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Morphological study of elastic-plastic-brittle transitions in disordered media
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We use a spring lattice model with springs following a bilinear elastoplastic-brittle constitutive behavior with
spatial disorder in the yield and failure thresholds to study patterns of plasticity and damage evolution. The
elastic–perfectly plastic transition is observed to follow percolation scaling with the correlation length critical
exponent ν ≈ 1.59, implying the universality class corresponding to the long-range correlated percolation. A
quantitative analysis of the plastic strain accumulation reveals a dipolar anisotropy (for antiplane loading) which
vanishes with increasing hardening modulus. A parametric study with hardening modulus and ductility controlled
through the spring level constitutive response demonstrates a wide spectrum of behaviors with varying degree of
coupling between plasticity and damage evolution.
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I. INTRODUCTION

Spatial disorder and elastic interactions give rise to a num-
ber of interesting statistical effects like crack surface roughness
[1], intermittent acoustic emission [2,3], damage localization,
strength-size scaling [4], and power-law distribution of plastic
slip events [5,6] in a number of different materials. The
universal effects observed are linked to a few basic properties
of the system like the dimensionality, nature of interactions,
symmetries, and disorder [7]. The microscopic details of the
system are observed to be irrelevant when studying such
behaviors.

The spring lattice models very well capture the essence
of such effects through explicit representation of disorder
and microcracks, along with long-range elastic interactions.
The random fuse model (RFM) [8] and its extensions in
two dimensions (2D) and 3D using springs or beams have
been successfully used to study crack surface roughness,
avalanches, strength-size scaling, and damage localization
[1,9,10]. A modification of the spring-based constitutive law
has also allowed the study of elastic–perfectly plastic transition
using the spring lattice models [11,12]. Using a ductile version
of the RFM (DRFM) [13], where finite ductility is imparted
by allowing the springs to heal several times before failure, the
intermittent response of metallic glasses can also be studied.

Recently, the authors introduced a generalized version of
the RFM by introducing a hardening slope and ductility in
Ref. [14] to model the elastic-plastic-brittle transitions in
disordered media. That study—combining the plasticity and
brittleness effects in disordered systems—was focused on the
brittle damage distribution and power-law statistics of the
plastic strain avalanche events. In this paper, the focus is
moved on to a morphological study of the evolution of plastic
and brittle damage. The model correctly accounts for elastic
unloading (ignored in the spring lattice-based elastic-plastic
transition studies in the past [12]), which is found to play a
crucial role in the interaction of damage with plasticity.

The primary goal of this study is to understand the effect,
on the macroscopic level, of the parameters controlling the
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constitutive behavior of the springs on the microstructural
level, such as plastic tangent stiffness and ductility through a
parametric study covering a wide range of material behaviors
using the generalized RFM. The elastic-plastic-brittle model
also allows us to study the spatial distribution of yielded
springs (along with the associated plastic strain) and dam-
aged springs over the parameter space. Such an analysis of
plasticity and damage patterns is of crucial importance in
developing methods for accurate assessment of the damage
state of a given load-bearing material by visual inspection
[15–17].

The RFM has been extensively used in the past few decades
to study the effect disorder on the failure properties of the
macroscopic domain. The nature of failure is governed by
the weakest element in case of weak disorder; however, when
strong disorder is present the final failure is foreshadowed
by a large amount of damage accumulation. In the infinite
disorder limit, the strength of disorder renders the crack tip
stress concentrations ineffective and the damage accumulation
process can be exactly modeled as a random percolation
process. But for the more interesting case of finite (but strong)
disorder, it was shown in Ref. [18] that the RFM does not
belong to the same universality class as that of random
percolation and is analogous to a first-order transition due
to the abrupt localization of damage at the peak load. One
can also investigate the nature of transition for the perfectly
plastic version of the RFM, which is achieved by allowing the
failed springs to carry a constant force instead of sudden loss
of load-carrying capacity. As a result of this change, abrupt
localization is absent in perfectly plastic RFM [12] and the
plasticity accumulation process resembles percolation. Hence,
we can map the elastic–perfectly plastic transition exactly as
a percolation process in the infinite disorder limit. But if the
disorder is finite, the elastic interaction of the springs might
be relevant enough for the plasticity accumulation process
not to be perfectly random. However, whether such spatial
correlations are relevant enough to affect the critical behavior
needs an in depth finite-size scaling analysis of the transition.
Hence, the next question we want to tackle is if we can describe
the elastic-plastic transition as a percolation process and, if
yes, does it fall into the same universality class as that of the
random percolation?
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The paper is organized as follows. After introducing the
model, the effect of various model parameters on the elastic-
plastic transition is studied. We then compare the elastic-plastic
transition with the random bond percolation process and
perform a finite-size scaling analysis of the perfectly plastic
transition. Next, the anisotropy in plastic strain accumulation
and the effect of hardening ratio on it is quantitatively analyzed.
Finally, we examine the elastic-plastic-brittle transition in the
parameter space and point out the markedly different trends in
damage accumulation and localization.

II. MODEL

The elastic-plastic-brittle spring lattice model used in the
study [14] is a discrete representation of a material under
antiplane loading [only out-of-plane displacement, uz(x,y),
differs from 0]. The model is analogous to the RFM that is
widely used to study statistical effects of disorder on fracture
[8]. Each spring in the spring lattice follows a bilinear response,
as shown in Fig. 1(a), based on the yield strain limit (εy) and
failure strain limit (εf ). The strain in the spring ε is the same
as the change in length of the spring δ as we assign unit length
to the springs. The disorder in the system is introduced by
allowing εy and εf to follow a desired probability distribution.
In this study εy follows a uniform probability distribution
with εy ∈ [0,1] representing a strong but finite disorder. If the
yield and failure threshold distributions are made independent,
some springs may occasionally have lower failure threshold
than the yield threshold. To simplify the model, the failure
thresholds εf of the springs are assumed to be just proportional
to the yield thresholds εy by the ductility parameter N , i.e.,
εf = Nεy . Physically, N controls the amount of plastic strain
accumulation allowed before failure. Thus, for N → 1 the
material response is perfectly brittle while for N → ∞ the
material exhibits the elastic-plastic response [13].

F
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δf

kT
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FIG. 1. (Color online) (a) The bilinear constitutive force-
displacement (F -δ) law implemented at the spring level showing the
elastic-plastic transition at δy , elastic unloading at δu, and failure at
δf . δ is the absolute change in length of the spring. The elastic spring
stiffness is denoted by k, while the postyielding spring stiffness is
kT . (b) The diamond spring lattice of size L = 8 (solid lines) along
with the square grid (dotted lines) that is used to generate a pixelated
image by assigning a pixel to each spring. The boundary conditions
used are such that the bottom edge nodes are fixed and the upper edge
nodes are displaced in small increments in the out-of-plane direction,
while periodic boundary conditions are used on the side edges.

