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Phase separation and emergent structures in an active nematic fluid
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We consider a phenomenological continuum theory for an active nematic fluid and show that there exists
a universal, model-independent instability which renders the homogeneous nematic state unstable to order
fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability
leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order
is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to
this phase separation is a universal feature of active fluids of different symmetries.
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I. INTRODUCTION

Active fluids encompass diverse systems ranging from
bacterial colonies [1–3] to herds of animals [4] and bird
flocks [5]. These systems are unified by the fact that they
are composed of “microscopic” entities that consume energy
and dissipate it to do work on their environment [6–8].
Depending on the symmetries of the microscopic particles and
the interactions among them, these systems can be classified as
isotropic (e.g., self-propelled spherical colloidal particles [9]),
polar (e.g., self-chemotactic bacteria [10]), or nematic active
fluids (e.g., microtubule-motor-protein suspensions [11,12]
and vibrated granular rods [13]). In this work, we consider
a minimal description of an active nematic fluid with the
goal of identifying universal mechanisms for the formation
of emergent structures on long length scales.

Active nematics in general fall into two broad categories.
The first is the self-propelled nematic, composed of self-
propelled particles whose interactions have a nematic symme-
try. This system has mixed symmetry in that the microscopic
entity is polar (due to self-propulsion) but the interactions
and therefore the macrodynamics is nematic and has been
extensively studied in the literature [14–24]. The second
category is a pure active nematic composed of shakers, i.e.,
nematogens, that do not undergo any persistent motion along
either direction of their body axis. Physical realizations of
pure active nematics include the microtubule suspensions
mentioned above [11], symmetric vibrated rods [13], rapidly
reversing strains of myxobacteria [25,26], and melanocytes,
which are also thought to effectively behave as “shakers”
[27–29]. This latter class of active nematics are the focus of
the study presented in this paper.

As with all realizations of active fluids, the microscopic
entities that compose an active nematic fluid live in a medium
(typically a viscous fluid) that acts as a momentum sink. When
the flow induced by the active nematogens is long ranged, the
macroscopic description of the system must include a Stokes
equation that captures the effect of hydrodynamic interactions.
These systems, termed “wet” active nematics, have received
much recent attention [30–33]. When the medium is fric-
tional (such as the substrates in vibrated rods [13] or cell
colonies [25,26]) or the flow induced by activity is local due
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to confinement (as in Ref. [31]), the systems are termed “dry”
active nematics and are the class of systems for which this
work is relevant.

Active nematics were first considered in the seminal work
of Ramaswamy and collaborators [34–38], who demonstrated
that this system exhibits giant number fluctuations and these
fluctuations render the system intrinsically phase separated.
Subsequently, extensive studies have been carried out within
the context of particular microscopic models, namely the
“nematic Viscek” model [16,38–46] and a system composed
of reversing self-propelled rods [26,47]. These studies have
delineated in detail the large-scale dynamics of active nematics
that are formed by the particular microscopic model.

Our work builds on these findings by considering a minimal
theory for an active nematic numerically and analytically. In
particular, the equations we consider are phenomenological.
Therefore, the parameters of the theory are independent of any
particular microscopic model and are varied independently.
We show that the curvature-driven mass flux identified in
Ref. [34] causes the homogeneous nematic state to be unstable
and leads the system to phase separate into high-density
and low-density bands. We focus on the regime where this
phenomenon is universal (independent of particular models or
parameter choices), namely low-energy excitations near the
critical point associated with the isotropic-nematic transition.
The mechanism which leads to the formation of this band
structure is identified and shown to be of the same origin as
those which lead to phase separation in isotropic and polar
active fluids identified earlier [48–52].

The layout of the paper is as follows. First, we introduce the
continuum hydrodynamic theory of a generic active nematic
and discuss the features that render this system inherently out
of equilibrium. Then we map out the domain of linear stability
of the homogeneous nematic state and identify the mechanism
that destabilizes it. Also, we report a numerical study of these
hydrodynamic equations that tracks the evolution of the fully
nonlinear dynamics and characterize the phase-separated end
state and the emergent structure of the resulting band. Finally,
the primary results in this work are summarized and discussed
in the context of active fluids of various symmetries.

