these solitonic states in different classes of
noncentrosymmetric magnets (see, e.g., Refs. [13–16] and
the bibliography in Ref. [17]). Chiral magnetic skyrmions
are now considered as promising objects for applications in
magnetic data storage technologies and in the emerging spin
electronics [15,18,19].

Recently, two-dimensional axisymmetric localized strings
analogous to isolated magnetic skyrmions have been opti-
cally generated in thin layers of a chiral nematic confined
between substrates with perpendicular (homeotropic) surface
anchoring [20]. During the past four decades a rich variety
of 2D and 3D localized structures with different types of
singularities have been observed in confined chiral liquid
crystals as cholesteric bubbles (spherulitic domains) [21,22],
cholesteric fingers [22,23], torons [24,25], and other specific
solitonic textures [26].

Importantly that in most of nonlinear field models static
multidimensional solitons are unstable and collapse sponta-
neously under the influence of internal and external perturba-
tions (this mathematical truth is known in physicis of solitons
as Derrick-Hobart theorem [27]). However, in condensed-
matter systems lacking inversion symmetry (such as magnets,
multiferroics, ferroelectrics, and chiral liquid crystals) there
exist specific interactions imposed by the handedness of
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the underlying structure which stabilize 2D and 3D isolated
states [2,4,8]. It was shown by direct calculations that this
fundamental stabilization mechanism is responsible for the
formation of skyrmions (nonsingular solitons) in bulk and
confined chiral liquid crystals [8,9].

In this paper, we apply the nonsingular model [8,28] to
investigate basic properties of two-dimensional axisymmetric
skyrmions in thin layers of chiral liquid crystals (Fig. 1). By
numerically solving the differential equations minimizing the
Frank functional we derive the equilibrium structures of con-
fined chiral modulations (isolated and embedded skyrmions,
helicoids) as functions of the material parameters and applied
electric (and/or magnetic) fields.

II. ISOLATED SKYRMIONS

Within the continuum theory the equilibrium distributions
of the director n(r) in confined liquid crystals are derived by
solving the Euler equations for the Frank free-energy density
functional [29]

f (n) =K1

2
(div n)2 + K2

2
(n · rot n − q0)2

+ K3

2
(n · rot n)2 − εa

2
(n · E)2 − χa

2
(n · H)2. (1)

Here, Ki (i = 1,2,3) and q0 are elastic constants, E and
H are the vectors of applied electric and magnetic fields,
and εa and χa are values of dielectric and diamagnetic
anisotropies. Because dielectric and diamagnetic anisotropy
energy contributions have the same functional form [Eq. (1)],
they lead to the same solutions. For the sake of simplicity we
consider only effects imposed by applied electric fields. We
also restrict our analysis by the one constant approximation
(K1 = K2 = K3 = K).

The equilibrium states of an infinite chiral liquid crystal are
characterized by two material parameters:

p = 2π

q0
, E0 = πKq0

2

√
K

εa

, (2)

where helix pitch p is the width of one complete turn (�θ =
2π ) of the director n along the helical axis and E0 is a value
of the applied field unwinding the helix into a set of isolated
kinks [29].
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FIG. 1. (Color online) Axisymmetric skyrmion in a chiral liquid
crystal layer of thickness L confined by surfaces z = ±L/2 with
homeotropic anchoring. The director n is designated by arrows to
demonstrate a fixed rotation sense. (a) Due to homeotropic anchoring
the cores of the surface layers (s) are smaller than in the central
(c) layer. (b) Cut in the ρz half-plane shows rotation of n along
the ρ axes for different values of z. Isoclines θ = πi/6 (i = 0...6)
calculated for solutions θ (ρ,z) in Fig. 2 are indicated with solid (blue)
lines. Characteristic widths of the skyrmion core R(z) are defined by
Eq. (9).

We consider a plate infinite in x and y directions and
confined by parallel planar surfaces at z = ±L/2 as a model
for a thin layer of a chiral nematic liquid crystal of thickness L

sandwiched between two glass plates. To investigate axisym-
metric localized solutions we introduce cylindrical coordinates
for the spatial variable r and spherical coordinates for the
director n: r = (ρ cos ϕ,ρ sin ϕ,z),

n = (sin θ cos ψ, sin θ sin ψ, cos θ ). (3)

The total energy for isolated solutions of type θ = θ (ρ,z),
ψ = ψ(ϕ) can be written as

F = K

2

∫ 2π

0
dϕ

∫ L/2

−L/2
dz

∫ ∞

0
ρdρ [w(θ,ψ) + ws(θ )] , (4)

where

w =
(

∂θ

∂z

)2

+
(

∂θ

∂ρ

)2

+ sin2 θ

ρ2

(
∂ψ

∂ϕ

)2

+ εaE
2

K
sin2 θ

+ 2q0

[(
∂θ

∂ρ

)
+ sin θ cos θ

ρ

(
∂ψ

∂ϕ

)]
sin(ψ − φ), (5)

the surface energy ws(θ ) = (Ks/K) sin2 θδ(z ± L/2), where
δ(x) is the Dirac function. For Ks > 0, the energy density
ws(θ ) describes a homeotropic anchoring.

