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Mechanics of large folds in thin interfacial films
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A thin film confined to a liquid interface responds to uniaxial compression by wrinkling, and then by folding,
that has been solved exactly before self-contact. Here, we address the mechanics of large folds, i.e., folds that
absorb a length much larger than the wrinkle wavelength. With scaling arguments and numerical simulations, we
show that the antisymmetric fold is energetically favorable and can absorb any excess length at zero pressure.
Then, motivated by puzzles arising in the comparison of this simple model to experiments on lipid monolayers
or capillary rafts, we discuss how to incorporate film weight, self-adhesion, or energy dissipation.
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I. INTRODUCTION

Deforming soft two-dimensional objects by means of
capillarity opened a new route to design three-dimensional
structures at the micro- and nanoscale [1–3]. However, attach-
ing these thin films to soft substrates submits them to a wealth
of morphological instabilities such as wrinkling, crumpling,
or folding [4]. Such instabilities have been observed in
lipid monolayers [5–12], nanoparticles films [13], capillary
rafts [14–16], and thin polymer sheets resting on a gel [17,18]
or a liquid substrate [19,20]. Their complete characterization is
a necessary step toward their control and use in the fabrication
of small structures.

A simple setup where some of these instabilities arise
consists of a thin film at an initially flat liquid interface
that is confined in one horizontal direction (see Fig. 1). The
film responds to confinement by wrinkling and folding in a
universal way resulting from the competition between the
bending energy to deform the film and the gravitational energy
to lift the liquid [17], the wrinkle-to-fold transition being
associated with a buckling localization [21]. Minimizing the
total energy leads to an integrable equation for the shape
of the film [22–24], allowing one to obtain an analytical
expression for the energy as a function of the confinement
length. However, this exact result holds only up to self-contact
of the film, and that occurs as soon as the confinement length
reaches approximately the wavelength of the wrinkles [22].

On the other hand, the experimental range of confinement
for lipid monolayers [5,6,9–12] and capillary rafts [15,16] goes
far beyond self-contact. In the first case, folds are formed [5]
abruptly, causing jerky monolayer dynamics [10]. In a folding
event, a length ∼2 μm is absorbed in a fold in ∼0.1 s. It has
already been noted that this characteristic time is anomalously
fast [25], but what sets the characteristic length is also unclear.
In capillary rafts, large folds—involving a length much larger
than the wrinkle wavelength—are formed and eventually get
destabilized under their own weight [15]. To understand the
behavior of the film in these experiments, a systematic study
of the mechanics of large folds is required. In this article, we
address the following questions: what is the shape of a fold
after self-contact? What is its energy?
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FIG. 1. (Color online) A thin interfacial film responds to uniaxial
confinement first by wrinkling (top) and then by forming a large
fold (bottom). The invariance of the system along ẑzz allows us to
parametrize the shape of the film by a function rrr(s) = [x(s),y(s)].

II. MODEL

A thin film at a liquid interface is submitted to uniaxial
confinement along x̂xx; the system is invariant in the ẑzz direction
(see Fig. 1). Soon after the confinement length exceeds a
threshold value for wrinkling instability, the film responds
as if it was nearly inextensible, and can be modeled as a rod
parametrized by rrr(s) = (x(s),y(s)) in a vertical plane (s is
the arc length). Pocivavsek et al. [17] found that the bending
energy of the film and the gravitational energy of the displaced
fluid are responsible for the wrinkle-to-fold transition. Those
energies are, respectively,

Ubend = B

2

∫
rrr ′′(s)2ds, (1)

Ugrav = ρg

2

∫
y(s)2x ′(s)ds, (2)

where B is the bending modulus of the film, ρ is the
mass density difference between the fluids below and above
the sheet, g is the gravitational acceleration, and energies
are given per unit length in the orthogonal direction. For
a continuous material, the bending modulus is given by
B = Et3/[12(1 − ν2)], where E is the Young modulus, ν the
Poisson ratio, and t the thickness of the film. These parameters
allow one to define the characteristic length l = (B/ρg)1/4. In
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FIG. 2. (Color online) Fold energy as a function of the imposed
displacement for the symmetric (squares) and antisymmetric (circle)
folds. The solid blue line is the exact solution, Eq. (3), valid
before self-contact. Symmetric (top) and antisymmetric (bottom)
configurations are shown before self-contact (left, exact solutions
from Diamant and Witten [22] are shown as thick dashed lines) and
after self-contact (right). After self-contact, the size of the fold �/2
absorbs the excess length, while bending is localized in highly curved
zones of length l′.

the following, we rescale lengths by l and energies by B/l such
that we are left with dimensionless quantities only. We focus
on the dependence of the energy on the confinement length
� = L − [x(L) − x(0)], which is the only dimensionless
parameter in the problem (L is the length of the film in the
confined direction). In this study, we assume that the length of
the film in the confined direction, L, is large enough so that
boundary conditions do not affect the behavior of the system;
clamped boundary conditions have been shown to select the
folding mode if L is of order 1 [26].