The preyielding and postyielding stiffness values (k and
kT , respectively) of the springs can be related to the material
constants E (elastic modulus), ET (elastoplastic tangent mod-
ulus), and ϑ (Poisson’s ratio) for an isotropic elastic-plastic
material with linear hardening using the energy equivalence
principle [19]. For the antiplanar case the relation is given
as k = 2E/3(1 + ϑ) and kT = 2ET /3(1 + ϑ). The bilinear
force-displacement response of the springs can be given as
follows:

Elastic: F = kδ, δ < δy, (1a)

Plastic: F = kT δ + (k − kT )δy, δy � δ < δf , (1b)

Unloading: F = kδ − (k − kT )(δu − δy), δy � δ < δu,

(1c)

Brittle: F = 0, δ � δf , (1d)

where δ, δy , δu, and δf represent the absolute change in length
of a given spring at a given loading step, at yield, at elastic
unloading and at failure, respectively.

Each node in the domain has only one degree of freedom
uz (out-of-plane displacement). The displacement boundary
conditions are imposed, as shown in Fig. 1(b), such that the
nodes on the bottom edge are fixed (uz = 0) and the nodes
on the top edge are displaced in small increments of loading.
The periodic boundary conditions are imposed on the side
edges (i.e., uz of the node on right edge is always equal to
its corresponding node on the left edge) to avoid introducing
any edge effects. The simulations are performed under the
quasistatic assumption, i.e., the loading rate is much slower
than the rate of stress redistribution due to local yielding,
failure, or unloading event.

At each load step the stiffness of the springs reaching the
yield threshold is changed from k to kT and correction forces
are applied at the yielded spring nodes given by the second
term in Eq. (1b). If any yielded spring is unloading, its stiffness
is changed from kT to k and correction forces are applied as
given in Eq. (1c). The correction forces ensure that the spring
follows the desired bilinear response. The equations for the
elastoplastic behavior are analogous to the return mapping
algorithm for rate-independent linear isotropic hardening
plasticity [20]. If any spring crosses the failure threshold, it
is removed from the lattice along with any correction forces
acting at its nodes. The stress redistribution after the yield,
unloading or failure event is accounted for by solving the
system of equations again after implementing the event specific
modifications as described above. The simulation is complete
once the lattice breaks apart with formation of a macroscopic
crack for a finite N . When N → ∞, the simulation stops when
the elastic-plastic transition process is complete. In short, the
simulation procedure is exactly the same as a RFM simulation,
the only difference is that the springs are forced to follow the
elastic-plastic-brittle constitutive behavior shown in Fig. 1(a)
instead of the simple elastic-brittle behavior used in RFM.

The simulations presented here are performed on a diamond
spring lattice with L = 256 [Fig. 1(b) shows a diamond lattice
with L = 8] with uniform disorder in the yield limit (sy = 1),
unless specified. The diamond lattice is chosen so a pixelated
image of the yielded springs can be generated directly from
the lattice without any ambiguities. Figure 1(b) shows how
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the image (square grid of the dotted lines) is extracted from
the lattice by assigning a pixel to an individual spring in the
lattice. The value of the pixel is determined by the mechanical
state (elastic/plastic/failed) of the spring or value of any other
evolving variable associated with the spring such as plastic
strain. For other type of lattice arrangements like eight-springs
or triangular, converting the yielded or failed springs spatial
information into a simple pixelated image proves not to be a
straightforward procedure.

III. ELASTIC-PLASTIC TRANSITION

In this section, only the elastic-plastic transition (N → ∞)
is considered, i.e., springs do not undergo failure after yielding.
The key factor governing the elastic-plastic behavior is the
postyield load-carrying capacity of the material determined
by the hardening ratio ET /E. For ET /E → 0, the material
follows the perfectly plastic response, while ET /E → 1
corresponds to the linear elastic behavior.

A. Order parameters

Due to the presence of spatial disorder, the elastic-plastic
transition is a gradual process unlike a disorder-free material,
where the entire domain would yield after the common yield
threshold is reached. The average stress-strain response for
ET /E = 0.2 is shown in Fig. 3(a) on spring lattice of size
L = 256, where a gradual transformation to the fully plastic

ε = 0.10 ε = 0.36 

ε = 0.68 ε = 1.60 

(a) (b)

(c) (d)

FIG. 2. [(a)–(d)] Set of yielded springs (black pixels) evolving
with the increasing external load applied with the corresponding
normalized average strain value ε (see Fig. 3 for the corresponding
stress and vy values). White pixels represent the grains in an elastic
state. The simulation is performed with ET /E = 0.2 on lattice size
L = 256.

state (i.e., all springs have yielded in this case) is observed.
The average strain and average stress are normalized using
mean values of the yield threshold distribution. With increasing
applied load, plastic grains start to appear at locations where
the yield criterion is satisfied. The sets of plastic springs at
increasing load steps are shown in Fig. 2 with black pixels
representing yielded springs.

The volume fraction of the yielded springs goes from 0 to
1, as shown in Fig. 3(b). The volume fraction of the yielded
springs (vy) is evaluated based on the springs that are currently
in the plastic state, the springs that were once yielded but are
unloading elastically are not used in the vy calculation. To
account for the elastically unloading springs, vall

y is used, which
represents the volume fraction of springs that have yielded at
least once in the loading history. Then the difference between
vall

y and vy is the measure of the elastic unloading activity at a
given loading stage. The vall

y and vy lines in Fig. 3(b) cannot
be differentiated, which indicates very negligible unloading
activity for ET /E = 0.2.

The elastic-plastic transition can be represented in the order
parameters’ space (v and eT ) as

v = 1 − vy, (2a)

eT = E∗ − ET

E − ET

, (2b)
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FIG. 3. (Color online) (a) The normalized average stress-strain
curve and (b) volume fractions vy and vall

y for ET /E = 0.2 on lattice
size L = 256 shown in Fig. 2. Since the elastic unloading activity
is negligible in this case, both curves cannot be differentiated. The
elastic-plastic transition in terms of the order parameters eT , v, and
vall

y [Eq. (2)] is given in (c).
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where v is the reduced volume fraction and eT is the reduced
tangent stiffness. E∗ is the tangent modulus (tangent to the
stress-strain curve) at a given load step. Analogously to v,
we can define vall = (1 − vall

y ), which is the reduced volume
fraction of the yielded spring, including the ones that are
elastically unloading. The order parameters are defined such
that they have the value 1 for the fully elastic state and 0
for the fully plastic state to provide an estimate of the plastic
state. The order parameters v, vall, and eT are calculated using
Eq. (2) and the elastic-plastic transition [Figs. 3(a)–3(c)] is
presented in terms of the order parameters in Fig. 3(d). The
elastic-plastic transition begins with v = vall = eT = 1 and is
complete when eT = 0 for any given ET /E value.

