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Domain and droplet sizes in emulsions stabilized by colloidal particles
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Particle-stabilized emulsions are commonly used in various industrial applications. These emulsions can
present in different forms, such as Pickering emulsions or bijels, which can be distinguished by their different
topologies and rheology. We numerically investigate the effect of the volume fraction and the uniform wettability
of the stabilizing spherical particles in mixtures of two fluids. For this, we use the well-established three-
dimensional lattice Boltzmann method, extended to allow for the added colloidal particles with non-neutral
wetting properties. We obtain data on the domain sizes in the emulsions by using both structure functions and
the Hoshen-Kopelman (HK) algorithm, and we demonstrate that both methods have their own (dis)advantages.
We confirm an inverse dependence between the concentration of particles and the average radius of the stabilized
droplets. Furthermore, we demonstrate the effect of particles detaching from interfaces on the emulsion properties
and domain-size measurements.
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I. INTRODUCTION

In recent decades, many branches of industry have started
using colloidal particles to stabilize emulsions for various
purposes, such as cosmetics, improved low-fat food products,
and drug delivery [1,2]. Emulsions are also extremely relevant
to the petroleum industry: they are commonly found during
the production of crude oil, the extraction of bitumen from tar
sands, and in many other related processes [3].

Traditionally, amphiphilic surfactant molecules are often
employed as emulsification agents, but their effects can be
mimicked or supplemented by the use of particles. These may
fill the role of a cheaper or less toxic alternative to surfactants,
or they may be customized to include additional desirable
properties. Examples include ferromagnetic particles [4,5]
(which can be detected remotely), Janus particles [6–9] (having
different interfacial properties on different parts of their sur-
face, improving their stabilization properties), or particles with
nonspherical geometries [10–14] (which introduce additional
geometrical degrees of freedom and also exhibit improved
stabilization properties).

Due their amphiphilic interactions with the involved fluids,
surfactants reduce the interfacial tension, which reduces the
total interfacial free energy. By contrast, colloidal particles sta-
bilize emulsions kinetically because they can reduce interfacial
free energy by replacing an energetically expensive fluid-fluid
interfacial area by a cheaper particle-fluid interfacial area when
a particle adsorps to such a fluid-fluid interface. These effects
are described in some detail in [15]. The energy differences
involved in the case of colloidal particles are generally
orders of magnitude larger than thermal fluctuations, which
makes this adsorption process practically irreversible [16,17].
Once adsorped, the particles block Ostwald ripening [18–22],
which is one of the main processes leading to drop coarsening
and the eventual demixing of emulsions. Thus, by blocking
this effect, particles allow for long-term stabilization of an
emulsion.
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Particle-stabilized emulsions can present in various forms,
classified by the shapes and sizes of their fluid domains. The
form that most resembles a traditional, surfactant-stabilized
emulsion is the “Pickering emulsion” [23,24], which consists
of particle-covered droplets of one fluid suspended in another
fluid. A more recent discovery is the bicontinuous interfacially
jammed emulsion gel, or “bijel,” which is characterized by two
large continuous fluid domains that are intertwined and are
only stable because of the particles present at their interfaces.
This form was first predicted by numerical simulations [25],
and shortly thereafter confirmed experimentally [26,27]. Pa-
rameters that affect the final state of an emulsion include the
ratio between the two fluid components, the volume fraction
of the particles, and their wettability. These parameters have
been studied numerically by various authors [14,28–31]. In this
publication, we expand on the work of Jansen and Harting [29]
in particular, and we create a link with the experimental and
theoretical work of Arditty et al. [32].

Following Jansen and Harting [29], we use the lattice
Boltzmann (LB) method, coupled to solid particles whose
interparticle interactions are simulated by molecular dynamics,
to study particle-stabilized emulsions. The method is briefly
explained in Sec. II. In Sec. III, we explain in detail
how to characterize the different types of particle-stabilized
emulsions, introducing two ways to quantify domain sizes.
Section IV aims to give an overview of the parameter space that
determines how the emulsions present, based on the volume
fraction occupied by the particles, their contact angle, and
the ratio between the two fluids. After making the distinction
between bijels and Pickering emulsions, the (individual)
domain sizes are studied in some detail. Finally, in Sec. V
we draw our conclusions and provide an outlook on how to
further improve the understanding of these complex systems.