Minimization of functional Eq. (4) yields ψ = ϕ + π/2,
and the equilibrium profiles θ (ρ,z) are derived by solving the
Euler equation,

∂2θ

∂z2
+ 1

ρ

∂θ

∂ρ
+ ∂2θ

∂ρ2
− 1

ρ2
sin θ cos θ

− 2q0

ρ
sin2 θ − εaE

2

K
sin θ cos θ = 0, (6)

with boundary conditions θ (0,z) = π , θ (∞,z) = 0,(
∂θ

∂z
+ Ks

K
sin θ cos θ

) ∣∣∣∣
z=±L/2

= 0. (7)

FIG. 2. (Color online) Solutions of Eqs. (6) and (7) in a layer with
confinement ratio ν = L/p = 1.8, surface anchoring ks = 7.0, and
the applied field E = 1.02E0. Functions θ (ρ,z) are plotted as a set
of profiles θ (ρ) for different values of z (0 < z < L/2). Thick (red)
lines show solutions in the center (c), θ (ρ,0) and on the surfaces (s)
of the layer, θ (ρ, ± L/2). The corresponding core sizes R(c), R(s) are
derived from Eq. (9). Inset shows corresponding profiles dθ/dρ(ρ)
indicating the inflection points of θ (ρ) profiles.

The solutions θ (ρ,z) of Eqs. (6) and (7) depend on the three
control parameters,

E/E0, ks = Ks/(Kq0), ν = L/p, (8)

expressed as reduced values of the applied electric field
(E/E0), the homeotropic anchoring (ks), and the layer thick-
ness ν known as confinement ratio.

The boundary value problem, Eqs. (6) and (7), has been
solved by a standard finite-difference method with discretiza-
tion on rectangular grids with adjustable grid spacings. As
initial guess for the iterative procedure by a Seidel method with
Chebishev acceleration [30], we used the known solutions of
Eq. (6) for bulk chiral systems [4] as starting profiles. Solutions
of Eqs. (6) and (7) θ (ρ,z) can be presented as a stack of
profiles θ (ρ) parametrized by z (−L/2 < z < L/2) (Fig. 2).
Under the influence of the homeotropic anchoring θ (ρ), curves
vary along the layer thickness from wild bell-shape lines in
the center of the layer (z = 0) to narrow profiles at the layer
surface (z = ±L/2). The equilibrium solutions for isolated
axisymmetric skyrmions θ (ρ,z) strongly depend on the control
parameters: ν = L/p, E/E0, and Ks/Ks0 (Figs. 2 and 3).
They exist only for applied fields higher than the unwinding
field (E > E0). Below this field, axisymmetric skyrmions are
unstable with respect to elliptic distortions (similar instabilities
arise in bulk chiral skyrmions [31]). Formally, the solutions
for axisymmetric skyrmions with well-defined sizes exist at
arbitrary high fields E > E0. However, the solutions with
extended cores arise only for applied fields in the close
proximity of the transition field E � E0 (Figs. 2 and 3).
With increasing field the core size rapidly decreases to the
values comparable with the molecular length manifesting a
breakdown of the continuum theory.

For a θ (ρ) line the point where the tangent at the inflection
point (ρ0, θ0) intersects the ρ axis (Fig. 3) introduces the radius
R(z), which characterizes the profiles width [4,32]:

R = ρ0 − θ0 (dθ/dρ)−1
ρ=ρ0

. (9)
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FIG. 3. (Color online) Equilibrium shapes R(z) of spherulites in a layer with thickness L = 1.8p and for different values of homeotropic
anchoring: (a) E = 1.02E0. Near the unwinding transition spherulites have extended sizes; (b) E = 1.5E0. For higher fields their cores become
strongly localized. Inset in panel (a) introduces the effective sizes of profiles θ (ρ) [Eq. (9)]; inset in panel (b) shows spherulites shapes in layers
with thickness L/p = 0.01(a),0.005(b),0.0025(c) (E = 1.02E0, Ks = 7.0Ks0).

