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In this paper we focus on the mechanical properties of oligomeric glasses (waxes), employing a microscopic
model that provides, via numerical simulations, information about the shear modulus of such materials, the failure
mechanism via plastic instabilities, and the geometric responses of the oligomers themselves to a mechanical
load. We present a microscopic theory that explains the numerically observed phenomena, including an exact
theory of the shear modulus and of the plastic instabilities, both local and system spanning. In addition we present
a model to explain the geometric changes in the oligomeric chains under increasing strains.
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I. INTRODUCTION

A polymer is a macromolecule that consists of a large
number of monomer subunits [1]. Polymeric glasses are solids
composed of a large number of such polymeric units. Subjected
to homogeneous strain such solids can exhibit a variety of
interesting phenomena including crazing instabilities, shear
banding, strain hardening, etc. [2]. Considerable effort was
expended to describe these phenomena on the microscopic
level using theory and simulations [3–5]. Under tensile strains
cavities may nucleate in a hitherto homogeneous polymeric
glass. It was argued that the formation of cavities takes place
in regions of local low elastic modulus [6]. Polymeric glasses
subjected to large strains exhibit strain hardening; this may
suppress strain localization and consequent crazing, necking,
shear banding, etc. Strain hardening is presumably caused
by ordering the polymer beyond a certain strain threshold.
The microscopic origin of strain hardening was studied using
molecular dynamic simulations in Refs. [7,8], finding that the
origin of this phenomenon is related to plastic rearrangements
of the monomers. This also leads to short-range ordering. In
spite of the above mentioned efforts a first-principles theory of
these interesting phenomena is still incomplete. In particular
in this paper we propose a microscopic theory that relates
macroscopic observables with the conformational deformation
of the oligomers under pure shear.

In recent years there has been great progress in un-
derstanding the mechanical properties of amorphous solids
from first principles [9–11]. This progress was based on
identifying elementary plastic events as the loss of mechanical
stability when a Hessian eigenvalue hits zero [9–11]. This
event is connected to a saddle node bifurcation in the
generalized energy landscape. It was demonstrated also that
these elementary events can aggregate and concatenate to
yield shear localization and eventually shear bands [12,13].
The aim of this paper is to extend this analytic approach to
plasticity from simple Lennard-Jones glasses (and recently
some glasses with magnetic properties) [14–16] to the realm
of short oligomeric (or wax) glasses. These are amorphous
solids whose constituents are short chains of the order of 10–30
monomers, where the full impact of polymeric entanglement
is still not crucial [17]. Nevertheless the existence of fairly
long chains of connected monomers introduces a hierarchy of

new length scales and energy scales related to valence bonds,
valence angles, and interoligomer interactions. In particular the
persistence length �p of the oligomer turns out to be crucial.
Thus a variety of new phenomena and questions arise, calling
for a careful numerical simulation and analytic assessment.
Among the issues arising we will provide a microscopic
theory for the shear modulus of these materials, for the
failure mechanism through plasticity (both local and system
spanning) and shed light on the geometric characteristic of the
oligomers under mechanical yield.

The outline of the paper is as follows: In Sec. II we describe
the atomistic model used in further simulations. The model
employs Lennard-Jones, angular, and FENE interactions (see
below for details). Section III presents first the results of
numerical simulations for the stress versus strain curves, the
energy budget, characteristics of the oligomeric chains like
end-to-end distance, etc. For analytic transparency we perform
the simulation in quasistatic athermal conditions to highlight
the plastic events without any thermal fluctuations or strain rate
effects that mask the fundamental physics. The same section
provides some theory of these characteristics. In Sec. IV we
present a theory for elementary plastic events. Next in Sec. V
we discuss the failure mechanism involving shear localization
and eventually shear bands. Section VI presents the analytic
calculation of the shear modulus and a comparison with the
numerics.

II. DESCRIPTION OF THE MODEL

We consider a system composed of Np chains each
comprising n monomers (oligomers). Thus the total number
of particles in our system is N = Np × n. The interaction
between monomers belonging to the same or to different
oligomers is different. Interoligomer interactions are simply
given by a truncated and smoothed Lennard-Jones potential
φLJ; see below in Eq. (3). Within a given oligomer the
interactions have three contributors. First, all monomers within
the Lennard-Jones cutoff range rco exert a force on each other
which is derived from the potential φLJ. Second, a contribution
χ is added to the energy of any two successive monomers
within the polymer (to mimic the valence bond interaction).
The third contribution to the energy is an angular potential to
constrain the value of the valence angle θ determined by three
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TABLE I. The parameters used in the simulation.

a b c0 c2 c4 c6 η r0 ϕeq

3.9435 −3.892 68 1.2×10−3 −0.0207 0.106 91 −0.143 794 30 1.5 π

successive monomers within a oligomer. This interaction is
denoted below ψ(θ ). Thus the total energy can be written
as [18]

U = ULJ + UFENE + UAngle, (1)

ULJ =
N∑

〈ij〉
φ

ij

LJ, UFENE =
Np∑
k=1

n−1∑
i=1

χ
i,i+1
k ,

(2)

UAngle =
Np∑
k=1

n−1∑
i=2

ψ
i−1,i,i+1
k .

The notation is such that successive particles are i and i + 1
within a oligomer chain, and ψi

k stands for the angular contri-
bution formed by any three successive particles (i − 1,i,i + 1)
within the k′th oligomer where i is the vertex.

The truncated and smoothed potential Lennard-Jones po-
tential is defined as

φ
ij

LJ = 4ε

[(
λ

rij

)12

−
(

λ

rij

)6]
, rij � rmin, (3)

φ
ij

LJ = ε

[
a

(
λ

rij

)12

− b

(
λ

rij

)6

+
3∑

�=0

c2�

(
rij

λ

)2�]

rmin < rij < rco, (4)

φ
ij

LJ = 0, rij � rco. (5)

Here rmin/λ is the length where the potential attains its
minimum, and rco/λ is the cutoff length for which the potential
vanishes. The coefficients a, b, and c2� are chosen such
that the repulsive and attractive parts of the potential are
continuous with two derivatives at the potential minimum
and the potential goes to zero continuously at rco/λ with two
continuous derivatives as well. The unit of length λ = 1.0 is
set to be the interaction length scale of two particles, ε is the
unit of energy, and the Boltzmann constant kB = 1.