II. SIMULATION METHOD

To model the systems in this work, we primarily use the
lattice Boltzmann (LB) method. This alternative to traditional
Navier-Stokes solvers has proven itself to be a very successful
tool for modeling fluids [33,34]. The LB method allows for

1539-3755/2014/90(4)/042307(8) 042307-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.042307
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easy implementation of complex boundary conditions and is
well-suited for implementation on parallel supercomputers,
because of the high degree of locality of the algorithm [31,35].
This allows for detailed simulations of systems on the
mesoscale. The method is based on the Boltzmann equation,
with its positions x discretized in space on a lattice with lattice
constant �x and with its time t discretized with a time step �t ,
which we define to be �x = �t ≡ 1 for clarity. We use the
Bhatnagar-Gross-Krook (BGK) collision operator [36] and a
D3Q19 lattice, which is to say the lattice is three-dimensional,
and a set of velocities ci with i = 1, . . . ,19 connect a lattice site
with itself, its nearest neighbors and next-nearest neighbors on
the lattice.

The fluid-fluid interactions are described by an interaction
force, calculated locally according to the approach of Shan
and Chen, which allows us to model a surface tension [37].
We refer to the two fluid species as “red” fluid (r) and “blue”
fluid (b), respectively. The ratio of red and blue fluid present in
the system is denoted χ = ∑

x ρr (x)/
∑

x ρb(x). To simplify
statements about the local fluid composition on lattice sites, we
also introduce an order parameter ϕ(x,t) = ρr (x,t) − ρb(x,t),
referred to as “color.”

We model the movement of the colloidal particles using
molecular-dynamics techniques and treat their coupling to the
fluids by means of a modified bounce-back boundary condition
as pioneered by Ladd and Aidun [38,39]. Furthermore, we
define a parameter �ρ, called the “particle color,” which allows
us to control the contact angle θp of the particle by introducing
a local modification to the Shan-Chen force. In particular, it
has been found that the dependence of the contact angle on
the particle color can be fitted by a positive linear relation,
where the value of the slope depends on the actual simulation
parameters [29]. A particle color �ρ = 0 corresponds to a
contact angle of θp = 90◦, i.e., a neutrally wetting particle.
A positive particle color �ρ > 0 leads to a contact angle
θp > 90◦ and the particle will be called hydrophobic (therefore
equating the blue fluid to a waterlike fluid and the red fluid
to an oil-like fluid). Conversely, particles with �ρ < 0 are
hydrophilic and have a contact angle θp < 90◦. For more
details on the techniques used in the simulations, the reader is
referred to [15].

III. CHARACTERIZATION OF EMULSION STATES

The stability of particle-stabilized emulsions is influenced
by many factors, such as the volume fraction of the particles,
their size, wettability, and interactions, and environmental
factors such as the ambient pH values and the presence of
ions [3]. A minimum surface coverage is necessary to form
a stable emulsion; this puts a lower bound on the volume
fraction of the particles necessary to stabilize an emulsion.
This effect is not linear, and an upper bound also exists,
after which the stability of the emulsion no longer increases.
The fluid-fluid ratio plays a dominant role in determining
whether an oil-in-water or water-in-oil emulsion will be
formed. At a fluid-fluid ratio χ = 1, the wettability of the
particles is extremely important, as the curvature induced
by these particles will be the deciding factor. Changing the
wettability in such systems can lead to a catastrophic phase
inversion [40]. The size of the individual particles is also one

of the most important factors when stabilizing an emulsion,
because it controls the ability of a particle to reside at an
interface, with smaller particles finding it easier to arrange
themselves. However, as particles become smaller, the energy
barrier binding them to the interface becomes small when
compared to the energy of Brownian motion, such that very
small particles do a poor job of stabilizing emulsions [41].
Particle-particle interactions and electrostatic interactions can
affect the denseness of the particle layers; if these cannot be
sufficiently closely packed, the emulsion will not be stabilized.
The presence of ions in the fluids can affect the screening
length of the electrostatic interactions, and as such will dampen
droplet-droplet repulsion, allowing for easier coalescence and
destabilization.