II. THE CONTINUUM THEORY

Let us consider a collection of particles, in two spatial
dimensions, that are active and interact via purely nematic
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aligning interactions. In the presence of a frictional medium,
their microdynamics can be reliably captured by overdamped
equations of motion such as in Refs. [40,53]. In the limit
of length scales that are long compared to the particle size
and time scales that are long compared to the interaction
times, it is fruitful to consider a mean-field, macroscopic
description of the system, which is given by the dynamics
of conserved quantities and broken symmetry variables. In the
case of an overdamped active nematic of shakers, the relevant
variables are the density of active units ρ = 〈∑α δ(r − rα)〉
and the nematic order parameter Qij = ρSij = 〈∑α(ûαi ûαj −
1
2δij )δ(r − rα)〉, where {rα,ûα} are the positions and orienta-
tions of the shaker particles and 〈〉 denotes coarse-graining
by averaging over microscopic lengths and times. Given
the microdynamics, this coarse-graining procedure can be
carried out through systematic approximations as considered
in Refs. [15,26,38,42,47]. Alternately, one can construct the
macroscopic equations based on purely symmetry considera-
tions as in Refs. [34,35]. In this work, we take the latter route,
which gives us the advantage of liberating the parameters of
the hydrodynamic theory from the constraints of a particular
underlying microscopic model. The dynamical equations are
generically of the form

∂tρ = D∇2ρ + DQ∇∇:Q, (1a)

∂tQij = Dr [α(ρ) − βQ:Q]Qij + Db∇2Qij

+Ds∂k(∂iQkj + ∂jQik − δij ∂lQkl)

+Dρ

(
∂i∂j − 1

2δij∇2
)
ρ, (1b)

where A:B refers to the contraction AijBij and ∇∇ is the
tensor ∂

∂xi

∂
∂xj

.
The primary physics of the above equations is as follows.

In the case of an equilibrium nematic, the density, a conserved
quantity, has a dynamics generically of the form ∂tρ =
− 1

γ
∇2 δF

δρ(r) , where F is the free-energy functional whose
extremum is the equilibrium state and γ is a relaxation time.
This is what is referred to as model B dynamics. By retaining
every symmetry-allowed term in the free energy, this yields a
dynamics for the density given by

Ji = −D0
ij (ρ,T r(Q2))∇j ρ

−D1
ij (ρ,T r(Q2))∇j T r(Q2).

Here the diffusion tensors Dα
ij ’s have the symmetries of the

underlying nematic, i.e., Dij = Aδij + B(n̂i n̂j − 1
2δij ), where

n̂ is the nematic director and A and B are potentially arbitrary
functions of the two scalars in the theory, namely the density
and the magnitude of orientational order ρS ≡

√
2T rQ2. But,

in the case of an active nematic, we have no extremization
principle and hence the flux J is liberated from the above
constraints and is generically of the form

Ji = −D0
ij (ρ,T r(Q2))∇j ρ

−D1
ij (ρ,T r(Q2))∇j T r(Q2)

−D2
ij (ρ,T r(Q2))∇kQkj .

The new term here is a mass flux that arises because of the
activity of the individual units and the resulting anisotropic

forces produced by it. This mass flux term is nonintegrable in
that it cannot emerge from model B dynamics associated with
a free energy and is the central feature that makes an active
nematic an inherently nonequilibrium system. In the present
study we take the simplest form for the mass flux that captures
the role of curvature, namely the form which was introduced
by Ramaswamy et al. [35] Ji = −D∇iρ − DQ∇kQki , where
D and DQ are constants independent of the dynamical fields.
This results in Eq. (1a) for the dynamics of the density field.

The nematic order parameter Qij has a dynamics analogous
to an equilibrium nematic, i.e., ∂tQij = − 1

γ
δF

δQij (r) , where F

is a Ginzburg-Landau free-energy functional as above. The
first terms on the right-hand side of Eq. (1b) give rise to a
second-order phase transition from a disordered isotropic state
to an ordered nematic state when α(ρ) changes sign. Db and
Ds are related to the Frank elastic constants associated with
bend and splay deformations. The term proportional to Dρ is a
kinetic term arising due to the inherent anisotropy in diffusive
processes in a nematic. The existence of this term implies that
when Q = 0, (∂i∂j − 1

2δij ∂
2)ρ = 0, and so the density must

become homogeneous. Any inhomogeneous state will have
local nematic order even though the state is globally isotropic.
An alternative description, where this term vanishes in the
isotropic limit, is discussed briefly in Appendix C.