B. Effect of plastic hardening ratio

To study the effect of ET /E on the macroscopic elastic-
plastic response of the material, we conduct simulations on
L = 256 with ET /E = {0,0.05,0.2,0.5} and, as stated before,
the yield thresholds follow a uniform distribution. A detailed
finite-size scaling analysis using results at different L is given
in Sec. III E, for now we will focus on the effect of ET /E using
the largest lattice size that we simulated. For each ET /E value
there are three curves plotted in the order parameter space in
Fig. 4: the v − eT curve with a solid line, the vall − eT curve
with a dotted line, and a dash-dot line obtained using random
percolation simulation. The random percolation lines will be
discussed in the next subsection and can be neglected for now.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

  

  

v

e T

v

e T

v

e T

v

e T

(a) ET/E=0 (b) ET/E=0.05

(c) ET/E=0.2 (d) ET/E=0.5

v
vallvrp

v
vallvrp

v
vallvrp

v
vallvrp

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

v=
e T

v=
e T

v=
e T

v=
e T

FIG. 4. (Color online) Effect of hardening on the elastic-plastic
transition in v-eT space for ET /E = {0,0.05,0.2,0.5} on L = 256 is
shown in (a)–(d), respectively. The solid lines are for v, while the
dotted lines represent vall. The dash-dot lines represent vrp curves
obtained using random bond percolation on the same spring lattice.
The difference between vall and v is the measure of the amount of
unloading activity which is significant only for the perfectly plastic
case.

When ET /E > 0, the transition starts with v = vall
y = eT =

1 (fully elastic) and ends with vall
y = v = eT = 0 (fully plastic).

However, for the perfectly plastic case, v,vall
y > 0 when the

fully plastic state (i.e., eT = 0) is reached. The reason being
that the yield line formation causes the lattice to flow much
before all the springs have yielded.

The difference between vall and v gives the volume fraction
of elastically unloaded springs. Comparing the vall (dashed
line) and v (solid line) curves in Fig. 4 shows that there
is a significant increase in the elastic unloading activity
as ET /E → 0 and eT → 0. The elastic unloading of the
plasticized springs was ignored by assuming an irreversible
transition to the plastic state in the previous RFM-based studies
on elastic–perfectly plastic transition in disordered media
[11,12]. But the observations made here clearly show that
elastic unloading is significant and should be accounted for in
the study of such systems.

Images of the evolving set of plastic grains with increasing
external load for the perfectly plastic case are shown in Fig. 5.
It is observed that initially (up to eT ≈ 0.5) [Fig. 5(a)] the
distribution of plastic grains is spatially uncorrelated. But, as
eT → 0, the evolution of horizontal shear bands and elastic
unloading in the regions above and below it can be clearly
seen. A shear band spanning horizontally across the lattice
is eventually formed, causing the lattice to flow, i.e., eT = 0
[Fig. 5(h)]. On the contrary, as ET /E increases, the spatial
distribution of plastic grains is more or less uniform throughout
the transition, with minimal elastic unloading activity, and any
prominent shear bands are absent (see Fig. 2 for ET /E = 0.2).
With increasing ET /E the v − eT curve gets closer to the unit
slope line v = eT .

C. Comparison with the random percolation problem

The spatial distribution of the yielding events can be
studied using the plastic damage profiles obtained from the

(f) eT=0

(a) eT=0.5 (b) eT=0.3 (c) eT=0.1

(d) eT=0.025 (e) eT=0.01

FIG. 5. (Color online) [(a)–(f)] Evolving set of plastic grains for
the perfectly plastic case (ET /E = 0) with increasing loading. Black
pixels represent springs that are currently in the plastic state, while
white pixels represent elastic or elastically unloading springs. As
eT → 0, the elastic unloading is observed in some specific zones due
to formation of shear bands throughout the domain. At eT = 0 the
yield line formed is pointed out with an arrow in (f).
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FIG. 6. (Color online) [(a)–(e)] Number of springs yielded along a given y ordinate p(y) plotted against y for ET /E = {0,0.05,0.2,0.4,0.8}
for a single realization. p(y) is obtained by dividing the loading into six stages.

number of springs yielded along a given y ordinate p(y) at
different stages of the loading process. Figure 6 shows p(y)
for ET /E = {0,0.05,0.2,0.4,0.8} for L = 256 on a single
realization obtained by dividing the loading process into six
equal stages up to the critical load. For all the cases, the plastic
damage profiles show no signs of any significant macroscopic
localization even as the critical plastic state is approached.
From Fig. 6 it appears that plastic damage accumulation is
qualitatively similar regardless of ET /E. Conversely, for an
elastic-brittle transition the localization of damage near the
peak load is clearly observed in the damage profile similar to
the one shown here [1]. In a previous study on the perfectly
plastic transition [12] it was suggested [based on a similar
observation of flat p(y) profiles] that the perfectly plastic
transition in the infinite disorder limit is akin to random
percolation due to absence of a clear localization. However,
for the more practical case of a finite-width disorder (uniform
disorder in this study), the comparison between the elastic-
plastic transition and random percolation is discussed here
qualitatively followed by a detailed finite-size scaling analysis
of the perfectly plastic case in Sec. III E.

For ET /E → 1 (i.e., negligible plasticity) the yielded
springs can be expected to be selected similarly to a random
bond percolation, as the yielding event has minimal effect on

its neighborhood and the strain distribution is nearly uniform
within the domain throughout the transition. But as ET /E →
0, the yielding events start affecting their neighborhood
through stress redistribution, as evident from the elastically
unloading regions surrounding the shear bands observed in
Fig. 5 close to the critical load for the perfectly plastic case.
This influence is not captured well by the damage profiles
p(y) as the shear bands are spread over the entire domain.
However, we can easily compare the plasticity accumulation
process with the random bond percolation in v-eT space as
explained below.

To compare the random bond percolation with the plasticity
accumulation process, we need to perform a percolation study
on the same lattice network with the same boundary conditions
as in Fig. 1(b). The random bond percolation on a diamond grid
is carried out by randomly selecting a spring from the lattice
network and changing its stiffness from k to kT . If kT = 0
(equivalent to removal of a bond), it is just the random bond
percolation problem with the critical percolation threshold
pc = 1/2 [21] for a diamond network and correlation length
exponent νrp = 4/3.