Particle-stabilized emulsions can take various forms that
can be characterized by the size and shape of the fluid domains.
Qualitatively, we can make the distinction between Pickering
emulsions, which consist of discrete droplets of one fluid
inside a medium fluid, and bijels, in which each fluid forms a
single continuous domain that spans the system. The transition
between these phases is not sharp: intermediate states exist, in
which large domains span the system, but some single droplets
remain. Examples of these three states are shown in Fig. 1.

Jansen and Harting have previously presented phase di-
agrams that show the effect of the particle volume fraction
and wettability as well as the effect of the fluid-fluid ratio
on the emulsion state that is finally reached [29]; in this
work, we focus on studying different ways to characterize
emulsions and restrict ourselves to modifying the volume
fraction and wettability of the particles, but we keep the
fluid-fluid ratio, particle sizes, and surface tension fixed. In
particular, we use an oil-water ratio of χ = 0.56 (far away
from the possibility of inverting a Pickering emulsion, but
allowing bijel configurations), hard spherical particles with a
radius of rp = 5.0 (which balances the size of the particles
in terms of the interfacial thickness of the Shan-Chen method
with computational efficiency [15,29]), and a surface tension
of σ = 0.014 (which is large enough to let the fluids demix
and form an emulsion). Electrostatic effects are also not treated
in this work. These choices leave us with a sufficiently large,
but still manageable, parameter space in which to search for
the differences between bijels and Pickering emulsions, and
transitions from one to the other. To characterize the emulsions,
we focus on the average sizes of the structures in the emulsions,
and the individual sizes of Pickering droplets.

In previous work, domain sizes have been calculated using
the structure function of the order parameter ϕ, which, when
suitably averaged, can be reduced to a time-dependent measure
of the global lateral domain size � [14,28,29,31]. This method
matches the commonly used experimental way of treating
measurements of scattering data; however, it is not without
its flaws in the context of our simulations. In particular, as the
color of the particles is linked to their wettability, they will
generally not blend into their environment from the point of
view of this method. As such, they introduce additional length
scales of the particle radius and interparticle distance, which
will depress the average value in a nonphysical way (as the
physical length scales of the order of the average droplet size
are much larger than the radius of the particles). For details,
the reader is referred to [29].
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FIG. 1. (Color online) Examples of emulsion states stabilized by spherical particles: The left picture showcases a Pickering emulsion
(hydrophilic particles; θp = 77◦): discrete droplets (red) suspended in the medium (blue) and stabilized by particles (green). The center picture
shows an intermediate state between a Pickering emulsion and a bijel (neutrally wetting particles θp = 90◦): a large continuous red domain
has formed, but some discrete droplets remain. Finally, the right picture depicts a bijel (hydrophobic particles; θp = 103◦): two intertwined
continuous domains.

As an alternative way to measure domain sizes, we
use a three-dimensional variation of the Hoshen-Kopelman
algorithm to detect clusters and to measure the sizes of
individual fluid domains [42,43]. The algorithm was developed
to be applied to quantities on two- or three-dimensional
lattices. It is based on detecting connected clusters on a lattice
and labeling the involved lattice sites such that all sites that
are connected share the same label. The assumption of the
presence of a lattice makes it easy to adapt the algorithm for
use in combination with LB-based simulations. Without loss
of generality, we assume χ � 1, which then is a red-in-blue
emulsion (the details of how we initialize the fluid mixtures
will be explained in Sec. IV). We choose ϕ(x) > 0 as the
condition needed to decide whether a lattice site is part of a
cluster or part of the medium. This corresponds to the sizes
of the red domains being of interest and the blue domain
forming the medium. When all clusters have been identified,
it is trivial to get information on domain sizes by simply
counting the number of sites belonging to a particular cluster
for all clusters. In addition, this method provides information
on the distribution of the sizes of individual clusters (which
the structure function method does not supply). A Pickering-
like emulsion is characterized by a large number of small
clusters (discrete droplets), while a bijel contains only a single
connected cluster, which spans the system. Following Hoshen
and Kopelman, we introduce the “reduced averaged cluster
size” [42]