For any two successive particles within the k′th chain there
is the finite nonelastic elongation (FENE) potential with finite
length r0, which is defined as

χ
i,i+1
k (r) =

{− 1
2ηr2

0 ln[1 − (r/r0)2]; r < r0

∞; r � r0

, (6)

where r ≡ ri,i+1/λ and η is a parameter with units of force per
unit length.

Finally, for any three successive monomers within the k′th
oligomer with vertex i there is an angle constraint around a
chosen equilibrium angle ϕeq and is defined as

ψ
i−1,i,i+1
k (ϕi) = κ

[
cos ϕi

k − cos ϕeq]α = κ
[
1 + cos ϕi

k

]α
.

(7)

Below we will also employ the angle θ where θ ≡ π − ϕ.
Thus for a stiff polymer ϕ ≈ π while θ is close to zero.

We distinguish between two cases, that of a stiff oligomer
with α = 1 and a semiflexible oligomer with α = 2. The
meaning of the words “stiff” and “semiflexible” will be made
clear in the sequel. The values of all the parameters used in the
simulation are given in Table I.

III. NUMERICAL SIMULATIONS

We prepare a two-dimensional system consisting of 256
polymers having 20 monomers in a chain. The initial density
ρ = 0.8, and the temperature is chosen such that the system is
in the liquid state with high temperature T = 1.3. To achieve
such a state we begin with the crystalline arrangement of the
polymers on a square lattice, and we allow the crystal to melt
by molecular dynamics. The masses of the monomers are all
unity. The melt is equilibrated using a standard NPT procedure
for 25 τα LJ time units at pressure P = 1.0 (LJ units),
where τα is the alpha relaxation time. This relaxation time
is measured using the intermediate scattering function in the
usual manner [8]. In Fig. 1 we present the scattering function as
a function of time and the resulting relaxation time for various
temperatures, for κ = 0 and κ = 2. Defining (arbitrarily) the
glass transition temperature Tg as the temperature where
the Arrhenius behavior changes to faster 1/T dependence,
we observe that Tg increases from Tg ≈ 0.5 to Tg ≈ 0.6 as
κ increases from κ = 0 to κ = 2. We expect this trend to
continue [8].

After equilibration the polymer melt is coupled to a heat
bath at temperature T = 0.01 (LJ units) and constant pressure
(P = 1). The system is then further equilibrated for another
100 LJ time units. Finally the glass sample is taken to the
nearest inherent minimum state using a conjugate gradient
scheme. This protocol is referred to as “infinitely fast” quench.

Having prepared the oligomeric glass sample it is subjected
to an athermal quasistatic strain (AQS) as described in detail
in Ref. [11]. In brief, each monomer is first displaced by the
affine transformation

xi → xi + δγyi, yi → yi, (8)

where ri ≡ (xi,yi) is the initial position of the ith monomer and
δγ is the strain step applied during each affine transformation.
The above transformation leads to nonzero resultant forces
on the monomers. These forces are annulled by a nonaffine
transformation ri → ri + ui , where ui is displacement of
the monomer necessary to return to mechanical equilibrium.
The nonaffine displacement is computed using the conjugate
gradient scheme. The strain step is chosen for the present study
is δγ = 10−4. The simulation is performed under periodic
boundary conditions along each direction of the box using
the Lees-Edward formalism. In all the discussion bellow,
including the figures, the value of the strain γ will be computed
as a sum over the steps δγ appearing in Eq. (8).
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FIG. 1. (Color online) The intermediate scattering function vs
time (for various temperatures) and the relaxation time vs inverse
temperature. Upper panel: κ = 0; lower panel: κ = 2.

We consider both stiff and semiflexible polymers in our
studies [see Eq. (7)]. For stiff polymers the results will be
presented for κ = 2,5,10, and 15; for the semiflexible case
we consider κ = 2,4,8, and 10. Unless stated specifically the
results reported below will refer to the stiff oligomer case with
α = 1.

A. Mechanical response of the polymer

A typical stress versus strain curve that results in the AQS
protocol is shown in Fig. 2 for a single realization of a stiff
oligomeric glass with κ = 2. The stress grows linearly at first
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−0.5

0

0.5

1

1.5

2

γ

σ xy

0 0.02 0.04 0.06 0.08 0.1
−0.5

0

0.5

1

FIG. 2. (Color online) A typical stress vs strain curve obtained by
AQS straining of 256 polymers of chain length 20 with stiffness pa-
rameter κ = 2. Smooth (linear) increases in the strain are punctuated
with sharp drops. The trajectory of stress vs strain is reversible only
until the first drop. The sharp drops are plastic events as explained in
the text. Inset: Blow-up of the first few plastic drops.

with the strain, and the protocol can be reversed to return
to initial state. Upon increasing the strain the stress versus
strain trajectory gets punctuated with sharp drops; these are
irreversible, and after the occurrence of the first one we cannot
return to the initial state by reversing the protocol. After each
plastic drop the stress rises again linearly with the applied
strain (but not necessarily with the same slope) until the
next plastic drop takes place. Generally speaking both the
stress versus strain and the energy versus strain curves reach
eventually a kind of steady state in which the average stress and
energy do no longer change even though they still experience
elastic increases and plastic drops. This type of response has
been often described in the context of atomistic glasses; see,
for example, Refs. [3,9–11]