Note that a similar procedure is applied to introduce char-
acteristic sizes for isolated domain walls and other solitonic
states [31,32]. The calculated lines R(z) (−L/2 < z < L/2)
for different values of the control parameters are plotted
in Fig. 3. They have a characteristic convex shape. The
homeotropic surface anchoring compresses ideally cylin-
drical axisymmetric solitons into convex-shaped spherulites
(Figs. 3). However, a complex interplay between surface
volume interactions leads to other specific effects. It was
found that in an extended range of the control parameters,
the functions R(z) reach the minimum at a certain distance
from the surface creating specific “necks” [Fig. 3(b)].

III. LINEAR ANSATZ FOR ISOLATED SPHERULITES

In a wide range of the control parameters solutions of
Eqs. (6) and (7) θ (ρ,z) are composed of arrowlike profiles
θ (ρ) and can be satisfactorily approached by a linear ansatz,

θ (ρ,z) = πρ/ξ (z), (10)

for ρ � ξ (z), and θ (ρ,z) = 0 for ρ > ξ (z). A trial function
Eq. (10) is a specific case of a more general “scaling ansatz,”

θ (ρ,z) = θ [ρ/ξ (z)], (11)

investigated for functional Eq. (4) in Ref. [8].
With ansatz Eq. (10) energy F Eq. (4) can be reduced to

the functional F̃ (z) = (πK/4)
∫ L/2
−L/2[w̃ + w̃s]dz, with

w̃(z) =
(

dξ

dz

)2

+ 4πq0ξ + 2εaE
2

K
ξ 2, (12)

and w̃s = (Ks/K)2ξ 2δ(z ± L/2). Minimization of functional
F̃ (z) yields the equation

ξ (z) = 4p

π2

(
E

E0

)−2 [
1 − 1

�(ν,ks)
cosh

(
αz

p

)]
, (13)

describing a catenary curve. Here α = π (E/E0) and

�(ν,ks) = cosh
(αν

2

)
+ π2ks

2
sinh

(αν

2

)
. (14)

The control parameters (ν, ks , E/E0) Eq. (8) determine
curvature and other parameters of Eq. (13) (for details see

Ref. [8]). Comparison with solutions of Eqs. (6) and (7)
shows that calculations with linear ansatz Eq. (10) reaches
a satisfactory quantitative accuracy only for weak anchoring
(ks � 1). Nevertheless analytical results for model Eq. (12)
offer an important insight into physics of confined chiral
skyrmions.

The equilibrium sizes of spherulites are formed as a result
of a competition between the terms linear and quadratic
with respect to ξ in functional Eq. (12). The former (∝ q0)
is stemmed from the chiral interactions imposed by the
handedness of the system and which are represented in Frank
functional with energy contributions linear with respect to the
first spatial derivatives:

wq(n) = 2K2q0n · rotn. (15)

The latter includes internal interactions independent on spatial
derivatives of n (as the dielectric anisotropy energy ∝ E2 in
functional Eq. (5). Finally, the first term in Eq. (12) determines
a variation of the equilibrium core size ξ (z) along the layer
thickness imposed by the surface anchoring. Note, functional
Eq. (12) does not include the energy contributions quadratic
in the spatial derivatives [spray-twist-band elastic energy
contributions in Eq. (1)]. Solutions, Eq. (13), for functional
Eq. (12) display in a simple form the fundamental features
of the chiral skyrmion energetics and elucidate a crucial
role of the chiral energy wq(n) in their formation. Energy
contribution wq(n) arises in chiral liquid crystals [29] and
cubic noncentrosymmetric magnets [2,33] and are composed
of antisymmetric differential forms linear with respect to
spatial derivatives of the order parameter l (so called Lifshitz
invariants) [33]:

�
(k)
ij = li

∂lj

∂xk

− lj
∂li

∂xk

. (16)

Energy functionals of noncentrosymmetric condensed-matter
systems contain chiral energy contributions wchiral(l) con-
structed of the combinations of differential forms, Eq. (16),
complied with their symmetry [2,33]. Particularly for isotropic
and cubic systems wchiral(l) reduced to wq(l) = �(z)

yx + �
(y)
xz +

�(z)
zy = l · rotl, describing chiral interactions in liquid crystals

and noncentrosymmetric cubic magnets and ferroelectrics,
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Eq. (15) [5,29,33,34]. Energy contributions composed of
differential forms of Eq. (16) provide a specific stabilization
mechanism for two- and three-dimensional localized states [2].
Importantly, classical skyrmions intensively investigated in
nonlinear physics are stabilized by higher-order spatial deriva-
tives of the order parameter (commonly referred to as Skyrme
mechanism [1]). Because in condensed-matter physics there
are no physical interactions described by higher-order spatial
derivatives (se, e.g., Ref. [7] in Ref. [6]), noncentrosymmetric
condensed-matter systems (including chiral liquid crystals,
multiferroics, and magnetic systems with intrinsic and induced
chirality) are of special importance as a particular class of
materials where mesoscopic skyrmions can be created and
manipulated. This also attaches special importance to the
solutions of Eqs. (6) and (7) as basic elements providing the
stability of axisymmetric skyrmions and other solitonic states
observed in chiral liquid crystals layers [20,22].