The system defined by the energies Eqs. (1) and (2) is
integrable [22–24]. For a given confinement length �, there is
a continuous family of solutions with the same energy,

U 0(�) = 2� − �3

48
, (3)

among which are the symmetric and antisymmetric configu-
rations pictured in Fig. 2. Two points are noteworthy: first,
this energy is always lower than the energy of the wrinkled
state, Uwr = 2� [6]; second, this energy has a maximum and
may even become negative. This is prevented by self-contact,
where the exact solutions cease to be valid. Self contact occurs
at � � 5.6 for the symmetric fold, just before the maximum,
and at � � 6.6 for the antisymmetric fold, just after U 0 reaches
its maximum, meaning that there exists an antisymmetric fold
with negative pressure.

III. SCALING ARGUMENTS AND
NUMERICAL SOLUTION

We start our investigation of large folds with a scaling anal-
ysis. Large symmetric and antisymmetric folds are depicted in
Fig. 2. A fold is characterized by two lengths: its size �/2 that
is given by the confinement length (assuming that the whole
confinement length is absorbed into the fold), and the size l′

of the highly curved zone(s) that contains bending. The size
l′ is determined by an energy balance. In the symmetric case,
the bending and gravitational energies are, respectively, 1/l′
and �l′2 (the volume of fluid contained in the highly curved
zone is l′2 and its displacement is �). Minimizing over l′ gives
l′ ∼ �−1/3 and the scaling law

U sym ∼ �1/3. (4)

Note that this scaling is strictly different from the result
of a scaling argument in Pocivavsek et al. [17], which
neglected the effect of self-avoidance. On the other hand,
in the antisymmetric case, the displacement of the fluid
inside the highly curved zones does not depend on the fold size
�. The bending and gravitational energies are, respectively,
1/l′ and l′3, leading to l′ ∼ 1 and

U antisym ∼ 1. (5)

Since the fold occurs at � > 1, the antisymmetric fold has a
lower energy than the symmetric one, which does not depend
on the size of the fold: once it is formed, it can absorb length
at negligible cost.

In order to completely characterize the behavior of the fold,
we have to investigate the crossover between the energy at
self-contact, given by Eq. (3), and the asymptotic behaviors of
Eqs. (4) and (5). Besides this crossover, we want to determine
the asymptotic value of the energy of the asymmetric fold. We
resort to a numerical computation of the film shape to answer
these questions.

The rod parametrized by rrr(s) is modeled as a chain of
beads with bending and gravitational energies, a stretching
energy with a very large stretching modulus and a short-range
repulsion energy between the beads to prevent self-crossing;
the expression of these energies and more details about the
simulations are given in the Appendix. The equilibrium rod
configuration is given by minimization of the full energy, and
its energy is computed with the bending and gravitational
contributions only. Another way to obtain the shape of the
film would have been to solve exactly the equations for its
shape between points of self-contact; this has been done
in a similar configuration [27], but it was limited to one
self-contact point and in our case finite portions of the film
are in self-contact. We perform two kinds of simulations: in
the first, we find the energy minimizing configuration of the
complete rod; in the second, we consider one half of the rod and
impose a symmetric configuration. In the first case, the energy
minimizing configuration is always found to be antisymmetric
after self-contact. To check the validity of the numerical
scheme, we compare the symmetric and antisymmetric shapes
of the rod given by our simulations before self-contact to
the exact solutions of Diamant and Witten [22] in Fig. 2; an
excellent agreement is found.

The energies of the symmetric and antisymmetric con-
figurations are plotted as a function of the displacement in
Fig. 2: they are equal before self-contact and differ strongly
after self-contact. The energy of the symmetric fold keeps
increasing while that of the antisymmetric fold decreases
monotonously to a plateau well below its maximum value
(the symmetric fold shown in Fig. 2 is pointing down, but the
corresponding configuration with the fold pointing up has the
same energy).
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FIG. 3. (Color online) Energy of the antisymmetric fold as a
function of the confinement length �. Red circles are the results of
the numerical simulations, the continuous line is the exact solution,
Eq. (3), which is valid before self-contact, i.e., for � � 6.6. Inset:
typical configurations showing the different folding steps (numbers
indicate the confinement length).