Iav =
(

nmax∑
n=1

inn
2

)/
Nc − n2

max/Nc, (1)

where Nc denotes the total number of sites with ϕ(x) > 0, in
is the number of clusters of size n cubed lattice units, and nmax

is the size of the largest such cluster. By thus subtracting the
contribution of the single largest cluster, we observe a very
sharp decrease of this quantity when transitioning from the
Pickering to the bijel regime. In the case of a pure bijel, Iav = 0,
while for a Pickering emulsion, Iav � 0 contains information
about the sizes of the droplets. This property makes it easy to

detect a transition, but it also removes all useful information
about the structure of a bijel state. Even if the effect of the
largest (and only) cluster would not be dropped, we only gain
information that is a direct consequence of the fluid-fluid ratio
and surface tension, i.e., the total volume of the red fluid.
Thus, this method is best used for Pickering emulsions. Finally,
in the context of Pickering emulsions, we introduce a cutoff
to discount unphysically small domains: due to the diffuse
interface and small fluctuations, domains consisting of only
a few lattice sites cannot be properly called droplets. In this
work, the cutoff is chosen to be 50 lattice sites, which we have
found to eliminate most errors while retaining as much valid
data as possible.

IV. RESULTS

In this section, we discuss how changing the particle volume
concentration and particle contact angle can affect the final
state of a mixture of immiscible fluids and particles. Systems
of various sizes are used in order to find a system size that
balances computational effort with statistical accuracy. Lower
limits on system size exist, as particles have to be larger
than the interfacial thickness, and multiple particle-covered
droplets have to fit in the system to simulate an emulsion. As
such, the simulation volumes we use consist of Vsim = 5123 or
Vsim = 2563 lattice sites, with periodic boundary conditions
applied on all sides. The system is initialized with red and
blue fluid densities at any site chosen uniformly at random
from the intervals [0,ρr

init] and [0,ρb
init], respectively. The

particles are randomly placed in the system, taking care not
to allow any overlapping particles. When evolved in time,
the fluids spinodally demix, and particles are swept to the
newly formed interfaces and stabilize them. This causes a
rapid change of the system at early times, while at later times
the system will still develop, albeit more slowly [14,29]. As
mentioned in the previous section, we restrict ourselves to
a single value of the fluid-fluid ratio χ = 0.56 (ρr

init = 0.5
and ρb

init = 0.9). Furthermore, we focus on particle volume
fractions 	 = 0.15,0.20,0.25. In this regime, the wettability
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of the particles has a strong effect on the final state of the
emulsion. For hydrophilic particles (θp < 90◦), the particles
induce curvature favorable to a red-in-blue emulsion and
droplets are formed. Therefore, a Pickering state is observed
(Iav � 0). Conversely, for hydrophobic particles (θp > 90◦),
the favored curvature is inverted. However, there is not enough
red fluid to be able to suspend blue droplets in it. Therefore,
the system instead forms a bijel (Iav = 0). Increasing the
volume fraction 	 of the particles increases the interfacial
area that they stabilize, which allows for smaller droplets in
the Pickering regime.

A. Domain sizes

We now consider emulsions for a range of particle volume
fractions 0.05 � 	 � 0.35 and particle contact angles 50◦ <

θp < 130◦ in a system of volume Vsim = 2563 that has been
allowed to equilibrate. The time allowed for equilibration is
t = 105 time steps; we based the length of this interval on
the time evolution of the domain sizes (discussed below),
combined with visual inspection of the system. The first
quantity to be considered is the average domain size, since
its dependence on 	 is of particular interest. Qualitatively,
increasing the number of particles in an emulsion will increase
the interfacial area they can collectively stabilize, which then
increases the surface-to-volume ratio of the fluid phases and
makes the domains smaller on average. For a more quantitative
analysis, we follow Arditty et al. [32] and define the surface-
weighted average droplet radius as