IV. CONFINED SKYRMION LATTICES AND HELICOIDS

In unconfined chiral liquid crystals solutions for axisym-
metric skyrmions are homogeneous along their axes [solutions
of type θ (ρ), ψ = π/2 + ϕ] [3]. For E < E0, Eq. (2), the
one-dimensional modulated states (helices) correspond to the
global minimum of the system [29]. Below critical field
E0 chiral skyrmions condense into metastable lattices [3].
Near the critical field E0 skyrmion lattices transform into
honeycomb nets of thin 180◦ walls. Helices in this region
consist of broad stripes (with θ ≈ 0) separated with thin 180◦
walls. The equilibrium periods of the helices and skyrmion
lattices tend to infinity as E → E0, and both modulated phases
transform into the homogeneous state in the same critical
point (Fig. 10 in Ref. [3]). Contrary to bulk systems, in thin
layers chiral modulations become inhomogeneous through the
layer thickness. Here we consider main effects imposed by the
homeotropic anchoring on helicoids and skyrmion lattices with
propagation directions in the layer plane. Within a circular-cell
approximation (see, e.g., Ref. [3]), the equilibrium parameters
of a skyrmion lattice are derived by solving Eq. (6) with
the boundary conditions θ (0,z) = 0, θ (a,z) = π , Eq. (7), for
different values of the cell size a and minimization of the
skyrmion lattice energy density with respect to a. Similarly,
the equilibrium states of a 2D helicoid propagating along the
y axis in the layer plane, n = [sin θ (y,z),0, cos θ (y,z)] are
derived by solving equation

∂2θ

∂z2
+ ∂2θ

∂y2
− π2

16

(
E

E0

)2

sin θ cos θ = 0, (17)

with the boundary conditions θ (0,z) = 0, θ (b,z) = 2π , Eq. (7)
and optimization of the helix energy density with respect
to pitch b. Typical solutions for Eq. (17) are presented in
Fig. 4(a) as θ (z) profiles in the equidistant xz planes for a
number of fixed values of y (indicated with thin black lines).
Similarly to confined skyrmions, helix profiles θ (y,z) have a
convex shape in the xz planes. The distribution of the energy
density in the helicoid along the propagation direction y is
plotted in Fig. 4(a) for the surfaces z = ±L/2 (dashed blue
line) and in the center of the layer z = 0 (solid red line).
The largest loss of the rotational energy occurs for the planes
with θ = π/2. Similar energy densities w(ρ) for the isolated

FIG. 4. (Color online) Typical solutions for confined helicoids
(a). Top and right axes show profiles θ (z) in equidistant planes xz.
Lower and left axes show energies densities: dashed (blue) lines
correspond to surface layers (z = ±L/2) and the solid (red) line is
for the center of the layer (z = 0). Corresponding energy densities
for an isolated sherulite and a skyrmion lattice are plotted in panels
(b) and (c).

spherulite and the skyrmion lattice cell are plotted in Figs. 4(b)
and 4(c). The results of the calculations for confined helices
and skyrmion lattices in a layer with ν = 1.8 are presented in
the phase diagram in reduced variables E/E0 and ks (Fig. 5).
The confined helicoid is the global minimum of the system
in the area below critical line Eh(ks). A sufficiently strong
homeotropic anchoring suppresses helical modulations and
above Eh(ks) line the homogeneous phase with θ = 0 has
the lowest energy. In this “saturate” phase isolated spherulite
can exist as metastable states. The skyrmion lattices can exist
as metastable states below critical line Esk(ks) and transform
into the homogeneous state at this critical line. Below Eh(ks)
line isolates spherulites are eliptically unstable (cf. Ref. [31])
and strip out into helicoids or into specific textures consisting
of elongated 2D solitons (so called cholesteric fingers).
Experimental investigations of these modulated states are
reviewed in Ref. [22].