In the following, we nondimensionalize our equations by
picking the units of time to be given by 1/Dr , the rotational
diffusion time and our length scale to be

√
D/Dr , a diffusion

length. Also, we choose α(ρ) = (ρ − 1) and β(ρ) = 1
ρ2 (1 +

ρ), thereby setting the density at which the isotropic nematic
transition occurs to 1 and ensuring that when ρ � 1 the
nematic order saturates to a finite value. Further, to minimize
the number of independent parameters in our study, we make a
one elastic constant approximation, namely Ds = Db ≡ DE .
The dimensionless dynamical equations then become

∂tρ = ∇2ρ + DQ∇∇:Q (2a)

∂tQij = [α − βQ:Q]Qij + DE∇2Qij

+DE∂k(∂iQkj + ∂jQik − δij ∂lQkl)

+Dρ

(
∂i∂j − 1

2δij∇2
)
ρ. (2b)

These simplified equations are studied analytically and
numerically in the sections below.

III. LINEAR STABILITY ANALYSIS

The dynamical equations Eq. (2) admit two homogeneous
steady states, an isotropic state when ρ < 1 and a uniaxial
nematic state when ρ � 1. Let us focus on the high-density
ordered state and, without loss of generality, let us consider a
nematic state where the direction of broken symmetry is along
the x axis of our coordinate system. Then small fluctuations
about this homogeneous steady state can be parametrized as
ρ = ρ0 + δρ(r,t), Qxx = 1

2ρ0S0 + δQxx(r,t) and Qxy = 0 +
δQxy(r,t), where S0 =

√
2(ρ0−1)
ρ0+1 . Introducing a spatial Fourier

transform X̃(k,t) = ∫
dreik·rX(r,t), the linearized dynamics
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of fluctuations in density and order parameter takes the form

∂t

⎡
⎣ δρ̃

δQ̃xx

δQ̃xy

⎤
⎦ = −

⎡
⎢⎣

k2 DQk2 cos(2φ) DQk2 sin(2φ)
1
2Dρk

2 cos(2φ) − C0 2DEk2 + 2α0 0
1
2Dρk

2 sin(2φ) 0 2DEk2

⎤
⎥⎦

⎡
⎣ δρ̃

δQ̃xx

δQ̃xy

⎤
⎦ , (3)

where φ is the angle between the director and the spatial gradient vector k, α0 = (ρ0 − 1), and C0 =
√

2(ρ0−1)
ρ0+1 ( ρ2

0 +ρ0−1
ρ0+1 ).

While we can readily analyze the cubic characteristic equation of this linear system (see Appendix A), the physics at play is
best exposed by considering spatial fluctuations in a direction orthogonal to the mean nematic director, i.e., consider φ = 90◦.
In this case the director fluctuations δQ̃xy decouple and are always diffusive and stable. The relevant dynamics of the system is
now in the (ρ,Qxx) subspace. The eigenvalues associated with density and magnitude of order fluctuations take the form

λ± = − 1
2

{
2α0 + (2DE + 1)k2

±
√

[2α0 + (2DE + 1)k2]2 − 4k2
[
2α0 − DQC0 + k2

( − 1
2DρDQ + 2DE

)]}
.

Clearly λ+ is always negative and the associated fluc-
tuations decay to homogeneity. λ−, on the other hand,
in the long wavelength limit, takes the form λ− ∼
− 1

2k2(−DQ
C0
α0

+ 2) + O(k4) and hence becomes positive

whenever DQ > 2α0
C0

= (2(ρ2
0 − 1))

1
2 ( ρ0+1

ρ2
0 +ρ0−1

). Figure 1 shows

a plot of this threshold value of activity as a function of the
mean density of the system. Note that the threshold goes to
zero as the order-disorder transition is approached and hence in
the vicinity of the critical point, arbitrarily small values of the
activity destabilize the homogeneous nematic. The vanishing
of the threshold for the onset of this instability is independent
of the detailed form of α(ρ) and is a universal feature of the
dynamics of active nematics.