Before self-contact, the fold shape is given by any solution
in the continuous family of solutions with the same energy.
When self-contact occurs, the self-contact point slides, driving
the fold toward the antisymmetric state. Then, the film stays in
the antisymmetric configuration and the highly curved zones
get larger, and later start to move apart until a trilayer is formed
between them. Once the trilayer is formed, it can expand at
zero-energy cost, without any change in the shape of the highly
curved zones. This steps are represented in the inset of Fig. 3.

The transition from the flat to the folded film resembles
the monolayer-to-trilayer transition observed in nanospheres
rafts [13].

IV. DISCUSSION

The picture that emerges from our analysis is that large folds
are antisymmetric and energetically cheap; it does not fit the
observations of folds in capillary rafts or in lipid monolayers:

(i) folds in capillary rafts are often symmetric [15,16];
(ii) folds in lipid monolayers have a well-defined length;

i.e., creating several folds is favorable to enlarging one
fold [10].

These discrepancies indicate that the energetic consider-
ation of bending and gravity alone do not account for the
observed properties: other effects should be involved. As a
preliminary exploration of such effects, we discuss possible
extensions of the simple model used here and their potential
effect on the energy and dynamics of large folds.

The film weight plays a crucial role in capillary rafts,
leading to fold instability and breaking [15,16]. Here, we
discuss its effect on the shape and energy of the fold. The
film weight enters in the energy via an additional term,

Uweight = M

∫
y(s) ds, (6)

where M = ρf [g/(Bρ3)]1/4 and ρf is the effective mass of
the film per unit area (taking into account its buoyancy). It is
noteworthy that for the very small deformations involved in the

wrinkled phase, the gravitational energy is approximated by
Ugrav � (1/2)

∫
y(s)2 ds; thus, the film weight can be absorbed

in a shift of the y coordinate and has no effect. For large
folds, it is straightforward to incorporate it into the scaling
analysis: it contributes to the downward symmetric fold (that is
selected if σ > 0) as Uweight ∼ −M�2 and it does not con-
tribute to the antisymmetric fold. This negative contribution
may thus make the symmetric fold favorable and even unstable
since its energy U sym ∼ �1/3 − M�2 decreases to −∞ after
its maximum at �c ∼ M−3/5. Moreover, a tension T ∼ � is
induced in the film that will eventually break; this behavior is
observed in heavy capillary rafts [15,16]. On the other hand,
for monolayers, a rough estimate gives M � 10−3 in dimen-
sionless units, meaning that the weight of the film may have an
effect only when �c � 100, i.e., for very large folds. A strong
effect of the weight of the monolayers on their folding is thus
unlikely.

We turn to self-attraction, which can hold two parts of the
fold together [19] and has been suggested as a mechanism to
drive the folding of lipid monolayers [12]. It can be modeled by
an energy gain � per unit area of the film in contact with itself.
The adhesion energy � may differ on either side of the film: not
only the two sides of the film can be different, as is the case for
lipid monolayers, but the interaction of the film with itself can
depend on the surrounding liquid. The symmetric fold is the
first to experience self-contact; thus, it may be favored in the
presence of self-attraction. Self attraction leads to an energy
gain ��, giving U sym ∼ �1/3 − ��. Thus, depending on �,
the film may be unstable at self-contact. In case self-adhesion
prevents relative motion and fluid flow between two sections
of the film in contact with each other, the size of the highly
curved zone cannot decrease as l′ ∼ �−1/3 (it requires fluid
flow from the highly curved zone to the upper reservoir) and
remains equal to its value at self-contact, l′ ∼ 1, resulting in
the total energy U sym ∼ (1 − �)�. Let us now consider the
antisymmetric fold, with self-attraction on the two sides: the
energy gain is higher than in the symmetric case (although
self-contact occurs later), but relative motion of sticking parts
is required; thus, if the upper fluid is sufficiently viscous, the
symmetric fold is preferable. If only one side experiences
self-attraction, the relative motion of sticking parts can be
avoided, the energy gain is the same as in the symmetric case
but the gravitational cost (of the liquid phase) is lower: the
antisymmetric fold is still favored.

Last, energy dissipation may occur during the fold for-
mation due to flow between nearly touching parts of the film
(symmetric fold) or the relative motion of nearly touching parts
of the film (antisymmetric fold). When the symmetric fold
grows, the highly curved zone shrinks as l′ ∼ �−1/3 under the
effect of increasing hydrostatic pressure and an upward flow
is generated in the narrow neck formed by the two parts of
the film that are close to self-contact. The radius of the highly
curved zone shrinks slowly; thus, the dissipation decreases as
the fold size increases. In the antisymmetric fold, the effect
is slightly different: the length of the highly curved zones
does not change, but proximal parts of the film are in relative
motion (in Fig. 3, inset � = 35, the top part of the trilayer
moves left, the center part does not move, and the bottom
part moves right). A flow is needed to lubricate this relative
motion, and the dissipation increases as �, the length of the
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portions of the film in self-contact. Hence, energy dissipation
will be lower in the symmetric fold, and hence it is favored if
the formation of the fold is rapid. Once formed, the symmetric
fold will eventually relax to the antisymmetric configuration.
A more precise analysis of the sources of energy dissipation
would consider the effect of self-attraction, that may reduce
the thickness of the fluid layer between parts of the film and
thus increase dissipation.