For the volume fraction 1 − vrp (vrp is the order parameter
for the random percolation case) of the springs removed in a
random order, the reduced tangent stiffness (eT ) of the network
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(a) eT=0.99 (b) eT=0.97 (c) eT=0.7 (d) eT=0.5

FIG. 7. [(a)–(d)] Evolving set of plastic grains for ET /E = 100 with increasing loading. Black pixels represent springs that are currently
in the plastic state, while white pixels represent elastic springs. Panel (a) shows that even with sufficient plastic volume fraction the lattice
exhibits an insignificant change in eT from 1. When observed closely, vertical streaks of increasing strength can be spotted in (b)–(d).

of size L is evaluated using the same boundary conditions
as specified for the spring lattice simulations before. Thus,
for a given ET /E (same as kT /k), a vrp-eT curve can be
obtained using the random bond percolation model as well.
In v-eT space the random bond percolation would also start
with vrp = eT = 1 and the percolation process is complete
when eT = 0. The vrp − eT curves obtained using L = 256
diamond grid averaged over 64 realizations, each at ET /E =
{0,0.05,0.2,0.5}, are shown in Figs. 4(a)–4(d), respectively, as
dash-dot (—·) lines.

It is observed that the difference between the random bond
percolation v − eT line and the corresponding dashed line (vall)
obtained from the elastic-plastic transition becomes significant
as ET /E → 0 (Fig. 4). For ET /E = 0, the spring lattice yields
at v ∼ 0.7 (a much more accurate estimate will be given based
on finite-size scaling analysis of the elastic–perfectly plastic
transition in Sec. III E), much above the random percolation
threshold of 0.5 for the diamond lattice. Thus, although we
can be sure that random percolation process can very well
describe the elastic-plastic transition when ET /E → 1, the
perfectly plastic case needs further attention.

We also observe that, although the plasticity accumulation
process is not localized in a macroscopic sense (like crack
formation at the peak load in elastic-brittle transition), it
is localized at the persistent shear bands which are spread
across the domain, leading to deviations from the random
percolation v − eT curves as ET /E → 0 (Fig. 5). The question
of whether the spatial correlations established by the shear
bands are strong enough (for the perfectly plastic case) to
alter the critical exponents of the percolation transition will be
addressed shortly.

D. Hardening ratio ET /E > 1

By allowing the postyielding tangent modulus to be greater
than the elastic modulus, i.e., ET /E > 1, a system with a
rubberlike macroscopic response can be obtained. To study
this behavior, simulations with ET /E = {2,4,10,100} are
conducted with lattice size L = 256.

Due to the high postyield stiffness of the springs, stress
concentration is expected in the regions above and below of
the yielded spring (in the direction of loading). As a result,
vertical streaks of yielded grains (black pixels) can be observed
in the plastic grain evolution shown for ET /E = 100 (Fig. 7).
Although weak, the vertical patterns can be perceived on a
closer observation that can be contrasted with the horizontal

shear bands observed for the perfectly plastic case (Fig. 5). In
the infinite disorder limit and ET → ∞ the problem can be
mapped exactly onto a rigidity percolation problem [22].

The transition in the v-eT space is shown in Fig. 8 with solid
lines. With increasing ET /E the v − eT curve is driven away
from the v = eT line but in an opposite sense as compared
with the ET /E < 1 cases shown in Fig. 4. Comparison
with the random bond percolation process [dash-dot (—·)
lines] for the corresponding ET /E (Fig. 8) highlights the
difference between the two, indicating again that the plasticity
accumulation resembles random bond percolation only as
ET /E → 1, while the limiting cases ET /E = 0 and ET → ∞
need further investigation.
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FIG. 8. (Color online) Effect of hardening on the elastic-plastic
transition in v-eT space for ET /E = {2,4,10,100} on L = 256,
shown with solid lines in (a)–(d), respectively. The v-eT curves for
the random bond percolation simulations at the same ET /E values
are shown with the dash-dot lines. As ET /E → 1 the v-eT curves
approach the line with unit slope (v = eT ).
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E. Perfectly plastic transition as a percolation process

In Sec. III C, the elastic-plastic transition is observed
(qualitatively) to compare with the random bond percolation
only as ET /E → 1. Hence, a detailed quantitative analysis of
the perfectly plastic process (ET /E = 0) is performed here
to better understand the nature of this transition and extract
the critical exponents. Percolation is to be understood here as
the point when the system reaches its maximum load-carrying
capacity, i.e., the yield limit or in other words when eT = 0.
Because of the elastic unloading capability of the springs,
the point of geometrical percolation may not necessarily
be the same as the point of mechanical percolation we are
interested in. For an elastic-brittle system, though, the points
of mechanical and geometrical percolation are the same.

When a system of size L reaches the yield limit, we obtain
the number of bonds n = N vall that have yielded at least once
in the loading history from each simulation, whereN = L × L

is the total number of springs in the lattice. Using multiple
realizations, we can find the crossing probability R(L,n),
which is the probability that the lattice of size L will yield
when exactly n springs out of N have yielded. We can obtain
the crossing probability R(L,p) by convolving R(L,n) with a
binomial distribution as [23]

R(L,p) =
N∑

n=0

CN
n pn(1 − p)N−nR(L,n), (3)

where p is the occupation probability of bond (or site) in
a typical percolation problem. The convolution is performed
using the efficient method provided in Ref. [24]. Using R(L,p)
we can analyze the elastic–perfectly plastic transition as a
percolation problem. The use of binomial distribution is a
reasonable approximation based on the observation made in
Fig. 6 that the yielding events are not strongly localized in
a macroscopic sense. The advantage is that we can now
study R(L,p) for any given value of p. In Fig. 9 we show

p

R
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,p)
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FIG. 9. (Color online) The crossing probability R(L,p) with
systems of increasing sizes for the elastic–perfectly plastic transition
problem obtained using Eq. (3). The elastic–perfectly plastic transi-
tion can be observed to behave similarly to a percolation problem
where limL→∞ R(L,p) is a step function at the critical threshold pc.

the R(L,p) obtained for L = {8,16,32,64,128,256} for the
perfectly plastic case to understand the nature of the transition
and the effect of L on the same. With increasing size L we see
that R(L,p) approaches a step function shape at the critical
threshold pc just like a percolation problem. From R(L,p) we
can study the convergence of various estimates of pc (critical
threshold) and extract the critical exponents.

Hovi and Aharony [25] propose, using a renormalization-
group study of percolation, that R(L,p) = F (x̂,{ŷi}), with
x̂ = A(p − pc)L1/ν and ŷi = BiωiL

−νi , where ν is the corre-
lation length exponent, νi are the irrelevant scaling exponents
corresponding to the irrelevant variables ωi , A and Bi are the
nonuniversal metric factors, and F is the universal scaling
function of the given percolation process. The form of
R(L,p) is determined by the dimensionality, spanning rule,
and boundary conditions of the system. General form of the
R(L,p) near the critical point is given as [25]

R(L,p) = f0 + f1(x̂) +
∑

i

L−νi Biωif2i(x̂)

+
∑
i,j

L−νi−νj (Biωi)(Bjωj )f3ij (x̂) + · · · , (4)

where

f0 = F (x̂ = 0,{ŷi = 0}) = lim
L→∞

R(L,pc), (5)

f1(x̂) = F (x̂,{ŷi = 0}) − F (x̂ = 0,{ŷi = 0}), (6)

and

fAjkl···(x̂) = 1

(A − 1)!