At first, when the external strain is still small, the energy
drops associated with the plastic events are small and do not
increase with the system size. These plastic energy drops
are associated with localized events as is explained in the
next section. On the other hand, when the external strain is
increased, at a threshold value of the external strain (also
known as the yield strain γY ) much bigger energy drops become
possible. Once the yield stress has been achieved, there is a
quantitative change in the nature of the plastic drops since they
become system-size dependent. We can examine the statistics
of the magnitude of the energy and stress drops in the steady
state. In Fig. 3 we show the average magnitude of energy
〈�U 〉 and stress drops 〈�σ 〉 for systems of increasing number
of particles N . It appears that the data support the scaling laws

〈�U 〉 ∼ Nα̃, α̃ ≈ 0.5, (9)

〈�σ 〉 ∼ Nβ̃, β̃ ≈ −0.5. (10)

In Ref. [11] it was shown that these exponents satisfy a scaling
relation α̃ − β̃ = 1 as these exponents do. Since the system
spanning events are confined to linear structures one is not
surprised with the exponent α̃ = 1/2 in a two-dimensional
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FIG. 3. (Color online) Log-log plots of the average magnitude of
the stress drops �σ and energy drops �U in the steady state (after the
yield strain had been passed) as a function of the number of particles
in the system.

system. The scaling relation immediately determines also β̃ =
−1/2.

To make sure that the exponent α̃ = 0.5 is consistent we can
test the probability distribution functions (pdf) of the energy or
stress drops. In Fig. 4 we show the raw pdfs of these quantities
and the rescaled pdf’s. The rescaling is done using the exponent
α̃ = 1/2. The data collapse of the pdfs in the tails shows that
the exponent is adequate. Note that the rescaling does not
collapse the data for small drops; these continue to be system
size independent.

A theoretical discussion of the localized and the subex-
tensive plastic events is provided in Sec. IV. Nevertheless
the reader should note that a continuum description of the
stress versus strain curves in our amorphous solids is still
under debate, even in the case of simpler examples like binary
Lennard-Jones glasses. Here the quantitative theory of energy
input by mechanical strain, including the share taken by stress
versus oligomeric conformation changes on the one hand,
and energy dissipated to the heat bath on the other hand is
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FIG. 4. (Color online) Raw and rescaled pdf’s for the energy
drops in the steady state. The data collapse in the tails of the
distributions supports the scaling laws presented in Eqs. (9) and (10).

0 1 2 3 4 5 6 7
0

0.5

1

1.5

γ

σ
x
y

0 1 2 3 4 5 6 7
−1.6

−1.4

−1.2

−1
x 10

4

γ

U

κ = 0
κ = 2
κ = 4
κ = 5
κ = 8
κ = 10
κ = 15

FIG. 5. (Color online) Upper panel: Stress vs strain for different
κ for the stiff polymer (α = 1). The stress reaches to the same steady
state for the finite κ . Bottom panel: The variation of total internal
potential energy with strain. The data averaged over 40 independent
realizations are shown.

still unavailable. Such an understanding is prerequisite to any
continuum theory.

B. Stress and energy averaged over realizations as a function
of the stiffness parameter

In addition to measuring the plastic drops in a single
realization of the glass, it is interesting to examine the energy
and the stress averaged over many realizations. Such graphs
should be closer to what is expected in the thermodynamic limit
when Np → ∞. In particular we can examine the dependence
on the stiffness parameter κ . In Fig. 5 we see the stress
versus strain and the energy versus strain averaged over 40
independent realizations as a function of κ . It is interesting
to see that both the energy reaches the same steady state for
κ 
= 0, but not for κ = 0. The stress appears to reach the same
steady state for κ > 2, but not for κ = 0,2. To underline the
fact that the attainment of the same steady state energy is not
at all trivial, we show in Fig. 6 the dependence on the strain
of the various contributions to the energy coming from the
different terms in the Hamiltonian. It is quite evident that
the various contributions to the total energy do not reach
the same steady state, and the result shown in Fig. 5 is the
consequence of an interesting and subtle cancellation that
needs to be explained. Currently we have no explanation
to this observation. To be more confident in the correctness
of the observation we changed the parameter η in Eq. (6)
and repeated the measurements; the observation remains
invariant.

C. Changes in geometry of polymers with applied strain

In addition to the energy and the stress in the system, the
oligomeric glass presents also interesting responses to external
strains in the resulting geometry of the chains. Of course, the
configuration of the oligomers in the glass depends on the
stiffness of the chains. In order to characterize the config-
uration of the oligomer chains we compute the end-to-end
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FIG. 6. (Color online) Variation of the three individual contribu-
tions to the total potential energy arising from different interactions
of each with strain. Upper panel: ULJ vs strain for different κ . The
potential energy due to the LJ interaction increases on increase of κ .
Middle panel: UFENE vs strain for different κ . Bottom panel: Uangle

vs strain. The potential energy Uangle decreases on increase of the
stiffness of the chain.

length Ree of the chain and follow how it changes with the
applied strain. Figure 7 shows the variation of Ree for the
stiff case as the applied strain is increased. We see that the
tendency is different for small and large value of κ . For small
κ the chains start from a coiled state, with Ree being of the
order of

√
n. Then the action of the strain tends to straighten

the chains to increase Ree until a κ-dependent steady state.
On the other hand, for large κ one starts with almost straight
chains, such that the Ree is of the order of n; straining now
leads to bending, increasing the energy of the system, reaching
again a κ-dependent steady state. The process described can
be seen directly in snapshots of the system under strain. This
is shown for κ = 0 and κ = 10 in Fig. 8.
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FIG. 7. (Color online) Variation of end to end length Ree of the
stiff polymers with the applied strain γ as a function of κ .

FIG. 8. (Color online) Snapshot of the polymer in the box for
κ = 0 (upper panel) and κ = 10 (lower panel). From left to right:
(a) γ = 0, (b) γ = 1, and (c) γ = 5. For κ = 0 the polymers are
coiled for zero strain, and they stretch on average upon increasing of
the strain. The opposite occurs for κ = 10.