The physics of this instability of the homogeneous nematic
state can be understood as follows. The order parameter
Eq. (2b) has a second-order mean-field transition from an
isotropic to a nematic state that is controlled by the density

FIG. 1. (Color online) Phase behavior of the system as a function
of the mean density of the system (ρ0) and the activity (DQ). Below
the critical density for the order disorder transition (i.e., ρ < 1) the
homogeneous disordered state is stable. For any density ρ � 1, there
is an activity DQ above which the homogeneous ordered state is
unstable. This region, in which there is no stable homogeneous state,
is shown in red.

of the system. This density, in the context of conventional
nematics, is governed by model B dynamics generated from a
free-energy functional. Such dynamics always causes fluctua-
tions in the density to decay rapidly to homogeneity. Hence, the
mean density effectively acts as an external control parameter
that determines the magnitude of order in the system. But, in
the case of active nematics, the dynamics of the density is
coupled nontrivially to the magnitude and direction of order
in the system through the nonequilibrium curvature-induced
mass flux term proportional to ∇jQij , arising due to the
presence of the microscopic active forces that drive the system.
It causes a feedback between fluctuations in order and density
such that homogeneous states are destabilized. As we will
show below, a consequence of this anomalous coupling is that
the local density and the amount of order in the systems are
now both controlled by the strength of the activity DQ.

The discussion up to this point focused on spatial fluctua-
tions orthogonal to the direction of nematic order. We can,
of course, analyze the eigenmodes for arbitrary directions
of spatial fluctuations and we do so perturbatively in the
wave vector in Appendix A. We find that a range of wave
vectors in a sector [φmin,90◦] with respect to the nematic
director go unstable, depending on the specific values of the
different parameters. Fluctuations perpendicular to the director
(i.e., φ = 90◦) are, however, dominant for most parameters
and are the only relevant dynamics close to the critical
density. In the remainder of this presentation we explore
Eq. (2) numerically in the unstable regime and characterize
the resulting inhomogeneous end states.

IV. EMERGENT STRUCTURES:
PHASE-SEPARATED BANDS

In order to understand the consequences of the linear
instability discussed above on the formation of emergent
structures in an active nematic fluid, we solved Eq. (2)
numerically. The integration was performed using a Euler
method, forward-time centered-space (FTCS) scheme on a
grid with periodic boundaries. Typical values used for the
time step and spatial resolution were 0.01 diffusion times and
0.4 diffusion lengths. The system size ranged from 200 to
1000 diffusion lengths on a side. To further reduce the number
of parameters and to best illustrate the principal mechanisms
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FIG. 2. (Color online) (a) A plot of the density and order of a
typical system (ρ0 = 1.01, DQ = 0.8) that has phase-separated into
bands. The lines show the magnitude (by the length) and direction
of nematic ordering. The light region is a band of high density with
nematic ordering along the band. The axes show the position in the
system in dimensionless “diffusion lengths” and the scale bar shows
the density. (b) Profiles of the density (top) and order (ρS, on bottom),
taken perpendicularly to the direction of ordering in the bands.

at play, we first report the results for the case Dρ , and DE

are fixed at 1.0. The consequence of varying Dρ and DE is
discussed in Appendix B.

The primary finding of our numerical analysis is as follows:
The typical inhomogeneous state we find when the activity
DQ is greater than the threshold for onset of the instability is
shown in Fig. 2. The system develops inhomogeneous bands
of alternating low and high density. These bands coarsen, and
the steady state which the system typically reaches is one
band which spans the system. The only characteristic size
associated with these bands is the length scale associated with
the interface between high and low density, which can be seen
in the band profile in Fig. 2.

One way to understand these structures is to consider the
reduced set of equations that describe the dynamics of the
density and the magnitude of ordering, namely

∂tρ = (
∂2
x + ∂2

y

)
ρ + 1

2DQ

(
∂2
x − ∂2

y

)
ρS

∂tρS = (
α(ρ) − β(ρ)ρ2S2)ρS + 2Dρ

(
∂2
x − ∂2

y

)
ρ

+ 2DE

(
∂2
x + ∂2

y

)
ρS,

where we have assumed that the mean nematic order lies along
the x axis of our coordinate system. These reduced equations
admit a stationary solution homogeneous in x, and having a
profile of a high-density, high-order region embedded between
low-density isotropic regions along the y direction as has been
shown in Ref. [38]. Here we present a complementary analysis.