∂A−1F

∂ŷj ∂ŷk∂ŷl · · · (x̂,{ŷi = 0}),

for A > 1. (7)

Using the sum rule of the three spanning rules and duality
arguments the expansion of R(L,p) can be further simplified.
For square free boundary conditions, it turns out that f1 and f3ij

are odd functions and f2i are even functions [25]. For partially
periodic boundary conditions we cannot a priori predict the
even or odd nature of these functions as the dual symmetry
arguments do not hold for such systems. As we have used
partially periodic boundary conditions in our study, we need to
use estimates for which the rate of convergence is independent
of the even or odd symmetries of the functions. We will first
discuss the expected convergence rates of various estimates
for our system and then present the data used to estimate the
correlation length critical exponent ν.

Regardless of the odd or even symmetries of the functions
f1, f2i , and f3ij , the second moment is always expected to scale
as L−1/ν (Eq. (40) of Ref. [25]). However, the first moment
scales as L−1/ν−ν1 (faster) when f1 is odd, while as L−1/ν

when f1 is not odd. We expect that limL→∞ R′(L,pc)−1 → 0
as limL→∞ R(L,p) is a step function at pc for a percolating
system. The first derivative of R(L,p) is given as

∂R(L,p)

∂p
∼L1/ν

(
∂f1(x̂)

∂x̂
+

∑
i

L−νi Biωi

∂f2i(x̂)

∂x̂
+ · · ·

)
.

(8)

When p = pc, i.e., x̂ = 0, R′(L,pc) scales as L1/ν as long as
f1 is not even. We would expect faster convergence if f1 were
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an even function. We will use these observations to evaluate
the critical exponents.

In Ref. [23] many other estimates based on R(L,p) are
used to accurately evaluate the percolation threshold and
the associated critical exponents on square lattice with open
boundary conditions. It should be noted, however, that the
random percolation simulations performed in Ref. [23] are
computationally far less expensive than the elastic-plastic
transition simulations we have performed. Therefore, the
number of realizations that we have used had to be several
orders of magnitudes lower compared with the random perco-
lation studies. The small number of realizations introduces
large errors in evaluating some of the sensitive estimates
like renormalization-group estimate pRG, cell-to-cell estimate
pc−c, pmax (obtained from R′′(L,p) = 0), etc., used by [23]
which are not used in this study.

For the finite-size scaling analysis we have used systems
of sizes L = {8, 16, 24, 32, 52, 64, 90, 128, 180} averaged,
respectively, over Nr = {5000, 5000, 5000, 5000, 5000, 5000,
1000, 1000, 500} realizations to first get R(L,n) by binning
and then R(L,p) using Eq. (3). All other estimates are then
obtained using R(L,p) [23]. We have not included L = 256
in the finite-size scaling analysis as the number of realizations
was not sufficient enough for the required accuracy.

First, we need to find pc. We can calculate pavg(L) = 〈p〉 =
1 − ∫ 1

0 R(L,p)dp (Eq. (29) of [23]) and obtain an estimate of
pc by fitting the data to

|pavg(L) − pc| ∼ L−a (9)

to get pc = 0.2844 ± 0.003. In Fig. 10 we plot |pavg(L) − pc|
as a function of L on a double log scale to obtain a = 1.56 ±
0.03. First, two points (L = 8,16, and 24) are omitted from
the fit which can be observed to deviate from the fitted line due
higher-order corrections. Next, the standard deviation �(L) =√

〈p2〉 − 〈p〉2 is observed to follow

�(L) ∼ L−b, (10)

L

|p
av

g-p
c|

50 100 150 200

10-3

10-2

10-1

FIG. 10. (Color online) Convergence of the estimator pavg(L) to
pc according to Eq. (9) with pc = 0.2844. The fit is obtained by
excluding the three leftmost points corresponding to L = 8, 16, and
24 that show deviation from the straight line due to higher-order
corrections.

L
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0.06
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FIG. 11. (Color online) Convergence of the standard deviation
�(L) according to Eq. (10). The fit is obtained by excluding the
three leftmost points corresponding to L = 8,16, and 24 that show
deviation from the straight line due to higher-order corrections.

with b = 0.62 ± 0.02, as shown in Fig. 11. The standard
deviation scales as L−1/ν [regardless of the odd or even
symmetries of the functions in R(L,p) expansion in Eq. (4)]
from which we can estimate ν for the elastic–perfectly plastic
transition.

Differentiating Eq. (3) with p, we can calculate R′(L,pc)
using the R(L,n) data and observe the finite-size scaling of
the form

R′(L,pc)−1 ∼ L−c, (11)

where c = 0.65 ± 0.04, as shown in Fig. 12. Since b and c

are in agreement within the error bars, we can say that even
R′(L,pc) scales as L1/ν , which rules out the possibility of f1

being an even function of x̂ according to Eq. (8). Using b

and c, we get ν = 1.59 ± 0.05. Now, from Eq. (9), we see
that a is much larger than 1/ν, which implies pavg must be
converging to pc as L−1/ν−ν1 with ν1 = a − 1/ν = 0.93 ±
0.05. The estimated ν1 value is close within the error bars to
a much accurate estimate of ∼0.9 obtained in Ref. [23]. It

L

R
’(p

c ,
L)

50 100 150 200

5

10

15

20
25
30
35
40
45

FIG. 12. (Color online) Convergence of R′(L,pc) according to
Eq. (11). The fit is obtained by excluding the three leftmost points
corresponding to L = 8,16, and 24 that show deviation from the
straight line due to higher-order corrections.
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FIG. 13. (Color online) The least-squares fit obtained for
R(L,pc) according to Eq. (12).

should be noted that the value of a estimated from Eq. (9)
is very sensitive to the estimate of critical threshold pc, but
the limited number of realizations makes accurate estimate of
pc difficult to obtain. Therefore, we have obtained ν using
convergence properties of � which do not depend an pc and
then confirmed this value using R′(L,pc)−1, which is found to
be not very sensitive to pc.

The estimated value of ν1 can now be used to verify the
behavior of R(L,pc). From Eq. (4) we can represent R(L,pc)
with the leading-order terms as [25]

R(L,pc) ∼ f0 + B1ω1L
−ν1 + f311(0)(B1ω1)2L−2ν1 . (12)

With ν1 = 0.93 in the equation above we obtain a good fit,
as shown in Fig. 13, where R(L,pc) is plotted as a function of
L−ν1 . Using least-squares fitting, we obtain f0 = 0.47 ± 0.01,
B1ω1 = −2.6 ± 0.4, and f311(0) = 1.2 ± 0.1. Although the
ν1 value is found to be close to the random percolation one,
the B1ω1 and f311(0) values obtained for the elastic-plastic
transition case differ markedly from the estimated values for
random percolation in Ref. [25].