Rd (t) =
∑

i ni(Rd )3
i∑

i ni(Rd )2
i

, (2)

where ni is the number of droplets with radius Rd . In Fig. 2,
we show that our simulated emulsions display the same time
dependence as the experimental emulsions discussed in Arditty
et al.: the droplet growth is rapid at first but slows down
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FIG. 2. (Color online) Time evolution of the surface weighted
average droplet radius Rd of a Pickering emulsion, following Arditty
et al. [32]. We use the cluster sizes obtained through the Hoshen-
Kopelman algorithm to calculate the radii Rd of the droplets. The
same qualitative behavior as in Arditty et al. (in their Figs. 4 and 5)
is observed: the droplet growth is rapid at first, but slows down until
Rd converges to an asymptotic value.
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FIG. 3. (Color online) Dependence of the surface weighted aver-
age droplet radius Rd of a Pickering emulsion on the particle volume
fraction 	, following Arditty et al. [32]. We observe a linear relation
with an offset; the offset can be explained by the facts that the system
is finite, and that the interfaces are diffuse.

until Rd converges to an asymptotic value. We have used
the Hoshen-Kopelman method to calculate the droplet sizes
(the HK algorithm supplies an average volume, which we
represent by an average radius of a spherical domain of equal
volume). Following the geometric arguments presented in [32],
the surface-weighted average droplet radius is expected to be
inversely proportional to the total amount of solid particles
present in the system (we use the particle volume fraction to
quantify this, instead of the total mass of particles, which is
used by Arditty et al.):

1

Rd (t)
∼ 	. (3)

However, as is shown in Fig. 3, we find an offset for this linear
relation instead of it passing through the origin. The datasets
are based on the progression of the droplet sizes toward their
long-time value Rd,final, where the rate of further growth cannot
be resolved anymore by the simulation. As we have seen that
the droplet size increases monotonically with time, the order
of the datasets represents time evolution. The existence of an
offset can be attributed to two factors: First, the system is
finite, and even when the volume concentration of particles
drops, the droplets cannot grow infinitely large. Second, the
diffuse interfaces of the Shan-Chen model affect the droplet
radii we measure, but this is a constant contribution based on
the thickness of the interfacial region and thus is not taken into
account in the scaling law.

These arguments also explain the data presented in Fig. 4,
which follow the way the data on domain sizes in emulsions are
presented in Jansen and Harting [29]. Note that we follow their
lead and now again use structure functions to calculate domain
sizes. We expect a relation of the form �(	) = a + b/	, with
a and b fitting parameters. The offset a is again a deviation
from a purely inverse dependence law, and it is caused by
the same arguments as discussed above. This fitting function
has been used to good effect in Fig. 4, where �(	) = 7.11 +
2.36/	 has been found for θp = 72◦. For low particle volume
fractions 	 < 0.15, the interfacial area that can be stabilized
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FIG. 4. (Color online) Averaged lateral domain size � as a func-
tion of particle volume fraction 	 for various particle contact angles
θp . These values are then fit using an inverse relation with an offset,
following Arditty et al. [32] as in Jansen and Harting [29] resulting
in �(	) = 7.11 + 2.36/	 for θp = 72◦ (solid line), �(	) = 6.61 +
2.80/	 for θp = 90◦ (dashed line), and �(	) = 6.14 + 2.83/	 for
θp = 107◦ (dotted line). The domain sizes are largest in the case of
neutrally wetting particles.

gets so small that the domain sizes are even more strongly
affected by the finite size of the system; as such, these data
points are not used for fitting. The fit takes into account the
error bars of the data points, which are the standard deviations
of the components �i of the domain size. Surprisingly, this
procedure also produces satisfactory results for more bijel-
like states based on θp = 90◦ and 107◦: these can be fit well
by �(	) = 6.61 + 2.80/	 and 6.14 + 2.83/	, respectively.
This method likely works because of the way the domain sizes
are calculated (along Cartesian directions only), which in effect
leads to quasiellipsoidal domains being measured; these then
correspond to similar droplets as they would in the Pickering
regime. Values for a wider range of contact angle have been
calculated but are not shown here, as they follow the same
trends. As expected, the change of contact angle only weakly
changes the interfacial area that can be stabilized, and as such,
there is only a weak dependence of the domain sizes on it.