First, note that, as shown in Fig. 3(a), the density of the
nematic band is independent of the value of the homogeneous
density of the system but instead is determined entirely by
the strength of the activity DQ. Second, note that as shown
in Fig. 3(b), we measure the magnitude of nematic order

in the bands and find that (ρS)band = ρh

√
2(ρh−1)
ρh+1 , i.e., S is

related to the density by the same mean-field relation in the
homogeneous theory, but now the mean density is replaced by
ρh, the density in the band. Note that ρh is such that the nematic
state is no longer unstable to the linear instability at this value
of the activity. This suggests that the formation of this banded

FIG. 3. (Color online) (a) For fixed activity, several initial densi-
ties in the unstable region are chosen. The final densities in the banded
state (ρh and ρl) are found to be independent of the initial density, as
the points for different initial densities fall on the same curve. (b) The
measured value of order (ρS) as a function of ρh. The solid line is

the mean-field prediction ρh

√
2(ρh−1)
ρh+1 . Excellent agreement is found

substantiating the picture that the bands are just phase coexistence
between a high-density nematic and a low-density isotropic state.

structure can be viewed as the system phase separating into a
high-density nematic state and a low-density isotropic state,
both of which are stable, reminiscent of gas-liquid coexistence.
The amount of order in the system now is determined by the
strength of the activity DQ (through ρh) and not by the mean
density.

This simple picture holds for a range of activities when the
density is close to the critical density ρc, for our choice of
parameters that set all the spatial relaxation mechanisms equal
to each other (i.e., Dρ = DE = D = 1). However, for larger
values of Dρ/DE these bands can become unstable, leading
to complex dynamical structures. These structures are similar
to those which have been discussed in the context of reversing
rods by Shi et al. [47] and the nematic Vicsek model by Ngo
et al. [43] and are discussed briefly in Appendix B.
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V. UNIVERSALITY OF ACTIVITY-INDUCED
PHASE SEPARATION

We have shown that the homogeneous ordered state of an
active nematic is unconditionally unstable near the critical
density ρc for the onset of order. This instability arises because
of the dynamic coupling between the density and order through
the curvature-driven mass flux. Near the critical density, the
system phase separates into a high-density nematic and a
low-density isotropic fluid with the direction of order being
perpendicular to the direction of the density gradient. The
density and amount of order in the nematic phase is determined
by the magnitude of activity.

This kind of phase separation phenomenon is ubiquitous
in model systems of active fluids. In active polar fluids,
composed of self-propelled particles with polar aligning
interactions, theory and simulations show that the system
phase separates into high-density and low-density stripes
with the high-density regions forming propagating solitary
waves [41,52,54–56]. These propagating waves have been ob-
served in model experimental systems [10,57,58]. In the case
of active isotropic fluids composed of self-propelled spheres
with no aligning interactions, athermal phase separation into a
dense phase and a dilute phase has been extensively reported
and discussed [48,50,51,59,60]. This phenomenon has been
observed in experiments of diffusophoretic Janus colloids as
well [61]. The underlying physical mechanism that leads to
this phase separation is the presence of a self-replenishing
velocity along one direction of the body axis of a particle and
the consequent persistent collisions that result among such
active particles [50].

From a completely macroscopic point of view, however, the
phenomenon of phase separation in active fluids of different
symmetries can be unified as follows. Within a Ginzburg-
Landau approach, an equilibrium system near a critical point
is described by a free energy that is a functional of an order
parameter. The nature of the equilibrium state is determined
by the value of a control parameter, say, α. When α � αc, the
free energy is a minimum when the order parameter is zero,
while when α � αc the minimum and hence the equilibrium
state is one where the order parameter is finite. The control
parameter in these theories is a density or a temperature
whose dynamics is relaxational (model B). Therefore the
control parameter rapidly relaxes to homogeneity and hence
can effectively be tuned externally. What happens in the case
of active fluids is that the relaxational model B dynamics of the
control parameter is now modified by the activity. Anomalous
nonintegrable terms in its dynamics give rise to nontrivial
coupling to the order parameter (magnitude and direction)
of the system. Let us explicate this statement by considering
specific examples.