It is now clear that pavg indeed converges to pc as
L−1/ν−ν1 . Therefore, the finite-size scaling analysis shows
that the elastic–perfectly plastic transition can be described
as a percolation process with ν = 1.59 ± 0.05 and ν1 =
0.93 ± 0.05. Clearly, ν obtained is larger than the random
percolation problem in 2D for which νrp = 4/3 [21]. The
reason for a different ν can be due to the presence of long-range
correlations which are known to affect the correlation length
critical exponent [26]. Specifically, for a long-range correlated
spatial domain with Hurst exponent H we have νH = −1/H

valid for −1/νrp < H < 0 [27]. Thus, the larger ν value can be
attributed to the presence of long-range correlations embedded
in the physics of the elastic–perfectly plastic transition process.

Of course, in the infinite disorder limit, random percolation
process with the critical correlation length exponent νrp = 4/3
should be recovered as perturbations in the strain distribution
introduced by the yield events become irrelevant [12,18].
Recently, a renormalization group-based unified theory was
proposed for an elastic-brittle transition explaining the nucle-
ation (weak disorder and large length scales), diffuse damage
with avalanches, and percolation behavior (strong disorder)

(pavg-p)/Δ

R
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FIG. 14. (Color online) The collapsed cumulative yield proba-
bility distribution R(L,p) for different L plotted against the reduced
variable [pavg(L) − p]/�(L).

as finite-size effects (summarized into an interesting phase
diagram) [28]. A detailed analysis of the elastic–perfectly
plastic transition will be performed along similar lines in future
to understand the nature of this transition as a function of the
disorder strength.

The crossing probability functions R(L,p) can be collapsed
by plotting them as a function of the standard normal variable
of the form [pavg(L) − p]/�(L), as shown in Fig. 14. R(L,p)
can also be identified as the cumulative yield probability
distribution as the percolation implies macroscopic yielding
in this case. Thus, R(L,p) is analogous to the cumulative
failure probability distribution in the case of an elastic-brittle
transition. For elastic-brittle transitions studied using RFM
[10], the Gaussian distribution was found to adequately explain
the failure probability distribution (up to the peak load). Up
to the peak load, the elastic-brittle transition is dominated
by disorder over the microcrack stress concentrations and the
failure events are more or less uncorrelated. As the elastic–
perfectly plastic transition is also dominated by disorder for
the most part, we attempt to check the Gaussian nature of
R(L,p) in Fig. 15 by plotting 	−1[R(L,p)] as a function of
the standard normal variable [pavg(L) − p]/�(L), where 	

denotes the standard normal probability distribution function.
The collapse of the data along the unit slope line shows that
the normal distribution adequately describes R(L,p).

F. Plastic strain accumulation

So far we have focused on the distribution of yielded springs
and analyzed the elastic-plastic transition as a percolation
process. Each yielded spring was identified with a black pixel
to differentiate from the elastic spring. However, each yielded
spring also carries a plastic strain,

γs =
∑

i

(�εp)i (13)

where (�εp)i is the accumulated plastic strains at each load
step i and (�εp)i = �εi − �σi/E, where �εi is the strain
increment and �σi is the stress increment for a given spring at
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FIG. 15. (Color online) Normal distribution fits of R(L,p) with a
black dotted line of slope 1 for comparison. Here 	(.) is the standard
normal distribution and [pavg(L) − p]/�(L) is the standard normal
variable. The collapse of data for different L indicates that the normal
distribution adequately describes R(L,p).

the ith load step. In this section we study the spatial distribution
of γs and the effect of ET /E on the same.

The plastic strain maps are generated as a pixelated
image where the gray scale value at each pixel corresponds

0 0.2 0.4 0.6 0.8 1
γs/γs

max

(a) ET/E=0 (b) ET/E=0.05

(d) ET/E=0.5(c) ET/E=0.2

FIG. 16. [(a)–(d)] Distribution of the accumulated plastic strain
γs after the completion of the elastic-plastic transition for ET /E =
{0,0.05,0.2,0.5}. The γs values are normalized with the maximum
γ max

s to visualize the distribution from 0 (white) to 1 (black). The
plastic strain distribution can be observed to be more homogenized
(reducing anisotropy) as ET /E increases.

to the γs accumulated during the entire transition at the
corresponding spring. The γs values in the plastic strain
maps are normalized with the maximum to be able to
compare the different cases easily. Figure 16 shows the plastic
strain maps for ET /E = {0,0.05,0.2,0.5} with L = 256 for a
single realization. Figure 16(a) for ET /E = 0 shows strongly
localized plastic strain accumulation linked with the yield line
formation which can be clearly seen. The image appears mostly
white as the plastic strain accumulated at the yield line is much
higher than the rest of the domain. However, with increasing
ET /E the localization and the anisotropy associated with it
are mitigated. It should be noted that in the initial stages of
loading the plastic strain distribution is more or less uniform
for all ET /E and the strong localization is observed only close
to the critical load value.

The localization of plastic strain into shear bands can be
conveniently analyzed in the wave number space using a power
spectrum of the plastic strain maps shown in Fig. 17. The
power spectral density S(kx,ky) is obtained using the square
of the absolute value of the fast-Fourier transform of the plastic
strain map shown in Fig. 16 and then averaging over multiple
realizations. kx and ky are the wave numbers along the x and
y directions, respectively. A dipolar anisotropy in the plastic
strain distribution of increasing strength can be observed in
Fig. 17 as ET /E → 0. Such anisotropy stems from the dipolar
nature of the elastic kernel (of the form cos 2θ/r2) associated
with a plastic event in the antiplane loading. However, as

(c) ET/E=0.2 (d) ET/E=0.5

(b) ET/E=0.05(a) ET/E=0
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FIG. 17. (Color online) [(a)–(d)] The power spectra of the plastic
strain maps at L = 256 and ET /E = {0,0.05,0.2,0.5} averaged
over 64, 10, 10, and 10 realizations, respectively. The strength of
the dipolar symmetry diminishes with increasing ET /E, implying
uniform plastic strain accumulation.
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FIG. 18. (Color online) The power spectral density S(kx,ky)
(averaged over 64 realizations each) of the plastic strain maps
along kx = 0 (red triangles) and ky = 0 (blue circles) for ET /E =
{0,0.05,0.2,0.5} are shown in (a)–(d), respectively. For ET /E = 0,
the power spectra follows a power-law scaling S(k) ∼ kα with
exponents α = −1.48 ± 0.02 for kx = 0 and α = −0.43 ± 0.03 for
ky = 0. For ET /E > 0 we can observe that α ≈ 0 and the anisotropy
diminishes with increasing ET /E as the two curves get closer.

