
PHYSICAL REVIEW E 90, 042301 (2014)

Collective excitations in soft-sphere fluids

Taras Bryk,1,2 Federico Gorelli,3,4 Giancarlo Ruocco,5,6 Mario Santoro,3,4 and Tullio Scopigno5,6,*

1Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
2Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 79013 Lviv, Ukraine

3Istituto Nazionale di Ottica INO-CNR, I-50019 Sesto Fiorentino, Italy
4European Laboratory for Non Linear Spectroscopy, LENS, I-50019 Sesto Fiorentino, Italy

5Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185, Roma, Italy
6Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161, Roma, Italy

(Received 29 November 2013; revised manuscript received 16 September 2014; published 1 October 2014)

Despite that the thermodynamic distinction between a liquid and the corresponding gas ceases to exist at the
critical point, it has been recently shown that reminiscence of gaslike and liquidlike behavior can be identified in
the supercritical fluid region, encoded in the behavior of hypersonic waves dispersion. By using a combination
of molecular dynamics simulations and calculations within the approach of generalized collective modes, we
provide an accurate determination of the dispersion of longitudinal and transverse collective excitations in
soft-sphere fluids. Specifically, we address the decreasing rigidity upon density reduction along an isothermal
line, showing that the positive sound dispersion, an excess of sound velocity over the hydrodynamic limit typical
for dense liquids, displays a nonmonotonic density dependence strictly correlated to that of thermal diffusivity
and kinematic viscosity. This allows rationalizing recent observation parting the supercritical state based on the
Widom line, i.e., the extension of the coexistence line. Remarkably, we show here that the extremals of transport
properties such as thermal diffusivity and kinematic viscosity provide a robust definition for the boundary
between liquidlike and gaslike regions, even in those systems without a liquid-gas binodal line. Finally, we
discuss these findings in comparison with recent results for Lennard-Jones model fluid and with the notion of the
“rigid-nonrigid” fluid separation lines.
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I. INTRODUCTION

Collective dynamics of liquids is one of the most fascinating
problems of modern condensed matter physics because of
the interplay of processes on different spatial and time scales
[1–3] as well as because of the observed dynamic crossovers
between different regions on the phase diagrams in scattering
and computer simulations. From a theoretical standpoint,
the only solid basis for description of collective dynamics
in liquids is the hydrodynamic theory, that essentially is a
collection of macroscopic fundamental conservation laws. All
the theoretical descriptions of liquid dynamics or thermody-
namics must be in agreement with hydrodynamic theory. In
particular, the problem of propagation of collective excitations
in fluids on different spatial scales must be always solved
taking into account different mechanisms of sound propagation
on macroscopic and nanoscales.

Time-dependent correlations, which define collective prop-
erties, can reveal hidden features of a system in distinct
aggregation states. This is the case, for instance, of liquid
and glass phases [4,5]. While structural properties do not
really discriminate between those two states, the time corre-
lation functions and dispersion of collective excitations show
markedly different behavior. Since the dispersion of collective
excitations can be measured in inelastic x-ray scattering (IXS)
or inelastic neutron scattering (INS) experiments, it is a proper
quantity to be associated with the dynamic features inherent
to different aggregation states.

*Corresponding author.

Building on a similar concept, the idea of the sensi-
tivity of dynamic properties of fluids on the liquidlike or
gaslike state of the system has been recently proposed in
[6], opening the way to the understanding of the dynamic
dissimilarities between low- and high-density supercritical
fluids. Specifically, a purely dynamic quantity was suggested
to discriminate between liquidlike and gaslike states, namely,
the so-called positive dispersion of collective excitations using
IXS experiments and molecular dynamics (MD) simulations
on supercritical argon [7,8]. The studies revealed that the
positive sound dispersion (PSD) in a dense, liquidlike super-
critical fluid almost vanishes upon reducing pressure, with a
cusplike behavior, on crossing an extrapolated thermodynamic
line identified by the extremals of the specific heat CP (P ), a
thermodynamic region that could be treated as a continuation
of the Widom line (maxima of the correlation length in
the vicinity of the critical point) deep into the supercritical
region. The Widom line does part the supercritical region
of the fluid phase for a restricted range of pressures and
temperatures above the critical ones into a high-density,
liquidlike domain and a low-density, gaslike domain. It was
then found a correlation beyond the critical point between a
crossover in a dynamic observable, PSD, and thermodynamics,
in terms of the Widom line. Later on, a theory of positive
dispersion in supercritical fluids [9] was developed based on
the approach of generalized collective modes (GCM) [10,11].
This theory was based on a thermoviscoelastic dynamic model
of generalized hydrodynamics and revealed the leading role
of nonhydrodynamic structural relaxation in positive sound
dispersion of dense fluids. The GCM theory allowed one
to obtain a condition for vanishing positive dispersion and
even emergence of the negative dispersion that depends on
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the ratio between the high frequency and adiabatic speeds
of sound. More detailed simulations and theoretical studies
of the collective dynamics in supercritical Ar in a wide
range of temperatures and densities [12] recently revealed
that the dynamic line where the positive sound dispersion
vanishes correlates also with the minima of the thermal
diffusivity and of the kinematic shear viscosity. These findings
confirmed our view of a dynamic crossover connected to
thermodynamics in supercritical fluids. Furthermore, another
mechanism was found for the positive sound dispersion
at relatively large wave numbers taking place in the low-
density region and which looks to be connected with thermal
processes [12].