D. Theoretical remarks on the end-to-end distance and the
average angular distribution

The first observation that needs to be explained is the
end-to-end distance in equilibrium (at γ = 0). It turns out
that just using the angular potential is sufficient to give a
good estimate of this distance. The reason is that because the
oligomers are fairly stiff, the Lennard Jones term does not
lead to strong short-range particle-particle repulsion, while
the main effect of the FENE term is simply to renormalize
the individual interbond distances. Thus using the angular
potential we can simply calculate the average angle of the
oligomer chain which given by

〈cos θ〉 =
∫ π

0 dθ cos θ exp
(−UAngle

T

)
∫ π

0 dθ exp
(−UAngle

T

) . (11)

Here the temperature T should be taken to be of the order of
the fluid melt from which the glass was quenched. Below we
take T = 1. This integral can be performed exactly, and its
value is I1(κ/T )/I0(κ/T ) where I1 and I0 are the modified
Bessel function of order 1 and 0, respectively. In the upper
panel of Fig. 9 we compare the theoretical evaluation of
〈cos θ〉 to its numerically computed counterpart and conclude
the comparison is good.

Using the average angle we can write the average value
〈Ree〉 [19] as

〈
R2

ee

〉 = n

[
1 + 〈cos θ〉
1 − 〈cos θ〉 − 1

n

2〈cos θ〉(1 − 〈cos θ〉n)

(1 − 〈cos θ〉)2

]
. (12)

Taking the square root of this expression we plot it in the
middle panel of Fig. 9 and compare it with the numerically
calculated value of Ree at γ = 0, averaged over 40 different
initial conditions. The agreement is quite acceptable.

Finally, it is advantageous to define “persistence length” �p

using the relationship

〈cos θ〉 ≡ exp(−1/�p). (13)
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FIG. 9. (Color online) The average angular measure 〈cos θ〉 (up-
per panel), the average equilibrium end-to-end length Ree(0) (middle
panel,) and the average persistence length (�p) (lower panel) as a
function of κ at zero strain (γ = 0). The red dots with error bars
are the data obtained from numerical simulations, and black curves
are the theoretical estimates obtained using the theory discussed in
Sec. III D.

The resulting �p for γ = 0 is shown in the lower panel of
Fig. 9. We note that the persistence length becomes of the
order of Ree when the latter is about 10.

Returning to Fig. 7 one notes three interesting features:
(1) For small values of κ the end-to-end distance rises with

increasing strain.
(2) For large values of κ the end-to-end distance decreases

with increasing strain.

(3) In either case the end-to-end distance attains a κ-
dependent asymptotic value for large γ , which is nevertheless
not the fully stretched state.

For κ small there is a simple estimate of the asymptotic
value of Ree which involves a balance between the force due to
straining, which tends to stretch the oligomer, and the entropic
force, which tends to keep the oligomer coiled. Estimating the
force due to stress as σR and the entropic force as T

R2
ee

(R −
Ree) [20]. Balancing the two expressions we predict that

Ree(σ ) = Ree(σ = 0)

1 − σR2
ee(σ = 0)/T

. (14)

Indeed, the observed increase in the end-to-end distance at
small values of κ is in accordance with this prediction. Of
course for larger values of σ the FENE terms need to be
invoked to cure the apparent divergence in Eq. (14). Note that
this argument pertains only for small κ . At larger values of
this parameter the angular contribution can dominate over the
pure entropic contribution.

Once the persistence length is of the order of the initial
value of Ree we can assume that the oligomers are entirely
stretched. Then the effect of the shear strain is opposite, in
reducing the end-to-end distance. This stems simply from the
fact that any inclined stretched polymer will bend under the
action of shear, since its two ends move at different speeds.
The reader can see this phenomenon occurring in the lower
panel of Fig. 8. Thus the effect of increasing γ will initially
decrease Ree as is observed in Fig. 7.

In both cases the estimate of the asymptotic value of Ree is
not easy, and we leave it for future research.

IV. THEORY OF PLASTIC EVENTS

The stability of amorphous solids is determined by the
Hessian matrix which is made of second derivatives of the
Hamiltonian with respect to all the degrees of freedom.
This matrix is always symmetric and real and therefore
diagonalizable. As long as all the eigenvalues are positive,
the system is mechanically stable. Plastic instabilities are
characterized by an eigenvalue going to zero signaling the
loss of mechanical stability.

A. Calculation of the Hessian matrix

To calculate the Hessian matrix for the oligomeric glass we
recognize the three contributions to the potential energy φLJ,
χ , and ψ . These contributions result in three sub matrices that
need to be summed up to yield the full Hessian. We denote the
submatrices as HLJ, HFENE, and HAngle:

H = HLJ + HFENE + HAngle. (15)

We begin with H LJ:

HLJ(i,j ; α,β) = ∂2φ
ij

LJ

∂x
j

β∂xi
α

= ∂2φ
ij

LJ

∂(rij )2

∂rij

∂x
j

β

∂rij

∂xi
α

+ ∂φ
ij

LJ

∂rij

∂2rij

∂x
j

β∂xi
α

, (16)
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and for i = j it is

HLJ(i,i; α,β) =
∑
j
=i

−HLJ(i,j ; α,β). (17)

Note that unless otherwise stated Latin letters (e.g., i, j, etc.)
will be used for the particle’s coordinate, and Greek letters
(e.g., α,β, etc.) will be used to the denote the displacement
coordinate of the particles. In order to compute the terms
used in the above equation [Eq. (16)] explicitly, we take the
advantage of the identities:

∂rm�

∂xi
α

= rm�
α

rm�
(δ�i − δmi) (18)

and

∂2rm�

∂x
j

β∂xi
α

=
[

δαβ

rm�
− rm�

α rm�
β

(rm�)3

] (
δ�j − δmj

) (
δ�i − δmi

)
. (19)

Now we consider the terms in which the bond of a polymer
connecting particles k and � contributes to the HFENE. These
terms are written as

HFENE(k,l; α,β) =
⎛
⎝ ∂2χk�

∂xk
α∂xk

β

∂2χk�

∂xk
α∂x�

β

∂2χk�

∂x�
α∂xk

β

∂2χk�

∂x�
α∂x�

β

⎞
⎠, (20)

where α and β stand for all coordinates, and thus the
dimensions of A are 2d × 2d. The four entries of matrix A are
not necessarily adjacent in HFENE; depending on the values
of k and � they are positioned at (dk,dk), (dk,d�), (d�,dk),
and (d�,d�), respectively, where d is the dimensionality of the
system.