ET /E increases, the dipolar anisotropy is weakened and the
plastic strain distribution tends to be uniform throughout the
plastic transition process. The power spectral density S(kx,ky)
along kx = 0 and ky = 0 from Fig. 17 are shown in Fig. 18.
For ET /E = 0 [Fig. 18(a)] we observed a power-law scaling
of the form S(k) ∝ kα with απ/2 = −1.48 ± 0.02 for kx = 0
and α0 = −0.43 ± 0.03 for ky = 0. But, as ET /E increases
beyond zero, the scaling vanishes and more or less flat S(kx,ky)
profiles (i.e., α → 0) are obtained as shown in Fig. 18(b). Also,
with increasing ET /E the distance between S(kx,ky) profiles
along kx = 0 and ky = 0 decreases, which is indicative of
the diminishing anisotropy in the plastic strain distribution.
The perfectly plastic case is analyzed further by checking the
the angular dependence of α as shown in Fig. 19. The α(θ )
values are obtained by fitting the S(k) values along the given
angle θ to S(k) ∝ kα(θ) on a log-log scale.

We can compare the plastic strain maps obtained by our
model with the ones obtained in Ref. [29] (large-scale simu-
lation results in Ref. [30]) using a 2D mesoscale model used
to describe yielding of amorphous materials. The mesoscopic
model works by explicitly using the elastic kernel associated
with a plastic event in 2D of the form cos(4θ )/r2 and
introducing disorder in the yield thresholds of the sites in
the domain. Note that in 2D we expect to get plastic strain
localization (shear bands) in ±π/4 directions, whereas in
antiplane loading, horizontal shear bands are expected as
elastic kernel will be of the form cos(2θ )/r2. Hence, we
can compare the α values obtained using our model in the
range [0,π/2] with the α values obtained in the range [0,π/4]
in Ref. [29] using the mesoscopic model. The απ/2 ≈ −1.48
and α0 ≈ −0.43 values obtained in Fig. 18(a) compare well
with απ/4 ≈ −1.67 and α0 ≈ −0.33 obtained in Ref. [29].

θ/π
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FIG. 19. (Color online) Angular dependence of the scaling coef-
ficient α(θ ) of the averaged power spectral density S(k) (∼kα(θ)) of
the plastic strain maps for ET /E = 0.

However, the dependence on θ does not follow similar trends
as in Ref. [29] as the spring lattice geometry plays a role in the
spring lattice simulations. For example, in the diamond lattice
that we have used here, the stress redistribution following a
plastic event is not exactly of the cos(2θ )/r2 form, but it will
have some distortions (bias in ±π/4 directions) due to the
spring lattice arrangement. Whereas, in the mesoscale models
such as Ref. [29], the stress redistribution kernel is explicitly
implemented.

The mesoscopic model [29] and the spring lattice model
presented here share the two basic governing principles: (i)
long-range elastic interactions and (ii) disorder in the yield
limit. However, the difference between the two stems from the
way in which the plastic strain is accumulated. In the EPBM,
plastic strain accumulation is based on the bilinear elastoplastic
behavior (akin to dislocation-based plasticity in crystalline
materials), whereas in the mesoscopic model the plastic strain
is accumulated using a random variable [based on the shear
transformation zone description of amorphous plasticity] that
is physically linked to the intrinsic local disorder present in the
amorphous materials. By treating the magnitude of the plastic
event as a random variable, nonpersistent shear bands were
observed in Ref. [29], while persistent shear bands are obtained
using EPBM in this study, where plastic strain accumulation
at the yielded spring is deterministic for a given realization
(governed by the boundary conditions).

The size distribution of the intermittent plastic events was
shown in Ref. [14] to be of the form P (s) ∝ l−τ h[s(ET /E)λ],
where s is the plastic event (avalanche) size. The exponents τ

and λ were found to match with the mean-field values of 1.5
and 1 [31]. The decreasing upper cutoff in the size distribution
P (s) due to absence of bigger avalanches observed in [14] can
be linked with the absence of plastic strain localization at the
shear bands as ET /E increases (Fig. 16).

IV. ELASTIC-PLASTIC-BRITTLE TRANSITION

After yielding, any given material will undergo failure after
exhausting the amount of permitted ductility. To understand
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FIG. 20. (Color online) Normalized average stress-strain plots
are shown for ET /E = {0,0.2,0.5,0.8} in (a)–(d), respectively, at
N = {2,5,10}. The lines with increasing N can be identified as we
move from left to right along the arrow shown. The limiting failure
stress can be observed to increase with increasing N as well as ET /E.

the effect of parameters N (controlling permitted ductility)
and ET /E on the material response, a parametric study is
conducted with N = {2,5,10} and ET /E = {0,0.2,0.5,0.8}.
The disorder in the yield limit follows a uniform distribution
as before. The case of weak disorder is not of much interest as
it results in a trivial failure governed by the weakest bond in
the lattice [1]. The range of ET /E considered covers materials
from a perfectly plastic to strong hardening type, and the range

FIG. 21. (Color online) The volume fraction of the yielded
springs vy (dotted line) and failed springs vf (solid line) are shown
for ET /E = {0,0.2,0.5,0.8} in (a)–(d), respectively, at N = {2,5,10}.
The vy and vf lines for increasing N can be identified as one moves
from left to right along the arrow.

of N considered represents materials with increasing ductility.
The material responses obtained here represent markedly
different behaviors in the given parameter space, as explained
next.

A. Results

1. Stress-strain response

The stress-strain plots for ET /E = {0,0.2,0.5,0.8} at N =
{2,5,10} are shown in Fig. 20. The observed trends can be
intuitively understood based on the postyield load-carrying
capacity controlled by ET /E and ductility controlled by N .
For a given ET /E, the failure stress increases with increasing
N . Similarly, for a given N , the failure stress increases with
increasing ET /E.

2. Morphology of the yielded and failed springs

Previous studies [13,14] have shown that, as N (ductility)
increases, the brittle damage is localized at the perfectly plastic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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v f(—
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N=100ET/E=0
(a)
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FIG. 22. (Color online) (a) The volume fraction of the yielded
springs vy (dotted line) and failed springs vf (solid line) are shown
for ET /E = 0 at N = 100. (b) The yielded springs (black pixels)
and failed springs [red (gray) pixels] for ET /E = 0 at N = 100 at
increasing load steps. Localization of damage at the yield surface can
be observed from (iv) to (vi).
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FIG. 23. (Color online) Damage evolution images for ET /E = {0,0.8} at N = {2,5,10} with black pixels for yielded springs and red (gray)
pixels for failed springs on L = 256. For each {ET /E,N}, four images characterizing the transition are shown. The final fracture surface formed
is shown in (iv) for each case.

yield line for a perfectly plastic-brittle-type transition. Here we
study the complex interaction of plastic and brittle transitions
using the plasticity and damage accumulation patterns.