Note, however, that the largest values of � are not
encountered at either extreme of the range of contact angles,
but instead in the middle: this is shown in more detail in Fig. 5,
which clearly demonstrates a nonmonotonic dependence of �

on θp, and extends the range of contact angles in both directions
as compared to Fig. 4. Recall that the irreversibility of the
adsorption of particles to a fluid-fluid interface is based on
the large energy cost associated with the fluid-fluid interface
that would exist in the absence of the particle, and that this
quantity depends linearly on both the surface tension and the
area of the covered interface. As particles gain a preference to
reside in one fluid, they will initially still be attached to the
interface, but the area they cover will decrease: this follows
from the simple geometrical argument that a planar cut through
a sphere has the largest area if it goes through the center of the
sphere. As the particle center moves away from the interface,
the associated decrease in interface covering will decrease the
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FIG. 5. (Color online) Average lateral domain size � as a func-
tion of particle contact angle θp for various particle volume fractions
	. The domain size is largest for neutrally wetting particles. The
interfacial curvature induced by the particles leads to smaller droplet
sizes for Pickering emulsions. The reduction of � as the contact angle
deviates far from 90◦ can be explained by the fact that particles have
detached from the interface and moved into the bulk. They are then
detected as domains of size 2rp = 10.0, which depresses the average
domain size toward that value.

detachment energy keeping the particle adsorped [44]:

�Edet = πr2
pσ (1 − | cos θp|)2. (4)

The fluid-particle interface will also become more favorable,
as long as the particle moves into its preferred fluid. Both
effects combine to destroy the irreversibility of the particle
adsorption, which strongly decreases the number of particles
actually participating in interface stabilization. The energy
barrier does not have to be of the order of thermal fluctuations:
when the emulsion is formed, the absence of interfaces and
interparticle collisions will keep particles from adsorbing in
the first place. One would expect this effect to cause an
increase of the average domain size, however Fig. 5 shows
the opposite. This is caused by the way the structure factor is
calculated: it measures fluctuations in the order parameter, and
the simulation code returns a zero value for all sites occupied
by a particle. If this particle is located at the interface, where
the order parameter of the fluids is close to zero, it will not
add a strong signal because it blends into the fluid background.
However, any particles that are inside one of the fluid phases,
where the order parameter is far away from zero, will add a
signal to the calculation, which adds a length scale comparable
to their diameter. Because the droplet diameters are larger than
the particle diameters, detached particles artificially reduce the
value of �. Aside from distorting the measured domain sizes,
the emulsions stabilized by particles with extreme contact
angles present very differently from the variants with more
moderate contact angles; examples are shown in Fig. 6. The
domains are much coarser, and these degenerate emulsions
can hardly be called emulsions at all. Note that in the case
of a Pickering emulsion, the individual droplets are no longer
covered by a densely packed monolayer; instead the droplets
are separated by clumps of particles. This strongly reduces the
long-term stability of the state as Ostwald ripening is no longer
effectively blocked.
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FIG. 6. (Color online) Examples of degenerate emulsions: When
the particles are strongly hydrophilic (here, θp = 50◦) or hydrophobic
(here, θp = 130◦), they lose their ability to stabilize the system as
their detachment energy decreases. In extreme cases, most particles
will have moved into their preferred fluid, leaving a very small
effective number of stabilizing particles at the interfaces. This
strongly increases the average domain sizes, and the resulting state
can hardly be called an emulsion at all.

Figure 7 also depicts the dependence of domain sizes on
the contact angle of the particles, but here we use the reduced
average cluster size (this corresponds to a volume, not a
length). The error bars are calculated through the standard
deviation of the droplet sizes (again excluding the largest
droplet). We clearly see the advantage of this method when
attempting to detect a transition from a bijel to a Pickering
emulsion or vice versa: Iav sharply drops to zero when a bijel
state is achieved. In the Pickering regime, the average domain
size is a measure for the droplet sizes, while for a bijel Iav = 0.
In the transition region, a peak can occur: this corresponds to
multiple bijel-like domains coexisting, only one of which is
discarded during the calculation. This leaves one with one
or more very large clusters that strongly contribute to raising