In the active nematic system studied in this work, the order
parameter is the nematic ordering tensor Qij . As mentioned
above, the dynamical equation associated with this order
parameter (to the order considered here) is indeed the same
as that for an equilibrium nematic and can be schematically
written as ∂tQij = − 1

γ

δF [ρ,Qij ]
δQij

. The key active feature of the
dynamics of this fluid is that the density is now anomalously
coupled to Qij through the curvature induced mass flux.
This inherently nonintegrable term is the reason the active

nematic phase separates into a low-density isotropic phase
and a high-density nematic phase whose properties are now
controlled by the strength of the activity.

In the context of a polar active fluid, the order parameter is
a vector P that measures orientational ordering in the velocity
field of the self-propelled entities [52,62]. The dynamics of
this system can generically be written as ∂tP = − 1

γ

δF [ρ,P]
δP +

N [ρ,P], i.e., a part composed of exactly what we would have in
the equilibrium case and a new truly nonequilibrium piece N .
As has been shown in Refs. [52,56], the nonequilibrium piece
is irrelevant to the observed phase separation behavior, which
arises again due to the fact that the dynamics of the density is
anomalously coupled to the magnitude of the order parameter
through a nonintegrable term of the form ∂tρ = −v∇ · ρP.
This coupling causes the system to phase separate into a low-
density isotropic phase and a high-density polar phase whose
properties are controlled by the strength of the activity.

Finally, in the case of the isotropic fluid, the order parameter
is a density while the control parameter is a chemical potential
(as in a gas-liquid system). As has been shown in the works
of Refs. [48,59,60], the self-propulsion of the active particles
serves as a chemical potential in the case of an active isotropic
fluid. But the local density determines the local self-propulsion
speed, and therefore the effective control parameter, and
hence the analogy of the control parameter being rendered
dynamically coupled to the order parameter extends to this
class of active fluids as well.

The consequence of the above feature is that even though
the dynamics of the order parameter in the system is the
relaxational dynamics familiar from the near equilibrium
context, due to the anomalous dynamics of the control
parameter, the state of the system is controlled by the strength
of the activity. Hence, as is the case for active nematics [36],
active fluids are intrinsically phase separated. The structure of
the end state is determined by the symmetry of the interactions
among the fluid particles, with spherical droplets in the case of
the isotropic active fluid, ordering orthogonal to the interface
in the case of polar fluids, and ordering along the direction of
the interface for nematic fluids.

VI. SUMMARY

In this work we consider a minimal model for an active
nematic fluid and show that the fluid undergoes phase separa-
tion beyond a given threshold for activity and that the threshold
vanishes as the critical density for the order-disorder transition
is approached. In the coexistence region, we show that the
system forms bands of nematic ordered regions where the
ordering is orthogonal to the direction of the density gradient,
i.e., the nematic is oriented parallel to the interface. We identify
the macroscopic mechanism for this phase separation and
relate it to those found in the context of polar and isotropic
active fluids.
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APPENDIX A: GENERALIZED LINEAR
STABILITY ANALYSIS

In Sec. III we considered the stability of the homogeneous,
ordered state with respect to spatial fluctuations that were
orthogonal to the direction of nematic ordering [i.e., the angle
between the spatial gradient vector (k) and the nematic director
(n̂) fixed at φ = 90◦]. In the following we consider arbitrary

spatial fluctuations and show that the lowest threshold value
for DQ and the direction of the fastest-growing wave vector lie
at φ = 90◦, when the density is close to the critical value. Far
from the critical density, there is a dependence on the particular
parameters which are characterized below as well.

The dynamics of arbitrary spatial fluctuations about the
homogeneous ordered state is characterized by the linear
system of equations Eq. (3). As we are interested in the
dynamics on the longest length scales, let us consider roots
of the cubic characteristic equation for the linear system in the
long-wavelength limit. The perturbative solution to order k2 is
found to be

λ± = − k2

4α0

{
C0 cos(2φ)DQ + 2α0(1 + 2DE)

±
√

[C0 cos(2φ)DQ + 2α0(1 − 2DE)]2 + 8α2
0 sin2(2φ)DQDρ

} + O(k4)

and

λ3 = −2α0 + k2

[
−2DE + C0

2α0
DQ cos(2φ)

]
+ O(k4).

We can readily establish that λ− is the only eigenvalue that
changes sign in the small wave-vector limit and thereby leads
to an instability. The threshold for the onset of this instability
is identified as

DQ >
4α0DE

α0 sin2(2φ)Dρ − 2C0 cos(2φ)DE

. (A1)

Thus, for a fixed activity DQ, a range of wave vectors
become unstable.