Failure events (i.e., brittle transition) representing for-
mation of micro cracks lead to stress relaxation in the
loading direction and to stress concentrations in the transverse
direction at the crack tips. The elastic-brittle transition (N = 1)
comprises the competition between crack tip stress concentra-
tions (localizing force) and the disorder (delocalizing force).
In the elastic-plastic-brittle transition, the plasticity interferes
with the damage accumulation process through the parameters
ET /E and N . For N → 1 or ET /E → 1, clearly, the damage
accumulation process resembles the elastic-brittle transition,
as negligible plasticity is permitted. Whereas, for large N or
ET /E → 0, plastic strain localization in the shear bands leads
to localized damage.

The volume fractions of yielded springs (vy) and failed
springs (vf ) are shown in Fig. 21 for ET /E = {0,0.2,0.5,0.8}
at N = {2,5,10}. vy steadily increases with the applied
strain followed by a peak value after which it either drops
suddenly [Fig. 21(a)] or steadily decreases with fluctuations
[Figs. 21(b)–21(d)]. Repeated elastic unloading of the plasti-
cized zones due to stress relaxation near the microcracks is
responsible for the decease and fluctuations in vy .

The sudden jump in the vf value observed near the end
of transition for all the cases is attributed to the formation

of a macroscopic crack near the peak load by localization of
the damage (similar to postpeak damage localization in the
elastic-brittle transition). The jump can be observed to vanish
when very high ductility is imparted for ET /E → 0, as shown
in Fig. 22(a) for the case of ET /E = 0,N = 100. The response
resembles the elastic–perfectly plastic transition until the yield
surface is formed followed by the failure restricted to the yield
line due to high strain concentrations therein [Fig. 22(b)].

It is observed in Fig. 21(a) that, as N increases, the final
vf (i.e., fraction of total failed springs) drops. However,
such a trend can be seen to be absent in Figs. 21(b)–21(d):
the formation of strain localized shear bands for ET /E = 0
(Fig. 5) allows damage to localize and lead to formation of
macroscopic cracks even at low vf as N increases. Whereas
for ET /E = {0.2,0.5,0.8} cases, absence of shear bands does
not allow the damage to localize for lower vf even at
higher N .

The accumulated damage at different loading stages is
shown in Fig. 23 for ET /E = {0,0.8} at N = {2,5,10}. Only
two extreme ET /E values are included to highlight the trends.
The yielded springs at the current applied load are shown with
black pixels, while the failed springs are shown by red (gray)
pixels. For each case, four representative images of the damage
accumulation process are given. The image (i) is selected from
the initial stages of the loading with very small vy and vf . The
image (ii) is selected when the vy is near the peak value. The
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image (iii) captures the events that have led to formation of
the final failure surface. The final image (iv) in each sequence
shows the final macroscopic crack formed along with other
failed springs but no yielded springs (black pixels) are seen
due to the postfailure unloading of the entire domain.

Some salient features of the transition process can be
observed in Fig. 23. At the initial stages of loading, the yielded
and failed springs are more or less uniformly spread across the
domain and the proportion of vy and vf is determined by
N . As the applied load increases, coalescence of some of the
microcracks leads to the elastic unloading across the cracks,
while yielded zones are concentrated around the crack tips.
With a further increase in the applied load, damage localizes,
leading to the macroscopic crack formation.

As N increases, an increase in vy can be clearly seen for
both ET /E = 0 and 0.8 from the first two images. Due to
the higher ductility permitted, more springs are plasticized
(i.e., higher vy) before the elastic unloading due to microcrack
formation is significant enough to cause a decrease in vy .

For ET /E = 0, the failure is localized at the shear bands,
especially for high N (see ET /E = 0 at N = 10 case in
Fig. 23). Due to the higher postyielding load-carrying capacity,
strong shear bands are absent in the ET /E = 0.8 case.
Thus, the accumulation process of the failed springs [red
(gray) pixels] is not significantly affected by N for higher
ET /E.

V. CONCLUSION

We have used an extended version of the RFM that has
capability to model elastic-plastic-brittle behavior to study
geometrical properties of the evolving sets of the plasticized
and failed springs. First, we focused only on the elastic-plastic
transition in disordered systems and performed a parametric
study to understand the effect of hardening modulus ET /E

on the transition and compare the results with random bond
percolation problem. We observed that, as ET /E → 1, the
transition closely follows the random percolation description
while the perfectly plastic case showed the maximum deviation
from the random percolation behavior due to a high level of
unloading activity. The plastic strain accumulation is initially
uniform throughout the domain for any given ET /E, but for
ET /E → 0 it eventually localizes into persistent shear bands
resulting in the dipolar anisotropy of the plastic strain distribu-

tion. Moreover, the intensity of the anisotropy diminishes with
increasing ET /E due to the higher postyielding load-carrying
capacity of the material.

The finite-size scaling analysis of the elastic–perfectly
plastic transition resulted in an estimated correlation length
exponent ν ≈ 1.59, which is larger than the correlation length
exponent of the random percolation problem νrp = 4/3. The
larger value is concluded to be a result of the presence of long-
range correlations in the elastic–perfectly plastic transition that
are known to increase the value of correlation length critical
exponent. It should be noted that the analysis presented here is
for uniform disorder (finite). In the infinite disorder limit the
long-range correlations are ineffective in comparison with the
wide scale of the disorder present. Therefore, in the infinite
disorder limit, the elastic–perfectly plastic transition is similar
to a random percolation process. The study suggests that the
elastic–perfectly plastic transition is a long-range correlated
percolation process and the value of ν depends on the strength
of disorder present, approaching the value 4/3 in the infinite
disorder limit.

Next, we discussed the effect of ET /E and N on the
complete elastic-plastic-brittle response. The brittle part in
the constitutive behavior is introduced with some ductility
(controlled through parameter N ), resulting in a competition
of the localizing force (plastic shear bands and crack tip
stress concentrations) and the delocalizing force (disorder).
The transition is characterized by initial increase in the
plastic volume fraction (vy) followed by intermittent decrease
in vy (for ET /E > 0) due to elastic unloading caused by
stress relaxation in the transverse directions of the nucleating
microcracks. As N increases and ET /E → 0, the damage
is localized at the dominant shear band (yield surface for
perfectly plastic response).

In-plane and three-dimensional generalizations of the pre-
sented work will be carried out in future to check whether the
trends observed in the antiplane regime carry over to higher
dimensions.
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