50 60 70 80 90 100

Θ p(deg)

0

100

200

300

I a
v(

un
it

s 
of

10
3
(Δ

x)
3
)

Pickering
emulsion

Bijel

Ξ = 0.15
Ξ = 0.20
Ξ = 0.25

FIG. 7. (Color online) Reduced average cluster size Iav after
equilibration of t = 105 time steps as a function of the contact angle θp

of the stabilizing particles. After subtracting the effect of the largest
cluster, the bijel has zero average cluster size, while the Pickering
emulsions have nonzero sizes, with a dependence on the particle
volume fraction 	. For all data points, the system size is Vsim = 2563

lattice sites, the fluid-fluid ratio χ = 0.56 (ρr
init = 0.5 and ρb

init = 0.9),
and the surface tension is σ = 0.014. The error bars are calculated
through the standard deviation of the droplet sizes.
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FIG. 8. (Color online) We compare the values of the reduced
average cluster size (shown as radius Rd , open symbols) to those
of the averaged lateral domain size � (filled symbols) for the same
datasets. Very large differences exist: in the Pickering regime, the
value of � is depressed because the method detects the particle size
and interparticle distances as characteristic length scales, while the
cluster sizes are calculated based on the number of lattice sites of
the fluid domains. In the bijel regime, the cluster size of the single
domain in a bijel will not provide meaningful information on the size
of local structures.

the average (the number of discrete droplets will be small at
this point). As this method is not affected by the presence of
detached particles (except to subtract their volume from the
domain size), we now properly observe the increase of the
average domain size as the particle contact angle is reduced
and the particles are more hydrophilic.

Throughout this section, we have alternately used two
methods to measure the number of lattice sites of domains.
To conclude this section, we show both the averaged lateral
domain size � (filled symbols) and the reduced average cluster
size (transformed into a radius Rd , shown as open symbols) as a
function of the particle contact angle θp (cf. Fig. 8), effectively
combining Fig. 5 and Fig. 7. The reduced average cluster
size is again represented by an average radius of spherical
domains of equal volume, for a more convenient comparison.
We see that although both methods have their own advantages
and disadvantages such that different situations may warrant
the use of one method over the other, care should be taken
when attempting to compare results directly: in the Pickering
regime, the value of � is depressed because the method detects
the particle size and interparticle distances as characteristic
length scales, while the cluster sizes are calculated based on
the number of sites of the fluid domains. In the bijel regime,
the cluster size of the single domain in a bijel will not provide
meaningful information on the size of local structures.

B. Droplet size distribution

One clear advantage of the Hoshen-Kopelman method is
the possibility to obtain data on individual cluster sizes, and
not only on averages. In this section, we briefly discuss the
distribution of droplet sizes in Pickering emulsions. Similarly
to the data presented above, we introduce a cutoff to eliminate
nonphysical domains, and we present the data terms of the
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FIG. 9. (Color online) Following Arditty et al. [32], we present
our data on a logarithmic scale for the droplet sizes. It is evident
that after the early time evolution, when the droplets are small
but numerous and the resulting distribution is smooth, the statistics
of even five combined Pickering emulsions of a 2563 system are
inadequate (note the change in range of the vertical axes). Acquiring
the necessary statistics to smooth out the latter distributions is
computationally prohibitive.

radii Rd of spherical domains that have the same volume as
the measured clusters.

The size of the stabilized droplets is often of interest, and
not only as an average quantity. For example, it will strongly
affect the mouthfeel of particle-stabilized food products. As
such, we are interested in tracking the time evolution of the
droplet size distribution in a Pickering emulsion, starting from
a random mixture of fluids and particles. The results of such
a procedure can be seen in Fig. 9. The bars of the histograms
comprise the combined data of five systems with identical
physical properties but different random initial distribution of
the fluids and particles.