V. CONCLUSION

We have investigated the behavior of large folds that may
appear in thin interfacial films under uniaxial confinement.
Under the assumption that the system is controlled by bending
and gravity [17], we have shown that the large folds are
antisymmetric and their energy decreases after a maximum
reached before self-contact to a universal value well below
this maximum (see Fig. 3). The antisymmetric folds are
energetically cheap—one fold can absorb all the excess length
at a finite cost—and stable—they do not unfold spontaneously
at zero tension. On the other hand, the energy of symmetric
folds increases monotonously, and these folds are thus less
favorable energetically.

Although antisymmetric folds may be the actual cause of
“trilayers,” which have been observed, for instance, by Leahy
et al. [13], their actual development for the wrinkled state had
not been directly observed. We have shown that they do not
explain the preferred fold size observed in compressed lipid
monolayers [10]. Together with the kinetic puzzle encountered
in trying to predict the folding timescale of monolayers [25],
this suggests that other interactions must be included in
the model. We discussed the effect of the weight of the
film, its self-attraction, and energy dissipation, finding that
the symmetric fold may be favored in some cases. A more
thorough study of these effects is, however, needed to draw
quantitative predictions on the modifications of the folding
behavior presented here.

On the other hand, Rivetti and Antkowiak [23,28] have
observed the exact solutions of the model presented here [22–
24]. The large size system—the characteristic length is l ∼
1 cm—used in their experiment appears to be accurately
described by bending and gravity only, and is thus likely to
exhibit the folding behavior predicted here.
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APPENDIX: DETAILS OF THE
NUMERICAL SIMULATIONS

The rod is modeled by a chain of N beads located at
rrri = (xi,yi) (see Fig. 4) interacting via bending, gravitational,
stretching, and self-avoidance energies, defined, respectively,

FIG. 4. (Color online) Discretized model used for the simula-
tions. The shaded discs represent the repulsion interaction, the range
of which is given by the rest length l0 between two neighbors to
prevent self-crossing between two parts of the rod.

by

Ubend = 1

2l3
0

∑
i

(rrri+1 − 2rrri + rrri−1)2, (A1)

Ugrav = 1

2

∑
i

yi + yi+1

2
(xi+1 − xi), (A2)

Ustretch = S

2l3
0

∑
i

[
(rrri+1 − rrri)

2 − l2
0

]
, (A3)

Uavoid = A
∑

j�i+2

max(l0 − |rrri − rrrj |,0). (A4)

The bending and gravitational energies are a direct discretiza-
tion of Eqs. (1) and (2). The rest distance l0 between two
neighboring beads also defines the range of the repulsion
between the beads (in order not to modify the elastic properties
of the rod, only beads with an index difference larger than
the range are interacting). The stretching modulus is set to
S = 1 000 to model unstretchability and the self-avoidance
parameter is set to A = 1, which is enough to prevent self-
crossing; changing these parameters (e.g., increasing S or A)
does not affect the simulations results. N = 3 265 beads are
used to model a rod of length L = Nl0 = 120, such that the
fixed ends are far away from the fold.

The total energy is minimized using the conjugate gradient
descent implemented in the GNU Scientific Library [29]. The
self-avoidance generates effective friction between parts of the
rod that are pushed against each other by the fluid, hindering
direct convergence to the ground state in the minimization.
To solve this problem, after minimizing the energy with
N = N0 = 3265 beads, the rod is discretized with a different
random number of beads N � N0 (keeping the overall shape)
and the energy is minimized again. Repeating these steps,
that amount to “shake” the beads along the rod, introduces
fluctuations that allow to overcome friction and finally reach
the ground state. Once the ground state of the total energy
is found, its energy is computed with the bending and
gravitational energies only.
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To find the symmetric fold shape, one half of the rod (x >

0) is simulated. Repulsion from the symmetry plane x = 0
(Urepulsion = A

∑
j max(l0 − xj ,0)) is enough to prevent self-

crossing.

The simulations results converge when the number of
beads is increased and are successfully compared to the exact
solutions of Diamant and Witten [22] before self-contact is
reached (see Fig. 2).
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