Further we consider the terms related to the ith valence
angle within a polymer chain. This angle is defined by three
successive particles with indices k, �, and m. The contribution
of these terms to the Hessian HAngle is expressed as

HAngle =

⎛
⎜⎜⎜⎝

∂2ψi

∂xk
α∂xk

β

∂2ψi

∂xk
α∂x�

β

∂2ψi

∂xk
α∂xm

β

∂2ψi

∂x�
α∂xk

β

∂2ψi

∂x�
α∂x�

β

∂2ψi

∂x�
α∂xm

β

∂2ψi

∂xm
α ∂xk

β

∂2ψi

∂xm
α ∂x�

β

∂2ψi

∂xm
α ∂xm

β

⎞
⎟⎟⎟⎠, (21)

where α and β stand for all coordinates, and thus the
dimensions of HAngle are 3d × 3d. The four entries of HAngle

are not necessarily adjacent; depending on the values of k,
�, and m they are positioned at (dk,dk), (dk,d�), (dk,dm),
(d�,dk), (d�,d�), (d�,dm), (dm,dk), (dm,d�), and (dm,dm),
respectively, where d is dimensionality of the system.

Formally the angular contribution to the Hessian can be
expressed as

HAngle(i,j ; α,β) = ∂2ψ�

∂x
j

β∂xi
α

= ∂2ψ�

(∂ cos ϕ�)2

∂ cos ϕ�

∂xi
α

∂ cos ϕ�

∂x
j

β

+ ∂ψ�

∂ cos ϕ�

∂2 cos ϕ�

∂x
j

β∂xi
α

, (22)

where the cosine of the valence angle is defined as

cos ϕl = − rl−1,l
γ r l,l+1

γ

rl−1,lr l,l+1
,

with rkl
γ = rl

γ − rk
γ . Now inserting the formula for cosine in

Eq. (22), one obtains

∂ cos ϕl

∂xm
α

= −
[
rl,l+1
γ

rl,l+1

∂

∂xm
α

(
rl−1,l
γ

r l−1,l

)
+ rl−1,l

γ

r l−1,l

∂

∂xm
α

(
rl,l+1
γ

rl,l+1

)]
,

∂2 cos ϕl

∂xm
α ∂x

q

β

= −
[
rl,l+1
γ

rl,l+1

∂2

∂xm
α ∂x

q

β

(
rl−1,l
γ

r l−1,l

)
+ rl−1,l

γ

r l−1,l

∂2

∂xm
α ∂x

q

β

(
rl,l+1
γ

rl,l+1

)

+ ∂

∂xm
α

(
rl−1,l
γ

r l−1,l

)
∂

∂x
q

β

(
rl,l+1
γ

rl,l+1

)
+ ∂

∂x
q

β

(
rl−1,l
γ

r l−1,l

)
∂

∂xm
α

(
rl,l+1
γ

rl,l+1

)]
.

The other auxiliary expressions are given by

∂

∂xm
α

(
rkl
γ

rkl

)
=

(
δαγ

rkl
− rkl

α rkl
γ

(rkl)3

)
(δlm − δkm),

∂2

∂xm
α ∂x

q

β

(
rkl
γ

rkl

)
=

[
3rkl

α rkl
β rkl

γ

(rkl)5
− δαβrkl

γ + δαγ rkl
β + δβγ rkl

α

(rkl)3

]
(δlm − δkm)(δlq − δkq).

.
Combining the above expressions we have

∂ cos ϕl

∂xm
α

= −
[
rl,l+1
γ

rl,l+1

∂

∂xm
α

(
rl−1,l
γ

r l−1,l

)
+ rl−1,l

γ

r l−1,l

∂

∂xm
α

(
rl,l+1
γ

rl,l+1

)]

= −
{

(δl,m − δl−1,m)

[
rl,l+1
α

rl,l+1rl−1,l
− rl−1,l

α rl−1,l
γ r l,l+1

γ

rl,l+1(rl−1,l)3

]
+ (δl+1,m − δl,m)

[
rl−1,l
α

rl,l+1rl−1,l
− rl,l+1

α rl−1,l
γ r l,l+1

γ

rl−1,l(rl,l+1)3

]}
,
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∂2 cos ϕl

∂xm
α ∂x

q

β

= −
[
rl,l+1
γ

rl,l+1

∂2

∂xm
α ∂x

q

β

(
rl−1,l
γ

r l−1,l

)
+ rl−1,l

γ

r l−1,l

∂2

∂xm
α ∂x

q

β

(
rl,l+1
γ

rl,l+1

)

+ ∂

∂xm
α

(
rl−1,l
γ

r l−1,l

)
∂

∂x
q

β

(
rl,l+1
γ

rl,l+1

)
+ ∂

∂x
q

β

(
rl−1,l
γ

r l−1,l

)
∂

∂xm
α

(
rl,l+1
γ

rl,l+1

)]

= −
{[

3rl−1,l
α r

l−1,1
β rl−1,l

γ r l,l+1
γ

rl,l+1(rl−1,l)5
−

(
δαβrl−1,l

γ r l,l+1
γ + rl,l+1

α r
l−1,1
β + rl−1,1

α r
l,l+1
β

)
rl,l+1(rl−1,l)3

]
(δlm − δl−1,m)(δlq − δl−1,q)