The content of the above threshold condition can be
explicated as follows. First, let us fix φ, the direction of
the spatial fluctuation, and characterize DQ(φ), the value
of activity at which spatial fluctuations in this direction go
unstable. This is plotted in Fig. 4. Whenever g0 ≡ Dρ

2DE

α0
C0

< 1,

FIG. 4. (Color online) Plot of DQ(φ), the value of activity at
which spatial fluctuations in the direction φ become unstable. Left
panel: ρ = 1.01, close to the critical point, when DQ is monotonic
and is smallest in the φ = 90◦ direction. Right panel: ρ = 2.0, DQ

becomes nonmonotonic when the Frank elastic constant becomes
small compared to the kinetic terms. The horizontal line at DQ(90◦)
is a guide to the eye.

which is true for densities close to the critical density for
the onset of order, DQ(φ) is a monotonic function with a
minimum at φ = 90◦, i.e., spatial fluctuations orthogonal to the
direction of ordering go unstable at the lowest value of activity.
On the other hand, when g0 � 1, the spatial fluctuation that
goes unstable first as we ramp up activity from zero is now
φ ∼ 1

2 arccos(1/g0). This happens far from the critical density
at which point we should expect that universality is no longer
applicable and the dynamics becomes dependent on the details
of the parameters of the system.

Another fruitful representation of the instability condition
[Eq. (A1)] is to consider fixed values of parameters DQ, Dρ ,
and DE , and identify the range of wave-vector directions φ

that are unstable to fluctuations at any given value of mean
density ρ. This is illustrated in Fig. 5. The range of spatial

FIG. 5. (Color online) Identifying the directions in space associ-
ated with destabilizing fluctuations for different choices of parameters
of the continuum theory. When Dρ/DE becomes large, the instability
persists to large values of density and is spread over a wider
range of φ.
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directions associated with fluctuations that destabilize the
system is determined by the ratio g0 defined earlier. For g0 > 1,
the wave vectors close to φ = 90◦ are unstable. When we
move to smaller values of g0, wave vectors in a much wider
sector of spatial directions become unstable. As the activity
DQ becomes large, the instability extends to higher densities
far from the critical density as well.

Even though a large number of modes go unstable depend-
ing on the details of the parameters, the physics of the system
in the unstable region will be controlled by the fastest-growing
wave vector. We find that the fastest-growing mode is along
the φ = 90◦ whenever DE + C0

4 DQ � α0( α0
C0

Dρ + 1
2 ). This

relationship is always satisfied for densities close to the critical
density. Far from the critical density, there exist values of
parameters for which the fastest-growing mode shifts to

cos(2φ) = − ξ

γ

[
1 +

√
1 + γ

ξ 2

]
,

where γ = 8 Dρ

DQ
( α0
C0

)2 − 1 and ξ = 4DE−2α0
CoDQ

. Since the body
of the work focuses on the universal regime close to the
critical density and focuses on low-energy excitations for
which our quadratic in gradients theory is convergent and
well behaved, this shift in the fastest-growing wave vec-
tor and its consequence to the emergent structure is not
probed.

APPENDIX B: GENERALIZED NUMERICAL ANALYSIS:
ROLE OF SPECIFIC PARAMETERS

The phase separation and structure formation which is
discussed in the body of this paper depends entirely on
DQ for low-energy excitations (small DQ) near the critical
point. The density contrast (ρh − ρl) is insensitive to other
parameters, especially for small DQ, as is shown for the
density of the ordered phase (ρh) in Fig. 6. The density of
the disordered phase (ρl) is similarly insensitive to these other
parameters, with the values of ρl showing less deviation than
those of ρh.

Away from the regime of small DQ and ρ0 ∼ ρc, the
stability of the band structure depends on the values of DE

and Dρ . When the system samples densities which are further
from the critical density, as it does for larger values of DQ,
the band structure becomes unstable, and complex dynamical
structures can form (see Fig. 7). These structures are similar

FIG. 6. (Color online) The density of the ordered phase (ρh) is
shown for a range of Dρ , DE , and DQ, respectively. ρh is insensitive
to Dρ and DE , especially for small DQ.