Three regimes have been identified in the time evolution
of a Pickering emulsion [14], and we discuss an example
here. First, after we have initialized the simulation, demixing
quickly sets in. This is caused by the immiscibility of the
fluids, and it effects the formation of droplets (corresponding
to the fovrmation of many small domains in terms of the HK
algorithm). After t = 2000 LB time steps, the distribution of
droplet radii is narrow and centered around a radius Rd ≈ 3.
The radii are of the order of the interfacial thickness of
the Shan-Chen multicomponent model, and as such we do
not expect them to be quantitatively accurate; however, their
behavior is correct in a qualitative sense. The droplets then
continue to grow rapidly due to the process of Ostwald
ripening; this leads to both larger average droplet radii
and a wider distribution because the system becomes less
homogeneous. Furthermore, the total number of droplets
decreases rapidly. This process continues for some tens of
thousands of time steps; then, Ostwald ripening is halted due
to the almost complete covering of fluid-fluid interfaces by
particles. The droplets can grow by coalescence only, which is
a rare phenomenon due to the particle layers and long diffusion
times. The average droplet radius remains constant at Rd ≈ 10.
We show that the distribution of the droplet sizes does not
change significantly after 5 × 104 time steps. The observed

monodispersity of the droplets, the shift of the position of the
peak in time, as well as the (slight) increase in uniformity of
the droplet sizes (which manifests itself as a decrease in the
width of the distribution relative to the position of the peak)
qualitatively matches the behavior shown in Arditty et al. [32].
However, quantitative agreement has proven difficult to obtain:
even when the results of multiple simulations are combined,
the accuracy of the statistics obtained from those simulations
is limited, as we show in Fig. 9. After the early time evolution,
when the droplets are small but numerous and the resulting
distribution is smooth, the statistics of even five combined
Pickering emulsions of a 2563 system are insufficient to
provide reliable data (note the change in range of the vertical
axes). Acquiring the necessary volume of data to smooth
out the latter distributions is computationally prohibitive.
We have not studied this subject further in any great detail,
but the availability of even this type of limited data on the
distribution of the droplet sizes can help to, e.g., identify
parameters to help create monodisperse droplets of optimal
size.

V. CONCLUSION

In this paper, we presented computer simulations of
particle-stabilized emulsions consisting of two immiscible
fluids and colloidal particles. The final state that an originally
random mixture of fluids and particles reaches after phase
separation can be classified as a Pickering emulsion, a bijel,
or an intermediate state. Which state the system reaches
depends on a number of parameters, such as the ratio between
the two fluids, the particle volume concentration, and the
particle contact angle. One of the emulsion properties of
interest is the size of the droplets in the case of Picker-
ing emulsions, and the length scales of local structures in
the case of bijels. We have characterized these using the
three-dimensional structure function, as well as the sizes
of connected domains, using a parallelized implementation
of the Hoshen-Kopelman (HK) algorithm [43]. The former
method provides useful information in the case of Pickering
emulsions as well as bijels, whereas the latter does not provide
useful data for bijels. However, it does provide information
on individual droplet sizes, rather than just averages. This
feature can be used to study the size distribution of the
droplets.

We have followed the work of Arditty et al. [32] and
confirmed an inverse dependence between the concentration
of particles and the average radius of the stabilized droplets.
In our simulations, the finite system and diffuse interface of
the Shan-Chen model cause an offset to this law. We have
also observed that after a rapid growth of droplets at the start
(nucleation), the growth slows down (Ostwald ripening) and
eventually halts (coalescence of droplets only). This analysis
follows Jansen and Harting [29], but it uses the HK algorithm
to obtain droplet sizes and adds substantially deeper insight and
a more thorough variation of parameters. Care has to be taken
when comparing results from the structure factor and the HK
algorithm: although they attempt to describe the same physical
quantities, they both have their weaknesses. The structure
factor interprets the presence of detached particles as domains,
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which artificially reduces the measured average domain size.
This is especially problematic when particle contact angles
become extreme, and degenerate bijels or Pickering emulsions
are formed. The HK algorithm just counts the number of sites
in a fluid domain and is thus not able to provide any meaningful
information about the structure of domains in the bijel regime.

Finally, the HK algorithm has been used for a brief look at
the distribution of individual droplet sizes in Pickering emul-
sions: the results qualitatively match previous experimental
observations.
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