+
[

3rl,l+1
α r

l,1+1
β rl−1,l

γ r l,l+1
γ

rl−1,l(rl,l+1)5
−

(
δαβrl−1,l

γ r l,l+1
γ + rl,l+1

α r
l−1,1
β + rl−1,1

α r
l,l+1
β

)
rl−1,l(rl,l+1)3

]
(δl+1,m − δl,m)(δl+1,q − δl,q)

+
[

δαβ

rl−1,lr l,l+1
− rl−1,l

α r
l−1,1
β

rl,l+1(rl−1,l)3
− rl,l+1

α r
l,1+1
β

rl−1,l(rl,l+1)3
+ rl−1,l

α r
l,1+1
β rl−1,l

γ r l,l+1
γ

(rl−1,l)3(rl,l+1)3

]
(δl,m − δl−1,m](δl+1,q − δl,q)

+
[

δαβ

rl−1,lr l,l+1
− rl−1,l

α r
l−1,1
β

rl,l+1(rl−1,l)3
− rl,l+1

α r
l,1+1
β

rl−1,l(rl,l+1)3
+ rl,l+1

α r
l−1,1
β rl−1,l

γ r l,l+1
γ

(rl−1,l)3(rl,l+1)3

]
(δl+1,m − δl,m](δl,q − δl−1,q )

}
.

B. Elementary plastic events

Having calculated the Hessian matrix we can now examine
the elementary plastic events that occur at small values of γ . As
said above, the mechanical stability is lost when an eigenvalue
of the Hessian goes to zero. This is occurring via a saddle-node
bifurcation in which the minimum in which the system resides
collides with a saddle of the global energy surface. During a
saddle node bifurcation the approach of the eigenvalue to zero
is generic, following a square-root singularity [11]

λp ∼ √
γp − γ , (23)

where λP is the eigenvalue that reaches zero at γ = γP . An
example of this square-root singularity for a stiff oligomeric
glass with κ = 2 is shown in Fig. 10. As the instability is
approached the nonaffine response becomes closer to the
eigenvector of the Hessian matrix that is associated with λP ,
denoted as �P . This phenomenon is demonstrated in Fig. 11.

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1

γ

λ
P

−18 −17 −16 −15 −14
−7

−6

−5

ln(γP − γ)

ln
(λ

P
)

FIG. 10. (Color online) The variation of the smallest eigenvalue
λP as γ is increased, In the upper panel we see the eigenvalue dips
to zero, then recovers after the instability is over, and again dips to
zero at the next instability. In the lower panel we choose to blow up
the region of the first instability to demonstrate the approach of the
eigenvalue to zero with a square-root singularity [Eq. (23)].

It is important to stress that the square-root singularity
is generic and characteristic to saddle-node bifurcations. It
should be therefore independent of the system parameters and
even the nature of the system. In our case we demonstrate
this universality by changing from stiff to semiflexible and
measuring the eigenvalue λP for two values of κ as shown in
Fig. 12.
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(b) Non−affine field
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(a) Eigenvector

FIG. 11. (Color online) The eigenvector �P and the nonaffine
displacement field associated with the first plastic instability as λ →
0. The length units are normalized to the full length of the box.
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FIG. 12. (Color online) Log-log plot of the eigen value of the
plastic mode λP vs γP − γ for κ = 2 (top panel) and for κ=8 (bottom
panel) near the first elementary plastic event for semiflexible (α = 2)
polymer. The exponent is approximately 0.5.

V. FORMATION OF SHEAR BANDS

Oligomeric glasses, like simple binary glasses and the much
more complex metallic glasses, exhibit, in addition to localized
plastic events also a second class of system spanning, shear
localizing events. These events are precursors to shear banding,
and they need a finite amount of stress or strain to accumulate
before they become possible. In previous analysis it was shown
that shear localizing events occur when the strain exceeds a
value γY which depends on the Poisson ratio of the material
but is usually around 5%–7% [12]. It appears that the present
oligomeric glasses are not much different in this respect. We
begin to see shear localizing instabilities when γ is of the
order of 10% or less. The shear localization event is rather
dramatic; even though we shear homogeneously with our affine
transformation the system chooses to respond by localizing all
the shear over a small band of the size of the core of the
Eshelby solution; see Refs. [12,13] for details. It was shown in
Refs. [12,13] that this solution minimizes the energy compared
to a random array of elementary plastic events.

The nature of the shear localizing events is similar to what
had been seen previously: an eigenvalue of the Hessian matrix
dips to zero, but now instead of a single quadrupolar structure
a whole string of those, concatenated along a line in two
dimensions [12] or on a plane in three dimensions [13], appear
simultaneously. They have a global connection now, with the
outgoing direction of one quadrupolar structure connecting
immediately to the incoming direction of the next quadrupole,
thus arranging the displacement field to go in two different
direction above and below the line (or plane). For pure shear
the line (or plane) is at 45◦ to the principal stress axis. Other
angles are possible for uniaxial loading [21].

The best way to demonstrate the phenomenon is to
display the eigenfunction or the displacement field associ-
ated with the event. In Fig. 13 we show both the eigen-
function in the upper panel and the directly simulated
nonaffine displacement field at the instability in the lower
panel. Both images show how the shear is now concentrated
over a narrow band, with the displacement field pointing to the
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(b) Non−affine field
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(a) Eigenvector

FIG. 13. (Color online) The eigenfunction �P and the nonaffine
displacement field associated with a shear localizing plastic insta-
bility as λ → 0. Note the global connection between the series of
quadrupoles arranged along the line, such that the displacement field
is pointing right above and left below the line. This IS the phenomenon
of shear localization. The length units are normalized to the box size.

“right” above the band and to the “left” below the band. In a
stress control rather than a strain controlled experiment such
an event would lead to macroscopic failure.

In the next section we will present a theoretical formalism
to compute the shear modulus for the oligomeric glasses.

VI. SHEAR MODULUS μ

The shear modulus that is a measure of linear elastic
response of the material under the applied strain characterizes
the mechanical behavior of the system. Here we provide
the theory that relates the shear modulus to the microscopic
variables like Hessian, nonaffine displacements, etc.