FIG. 5. (Color online) The phase diagram of the equilibrium
states in reduced values of applied field (E/E0) and homeotropic
anchoring (ks), Eq. (8), indicate the existence areas of the helicoid
and the skyrmion lattice in a layer with the confinement ratio ν = 1.8.
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V. COMPARISON WITH MAGNETIC CHIRAL
SKYRMIONS

Chiral magnetic skyrmions have been observed in nanolay-
ers of cubic helimagnets [12–14] and monolayers of fer-
romagnetic metals with induced chiral interactions [15]. It
was established that surface- and interface-induced uniaxial
anisotropy plays a crucial role to stabilize skyrmions in
these systems [14,15,17]. Theoretically, chiral modulations in
nanolayers of chiral ferromagnets are described by the energy
density functional [6,14,17,33],

fm = A(grad m)2 + Dm · rot m − H · M − Ku(m · a)2,

(18)

which includes the exchange energy with coefficient A, the
Dzyaloshinskii-Moriya coupling (D), the interaction with the
applied magnetic field M (Zeeman energy), and induced
uniaxial anisotropy (Ku). m = M/|M is the unity vector along
the magnetization M, and a is the unity vector along the
uniaxial anisotropy axis (along z axis in this paper). For chiral
liquid crystals in applied electric fields the Frank free-energy
density functional in the one-constant approximation can be
reduced to the following expression:

fv = K

2
(grad n)2 + Kq0n · rot n − εa

2
(n · E)2. (19)

We use here equation (grad n)2 = (div n)2 + (n · rot n)2 +
(n × rot n)2+ < surface terms > holding for any unity vector
n (for details see, e.g., Ref. [32]). At zero field the energy
density of a cubic helimagnet, Eq. (18), has the same functional
form with that of a chiral liquid crystal, Eq. (19). Thus, the
solutions for skyrmions derived within model Eq. (18) [4,6,17]
at zero field describe skyrmions in bulk chiral liquid crystals at
applied electric (magnetic) fields. Also, the energy functional
for noncentrosymmetric antiferromagnets (Eq. (8) in Ref. [35])
has a similar structure with functional Eq. (19). Physical re-
lations between magnetic and liquid crystal skyrmionic states
have been discussed in Ref. [3]. It is known that surface- and
interface-induced enhanced perpendicular uniaxial anisotropy
arising in nanolayers of magnetic metals imposes a number of
reorientation effects [36], which are similar to those induced by
surface anchoring in liquid crystals [29]. In existing epitaxial
layers of cubic helimagnets synthesized on Si(111) substrates,
a uniaxial magnetic anisotropy is imposed by strains arising

due to the lattice mismatch between the magnetic layer and the
substrate [37]. In these nanolayers, the induced anisotropy has
a volume-like character [see Eq. (18)]. However, in nanolayers
of noncentrosymmetric magnets with induced anisotropy
localized on their surfaces, chiral skyrmions and helicoids
are described by equations similar to those considered in this
paper [Eqs. (6), (7), and (17)]. Finally, we mention that surface
twisted modulations recently discovered in nanolayers of cubic
helimagnets [38] are expected to occur in confined chiral liquid
crystals.

VI. CONCLUSIONS

We present numerically exact solutions for isolated and
embedded axisymmetric skyrmions in a thin layer of a
chiral liquid crystal with homeotropic anchoring. In this
paper, we restrict our theory to the simplified model, Eq.
(1), including only basic interactions essential to stabilize
skyrmionic states [3,16], and demonstrate a fundamental role
of axisymmetric strings [Eqs. (6) and (7)] in the formation
of two-dimensional solitonic states in thin layers of chiral
liquid crystals. The interplay between the elastic stiffness,
chiral twists, and perpendicular surface leads to the formation
of 2D skyrmions with a characteristic “barrel” (spherulite)
shape (Fig. 1). The basic equations for confined axisymmetric
skyrmions [Eqs. (6) and (7)] and other chiral modulations
depend on three material parameters, Eq. (8). A few represen-
tative samples in Figs. 2, 3, and 4 illustrate the basic features
of confined chiral modulations.

Multidimensional modulated textures observed in confined
chiral liquid crystals have more complex structures including
different types of point defects and dislocations [20–26].
Detailed analysis of these patterns requires the constructions
of the full phase space of the control parameters (E/E0,ks,ν)
and calculations of 2D and 3D chiral solitons with point and
linear singularities.
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[35] A. N. Bogdanov, U. K. Rößler, M. Wolf, and K. H. Müller, Phys.

Rev. B 66, 214410 (2002).
[36] A. Thiaville and A. Fert, J. Magn. Magn. Mater. 113, 161 (1992);
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