In the framework of finding connections between dynamic
crossovers and thermodynamics, it is interesting to recall the
rich debate in the literature, based on experimental results and
theoretical interpretations, on a real archetypal fluid system,
liquid water (see [13–20] and references therein). Indeed, in
this case dynamic crossovers and a predicted Widom line,
i.e., the one emanating from the predicted secondary critical
point in the supercooled regime, are likely to be related.
Hence, these crossovers can be used, in principle, to support
the existence of such an exotic critical point, which is not
accessible experimentally. Our work on connection between a
dynamic crossover and thermodynamics in supercritical fluids
extends part of the concepts involved in the discussion on
water. This connection is verified on the long time assessed,
as opposed to predicted, critical point, i.e., the point where the
liquid-vapor phase transition line ends, and the corresponding
Widom line, being also well assessed in an extended P-T
range. Now, in order to elucidate the most fundamental aspects
in the connections between the dynamic crossover, in terms
of density dependence of PSD, and thermodynamics, here
we consider the case of a soft-sphere fluid, which does
not have interatomic attraction and gas-liquid critical point.
Indeed, within the previously described scenario, one may
naturally wonder about what should be expected in those
systems lacking the liquid-gas binodal, such as soft-sphere
model fluids. The idea that thermodynamic quantities can
discriminate between “rigid” and “nonrigid” regions was
challenged advancing alternative criteria based on the particles
lifetime in the cage of its nearest neighbors [21,22]. A few
intuitive conditions for thermodynamic and dynamic quantities
were suggested in [21], which however were not related to the
observed sensitivity of the positive sound dispersion [6,8] for
the liquidlike or gaslike type of dynamics in fluids. In general,
to date there exist mainly two points of view on the location
of the dynamic crossovers in fluids: (i) the one deduced from
the onset of the positive sound dispersion that takes place in
correspondence of the Widom line or with the loci of minima of
the thermal diffusivity and of the kinematic shear viscosity, and
(ii) a crossover, that separates rigid and nonrigid fluids, which
does not coincide with the Widom line and does not emanate
from the critical point. All these issues revived a problem of
precise calculations of dispersion of collective excitations in
fluids as well as estimation of the macroscopic adiabatic speed
of sound.

Furthermore, the dynamic crossover proposed in [23] builds
on the idea that the zero value of the shear modulus in the
entire spectrum of possible frequencies is the main feature

that distinguishes the soft fluid from the rigid liquid. However,
the issue of the generalized bulk and shear moduli was pretty
well elaborated in the literature [2,3] and even for low-density
fluids one would expect nonzero values of the high-frequency
shear modulus as it was shown for the case of supercritical
Ar [24].

We present here a study on soft-sphere fluids in a wide
range of densities. Specifically, we determine the dispersion of
longitudinal and transverse collective excitations, evaluating
the behavior of the positive sound dispersion and the high-
frequency shear modulus. The results clearly demonstrate that
even if the maximum of CP and the gas-liquid binodal in this
system are missing, the extrema of transport properties act as
a boundary between gaslike and liquidlike regions.

The remaining paper is organized as follows: In the next
section, we give the details of our simulations and analysis of
collective dynamics. Results on static and dynamic properties
for the soft-sphere fluids are reported in Sec. III, and the
Conclusions are given in the last section.