We recall that for homogeneous shear strain the shear
modulus is defined as the second derivatives of the potential
energy with respect to the applied strain γ , i.e.,

μ = 1

V

d2U (r1,r2, . . . ,rN ; γ )

dγ 2
. (24)

In this expression the second derivative contains two contri-
butions: one coming from the affine part and another from the
nonaffine motion of the monomers. Thus we have [22]

d

dγ
= ∂

∂γ
+ ∂

∂ui
· ∂ui

∂γ
≡ ∂

∂ri
· ∂ui

∂γ
, (25)
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FIG. 14. Comparison of the theoretically calculated and the
numerically estimated shear modulus for various values of κ . The
relatively large error bars stem from the relative smallness of the
system, in which different realizations give a spread of values of
the shear modulus. Nevertheless the agreement between theory and
simulations is quite satisfactory.

where the second equality follows from the relation dri = dui.
Now the expression for shear modulus has the form

μ = ∂2U

∂γ 2
+ ∂ui

∂γ

∂U

∂ri∂γ
. (26)

Further we note that the affine step is followed by the
nonaffine step that returns the system to the equilibrium state.
For the equilibrium state

dfi

dγ
≡ − d

dγ

∂U

∂ri

= 0, (27)

where fi is the force on the ith particle. As we use the Eq. (25)
in the above equation [Eq. (27)] we obtain

dui

dγ
= −H−1

ij · �j, (28)

where Hij is the Hessian and �j = ∂2U
∂γ ∂rj

is the nonaffine
force. Now putting back Eq. (28) into Eq. (26) we obtain the
expression for shear modulus as

μ = 1

V

∂2U (r1,r2, . . . ,rn; γ )

∂γ 2
− 1

V

∑
i,j

�i · H−1
ij · �j . (29)

The first term in the above expression represents contribution
in the shear modulus as a result of the affine displacement (also
called as Born term), while the second one is the contribution
due to the nonaffine responses. The Born term is computed
analytically in Appendix A. The so-called “nonaffine force” �

is calculated directly from the knowledge of the potential (see
the Appendix), and then we solve the inverted equation (28)
H · du

dγ
= � using conjugate gradient minimization. Having

at hand the nonaffine velocity du/dγ we can get the nonaffine
contribution to the shear modulus using Eq. (26).

A comparison between the theoretically calculated shear
modulus and the one estimated directly from the stress versus
strain curves at very small γ is provided in Fig. 14.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper we discussed the mechanics of oligomeric
glasses, also known as waxes, with a special attention to
the stress and energy versus strain, the characteristics of
the oligomeric chains and their changes under strain, the
shear modulus, and the plastic failure modes. We proposed
a microscopic outlook which extends the available theory for
simple binary glasses to this much more complex oligomeric
example. This resulted in an exact theory for the shear
modulus, and a full understanding of the plastic failure, both
in the localized and in the extended modes.

There are a few open problems that call for further
theoretical and numerical considerations. The most relevant
are the following:

(1) A continuum theory of the stress versus strain and
energy versus strain is lacking. To be realistic, this is a hard
task, and even for the simpler case of binary glasses such
a theory is still under hard debate [23,24]. Understanding the
energy budget will be crucial in achieving progress along these
lines.

(2) A theory of the conformational changes of the
oligomeric chain under strain was considered in Ref. [7], in
particular the increase in the stress at large strains due to the
global ordering. Here we have provided above a theory of the
end-to-end distance for the case γ = 0 but not for finite γ .

(3) The extension of the approach to three dimensions is
highly desirable. There one can expect interesting effects of
oligomer interpenetration, trapping and reptation, especially
with longer oligomers and under higher strains.

At least the last of these open issues is under active study
in our laboratory, and we hope to present it in the near future.

APPENDIX: ANALYTIC COMPUTATION
OF BORN TERMS

For small strain field the potential energy can be expressed
as

U = U0 + ∂U

∂εαβ

εαβ + 1

2

∂2U

∂εαβ∂εην

εαβεην + O(ε3). (A1)

Also for the simple shear with affine transformation h we
have

hT h =
(

1 0
γ 1

)
·
(

1 γ

0 1

)
=

(
1 γ

γ 1 + γ 2

)
= 2ε + I2.

(A2)
Thus the strain field ε can be written as

ε =
(

0 γ /2
γ /2 γ 2/2

)
. (A3)

The Born contribution to the shear modulus μB can be
expressed as

μB ≡ d2U

dγ 2
= ∂2U

∂ε2
xy

+ ∂U

∂εyy

. (A4)
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At this stage we need to compute the first and second
derivative of the strained potential:

∂U

∂εαβ

;
∂2U

∂εαβ∂εην

. (A5)

Let us recall that for the polymer case the potential energy
is given by

U =
N∑

〈ij〉
φ

ij

LJ +
Np∑
k=1

n−1∑
i=1

χi
k +

Np∑
k=1

n−1∑
i=2

ψi
k. (A6)

Regarding the pairwise interactions we have

∂ULJ or FENE

∂εαβ

= ∂φ
ij

LJ

∂rij

∂rij

∂εαβ

or
∂χij

∂rij

∂rij

∂εαβ

. (A7)

In order to compute ∂rij /∂εαβ we define the change in rij

using r̂
ij
α = hαβr

ij

β . Therefore,

r̂ ij =
√(

r̂
ij

λ

)2
(A8)

=
√

r
ij
α hT hr

ij

β (A9)

≈
√

(rij )2 + 2εαβr
ij
α r

ij

β (A10)

= rij

√
1 + 2εαβr

ij
α r

ij

β

(rij )2
(A11)

≈ rij

[
1 + εαβr

ij
α r

ij

β

(rij )2
− 1

2

(
εαβr

ij
α r

ij

β

)2

(rij )4
+ O(ε3)

]
(A12)