FIG. 7. (Color online) The plots show the progression of the
structures which form as Dρ/DE is increased. The density is
represented as a heat map, and the magnitude and direction of order is
represented by the length and orientation of the lines (as in Fig. 2) after
90 000 diffusion times. These systems all have parameters ρ0 = 1.10,
DQ = 1.30, and DE = 1.20. (a) For Dρ = 0.80DE , the band of the
ordered phase is stable. (b) For Dρ = 1.20DE the band is unstable to
a large wavelength instability, which causes it to bend and eventually
break. (c) For Dρ = 2.50DE the band breaks down quickly and a
structure with fluctuations on a much smaller length scale forms.
This structure is dynamical, and the order at the edges fluctuates, but
it persists for over 100 000 of diffusion times.

to the ones seen for the reversing rod model discussed by
Shi et al. and the nematic Vicsek model considered in Ngo
et al. [43,47]. For the range of Frank elasticities which were
used (0.6 � DE � 2.0) the stability of the bands depended
only Dρ/DE rather than both parameters independently. In
order to examine the phenomenology as a function of Dρ/DE ,
the system was initialized in a band with the order along the
long dimension of the system [as it is in Fig. 7(a)], and a
Gaussian profile of density along the shorter dimension. The
average density was chosen to be slightly less than halfway
between ρl and ρh for each value of DQ to have an aspect ratio
of about 4 for the band.

The progression of structures which are seen as Dρ/DE

is increased can be described as follows. When this ratio is
small the band structure is stable and the density and order
profiles relax to a steady state like the ones seen in Figs. 7(a)
and 2(b). As this ratio is increased the band becomes unstable
to a long-wavelength fluctuation that causes the band to bend,
as seen in Fig. 7(b), and then break. These bands, which bend
and break slowly, reform and repeat the process of bending
and breaking. As Dρ/DE is further increased, the time scale
over which the bands break and reform decreases until bands
which span the system no longer form. Beyond this point,
structure on a scale which is much smaller than the size
of the system can form, and it in some cases these small-
scale structures organize into a larger structure, as they did
in Fig. 7(c).

Identifying the boundary of the stability of the band
solution, characterizing the nature of the dynamical states of
the system in this regime and comparing to the results obtained
for reversing rods [47] and the nematic Vicsek model [43]
remain to be done and will be described in future work.
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APPENDIX C: AN ALTERNATIVE KINETIC TERM

The theory which has been discussed above includes the
kinetic term [Dρ in Eq. (1b)] which causes any inhomogeneous
state to have some local nematic ordering, i.e., the only
truly isotropic state of the theory, even when ρ < ρc is the
homogeneous one. We can, instead, choose a description in
which the theory reduces to that of an isotropic fluid in the
limit S → 0 by replacing Dρ in Eq. (1b) with SDρ . This new
kinetic term does not change the linear stability of the system,
so the effects of this change were investigated numerically
with the same method discussed in Sec. IV and described in
terms of the phase separated end state. We found that the final
steady states reached by the system are largely the same as
those seen in the original theory (also discussed in Sec. IV).
In systems with activities and densities (DQ and ρ0) for which
the homogeneous state is unstable, the steady state was a set
of bands with the same structure discussed in Sec. IV, and
the same phase contrast. The density of the ordered bands has
not changed, which can be seen in Fig. 8, and the density
of the isotropic phase is similarly unaltered. Therefore we
conclude that the nature of this kinetic term does not affect
the phase separation behavior of an active nematic fluid.

FIG. 8. (Color online) The density of the ordered phase (ρH ) is
shown for a few different values of the coefficient of the kinetic term
(Dρ) in the case where that kinetic term is proportional to S. When
compared to the plot on the left in Fig. 6 it can be seen that the change
to the kinetic term has not significantly altered the density of the
ordered phase.
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104, 184502 (2010).
[17] S. R. McCandlish, A. Baskaran, and M. F. Hagan, Soft Matter

8, 2527 (2012).

[18] Y. Yang, V. Marceau, and G. Gompper, Phys. Rev. E 82, 031904
(2010).

[19] A. Peshkov, S. Ngo, E. Bertin, H. Chaté, and F. Ginelli, Phys.
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H. Chaté, Phys. Rev. Lett. 113, 038302 (2014).

[44] F. Peruani, F. Ginelli, M. Bär, and H. Chaté, J. Phys. Conf. Ser.
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