II. MOLECULAR DYNAMICS SIMULATIONS AND
METHODOLOGY OF DISPERSION CALCULATIONS

Molecular dynamics simulations were performed for seven
densities of a model soft-sphere fluid at T ∗ ≡ T/ε = 0.5843
using a system of 2000 particles in a cubic box subject to
periodic boundary conditions. The relatively low temperature
was taken because of the absence of the liquid-gas coexistence
binodal on the phase diagram of soft-sphere fluids and allows
us to check a possible dynamic crossover just by changing
the density of fluid. The effective interaction potential for soft
spheres was taken as Vij (r) = ε(σ/rij )12 with the cutoff radius
of 3.542σ . One should note that the increasing inverse power
of the repulsive potential as well as a shorter than the first
coordination shell cutoff radius would lead to more hard-
sphere-like dynamics, while in this study we are interested
mainly in the origin of dynamic crossover in fluids without
attraction but with rather large cutoff radius of pretty standard
repulsive potential. Henceforth, we will use reduced units
ε = σ = m = 1. Note that the results in reduced quantities
are universal for particular choices of potential parameters
and mass of particles. All the simulations were performed in
microcanonical constant energy ensemble over the production
runs of 600 000 time steps with a time step �t = 0.001855,
that was well justified for our low-temperature state. The small
time step for integration of equations of motion provided
perfect conservation of the total energy of the system during
the all production runs.

Each sixth step, we sampled the Fourier components of
dynamic variables of particle density

n(k,t) = 1√
N

N∑
i=1

eik·ri (t),

longitudinal component of mass current density

JL(k,t) = m

k
√

N

N∑
i=1

k · vi(t)e
ik·ri (t),
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and energy density

e(k,t) = 1√
N

N∑
i=1

εi(t)e
ik·ri (t),

where k is the sampled wave vector, ri , vi , and εi are the
position, velocity, and single-particle energy of the ith particle,
respectively. The three collective dynamic quantities describe
fluctuations of conserved quantities in monoatomic fluids
and form the set of hydrodynamic variables for longitudinal
dynamics. Note that the first two dynamic variables are
connected by the fundamental continuity equation

dn(k,t)

dt
= ik

m
JL(k,t).

In order to describe the dynamic processes beyond the
hydrodynamic regime (which is observed only for very small
wave numbers and long times) one has to apply generalized
hydrodynamics for analysis of time-dependent correlations
and sample in MD simulations nonhydrodynamic variables.
Note that the nonhydrodynamic variables are chosen to be
orthogonal to the hydrodynamic ones, i.e.,

〈Ahyd(−k)Anonhyd(k)〉 ≡ 0,

that allows them to describe dynamic processes in liquids
beyond the hydrodynamic regime [1,2]. Hence, the most
obvious choice for the nonhydrodynamic variables is to sample
the first time derivatives of the hydrodynamic ones, i.e., the
first time derivatives of the longitudinal component of mass
current density and of the energy density:

J̇ L(k,t) = m

k
√

N

N∑
i=1

[k · ai(t) + i[k · vi(t)]
2]eik·ri (t),

ė(k,t) = 1√
N

N∑
i=1

[ε̇i(t) + iεi(t)k · vi(t)]e
ikri (t),

where the overdot means the time derivative and ai(t) is the
acceleration of the ith particle. Hence, the set of dynamic
variables for analysis of longitudinal dynamics in a wide range
of wave numbers contained the above-mentioned five ones:

A(5)(k,t) = {n(k,t),J L(k,t),e(k,t),J̇ L(k,t),ė(k,t)}. (1)

Note that the extended dynamic variables contain via the accel-
erations ai(t) the information about instantaneous forces acting
on atomic particles and therefore allow correct description
of the elastic response of the system in contrast to purely
hydrodynamic appoach.

The time evolution of dynamic variables simulated in MD
was used for direct calculations of the time correlation func-
tions Fij (k,t) = 〈A∗

i (k,0)Aj (k,t)〉, their Laplace components
F̃ij (k,z), and the matrix elements of generalized hydrodynamic
matrix [10,11]

T(k) = F(k,t = 0)F̃−1(k,z = 0) (2)

via the 5 × 5 matrices of static correlation functions F(k,t = 0)
and of Laplace-transformed time correlation functions in
Markovian approximation F̃(k,z = 0). No fit was used in
calculations of the matrix elements of these matrices. The

GCM methodology used in this study for calculations of
dynamic eigenmodes in fluids was originally derived from
the microscopic kinetic theory of extended collective modes
by de Schepper and Cohen with co-workers [25] as well as
from the generalized hydrodynamic theory by Kivelson and
Keyes [26,27]. The microscopic theory of extended collective
modes enables correct description of the hydrodynamic modes
as well as of the well-defined short-wavelength collective
excitations for large wave numbers [28,29]. The predictive
power of the GCM approach was demonstrated on the analytic
theories of nonhydrodynamic opticlike excitations in binary
liquids [30,31], “fast sound” excitations in binary liquids with
disparate mass [32] and charge oscillations in molten salts [33]
completely supported by the MD simulations.