= rij + εαβr
ij
α r

ij

β

rij
− 1

2

(
εαβr

ij
α r

ij

β

)2

(rij )3
+ O(ε3). (A13)

Considering the coefficient of first order term we get

∂rij

∂εαβ

= r
ij
α r

ij

β

rij
, (A14)

and from the the second order term we have

∂2ULJ

∂εην∂εαβ

= ∂

∂εην

(
∂φij

∂rij

∂rij

∂εαβ

)
(A15)

= ∂2φij

∂(rij )2

∂rij

∂εην

∂rij

∂εαβ

+ ∂φij

∂rij

∂2rij

∂εην∂εαβ

. (A16)

Using the aforementioned definition of the change in rij we
obtain

∂2rij

∂εην∂εαβ

= 2

(
r

ij
α

)2(
r

ij

β

)2

(rij )3
. (A17)

We now turn for the computation of the contribution in the
shear modulus coming from the angular part of the potential
ψ , which is

∂ψ�

∂εαβ

= ∂ψ�

∂ cos ϕ�

∂ cos ϕ�

∂εαβ

, (A18)

∂2ψ�

∂εην∂εαβ

= ∂

∂εην

(
∂ψ�

∂ cos ϕ�

∂ cos ϕ�

∂εαβ

)

= ∂2ψ�

∂(cos ϕ�)2

∂ cos ϕ�

∂εην

∂ cos ϕ�

∂εαβ

+ ∂ψ�

∂ cos ϕ�

∂2 cos ϕ�

∂εην∂εαβ

.

(A19)

The terms that remained to computed are

∂ cos ϕ�

∂εαβ

.
∂2 cos ϕ�

∂εαβ∂εην

. (A20)

Using the definition of the cosine as

cos ϕl = − rl−1,l
γ r l,l+1

γ

rl−1,lr l,l+1
, rkl

γ = xl
γ − xk

γ ,

we have

∂ cos ϕl

∂εαβ

= −
[
rl,l+1
γ

rl,l+1

∂

∂εαβ

(
rl−1,l
γ

r l−1,l

)
+ rl−1,l

γ

r l−1,l

∂

∂εαβ

(
rl,l+1
γ

rl,l+1

)]
,

∂2 cos ϕl

∂εην∂εαβ

= −
[
rl,l+1
γ

rl,l+1

∂2

∂εην∂εαβ

(
rl−1,l
γ

r l−1,l

)
+ rl−1,l

γ

r l−1,l

∂2

∂εην∂εαβ

(
rl,l+1
γ

rl,l+1

)

+ ∂

∂εαβ

(
rl−1,l
γ

r l−1,l

)
∂

∂εην

(
rl,l+1
γ

rl,l+1

)
+ ∂

∂εην

(
rl−1,l
γ

r l−1,l

)
∂

∂εαβ

(
rl,l+1
γ

rl,l+1

)]
,

where

∂

∂εαβ

(
rk�
γ

rk�

)
= 1

rk�

∂rk�
γ

∂εαβ

− rk�
γ

(rk�)2

∂rk�

∂εαβ

∂2

∂εην∂εαβ

(
rk�
γ

rk�

)
= − 1

(rk�)2

∂rk�

∂εην

∂rk�
γ

∂εαβ

+ 1

rk�

∂2rk�
γ

∂εην∂εαβ

− 1

(rk�)2

∂rk�

∂εαβ

∂rk�
γ
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+ 2rk�
γ
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γ
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.
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New derivatives that need to be defined are

∂rk�
x

∂εαβ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; α = x,β = x

rk�
y ; α = x,β = y

rk�
y ; α = y,β = x

≈ 0; α = y,β = y

, (A21)

∂rk�
y

∂εαβ

= 0, (A22)

∂2rk�
γ

∂εην∂εαβ

= 0. (A23)

Plugging the latter into cosine derivations we have

∂ cos ϕ�

∂εyy

= −
[
r�,�+1
γ

r�,�+1

∂

∂εyy

(
r�−1,�
γ

r�−1,�

)
+ r�−1,�

γ
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∂

∂εyy

(
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γ

r�,�+1

)]

= −
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x
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∂

∂εyy

(
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x
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)
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y
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∂

∂εyy

(
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y
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)
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x
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∂
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(
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x
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)
+ r�−1,�

y
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∂
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(
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y
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−
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x
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[
− r�−1,�

x

(
r�−1,�
y

)2

(r�−1,�)3

]
+ r�,�+1

y

r�,�+1

[
−

(
r�−1,�
y

)3

(r�−1,�)3

]
+ r�−1,�

x
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[
− r�,�+1

x

(
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)2
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]
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(
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]}
,

(A24)

∂ cos ϕ�

∂εxy

= −
[
r�,�+1
γ

r�,�+1

∂

∂εxy

(
r�−1,�
γ

r�−1,�

)
+ r�−1,�

γ

r�−1,�

∂

∂εxy

(
r�,�+1
γ

r�,�+1

)]
(A25)

= −
{

r�,�+1
x

r�,�+1

∂
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(
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y
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(
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)}
(A26)

= −
{

r�,�+1
x

r�,�+1

[
2r�−1,�

y
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x

)2
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y
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]
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y
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[
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x

(
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y
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(r�,�+1)3
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, (A27)

∂2 cos ϕ�

∂εxy∂εxy

= −
[
r�,�+1
γ

r�,�+1

∂2

∂εxy∂εxy

(
r�−1,�
γ

r�−1,�

)
+ r�−1,�

γ
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∂2

∂εxy∂εxy

(
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γ
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)
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∂
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(
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γ
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)
∂
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(
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γ
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)]
(A28)

= −
{

r�,�+1
x
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)
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(A29)

= −
{
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(A30)
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= −
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(A31)

For nonaffine forces = 0:

∂2 cos ϕ�
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(A32)

Using previously defined expressions and

∂

∂εαβ
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ν rk�
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(A33)

we have the final expression of the second derivative of cosine as

∂2 cos ϕ�
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