The thermoviscoelastic dynamic model (1) allows us to
study collective processes both in hydrodynamic and elastic
regimes on the same footing without neglecting (as it is usually
done in simple viscoelastic analysis) thermal processes, which
are very important for the dynamics of fluids. We would like to
recall that on macroscopic length scales the sound in fluids (in
contrast to solids) propagates adiabatically because of slow
relaxation connected with diffusivity of local temperature,
characterized by thermal diffusivity DT . Namely the thermal
effects in and outside the hydrodynamic region are taken into
account within the thermoviscoelastic dynamic model (1), that
allows consistent quantitative calculations of the dispersion of
collective excitations with an account for thermal and elastic
processes for large wave numbers [34].

For the transverse dynamics, the same level of treatment
of nonhydrodynamic processes as in the longitudinal case is
provided by the two-variable dynamic model based of the
transverse component of mass current density JT (k,t) and its
first time derivative J̇T (k,t), where

JT (k,t) = m

k
√

2
√

N

N∑
i=1

[k × vi(t)]e
ik·ri (t)

and

J̇T (k,t) = m

k
√

2
√

N

N∑
i=1

[k × ai(t)

+ i[k × vi(t)]k · vi(t)]e
ik·ri (t).

The time evolution of these dynamic variables was recorded
every six time steps and corresponding static and time
correlation functions were calculated.

The eigenvalues and corresponding eigenvectors of the
generalized hydrodynamic matrix represent the dynamic
eigenmodes that can exist in the liquid on the spatial scale
∼2π/k for the given wave number k. The eigenvalues of T(k)
are either real numbers dj (k) or pairs of complex-conjugated
numbers zj (k) = σj (k) ± iωj (k). The former correspond to
relaxing modes with the relaxation time d−1

j (k), while the
latter to propagating modes with dispersion ωj (k) and damping
σj (k). Note that the applied here GCM methodology is in
the spirit of the traditional for solids eigenvalue problem for
dynamic matrix, however, it is free from an assumption of local
potential energy minima for atoms and additionally allows one
to study relaxing modes and their effects on the dispersion
of collective excitations. Analysis of the dispersion ω(k) of
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acoustic modes should clarify the issue of the existence and
behavior of positive dispersion in soft sphere-fluids in a very
wide range of densities.

III. RESULTS AND DISCUSSION

A. Structural and thermodynamic properties

The pair distribution functions (PDF) for soft-core fluids at
seven densities are shown in Fig. 1. The simulated densities
covered the change in structure of the fluids from typical
high-density liquid with 13 particles in the first coordination
shell to practically structureless gaslike PDF. The well-
pronounced first peak of PDF with an amplitude ∼2.8 for
the most high-density state gets more smeared out and shows
reduction of its amplitude with a decrease of the density,
while the first peak of PDF shifts its location from ∼1.05
to ∼1.4. The structure factor, calculated as the instantaneous
density-density correlations S(k) = 〈n−knk〉, shows similar
reduction of structural features: from well-defined first peak
with an amplitude ∼2.75 and small isothermal compressibility
κT = S(k = 0)/nkBT at the high-density state to a practically
structureless S(k) for the lowest-density gaslike system (see
Fig. 2). Here n and kB are number density and Boltzmann
constant, respectively. With the reduction of density, the
position kmax of the main peak of S(k) shifts from ∼7.15 to
∼4.7.

Thermodynamic quantities of interest for collective dy-
namics of fluids estimated in a standard way from the
long-wavelength limit of generalized wave-number-dependent
static correlation functions [10,25] are shown in Fig. 3.
The essential advantage of the direct sampling of energy
fluctuations via e(k,t) and observation of their evolution in
MD simulations is in a possibility to calculate the macroscopic
values of the linear thermal expansion coefficient αT , specific
heats CV and CP , and their ratio γ . For Lennard-Jones (LJ)
supercritical fluids, the dependence of specific heat at constant
volume CV on density is a monotonically increasing function,
while the linear thermal expansion coefficient αT , specific
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FIG. 1. (Color online) Pair distribution functions of the soft-
sphere fluid for seven densities at temperature T ∗ = 0.5843. For
eye convenience, a shift by 0.2 was applied to the pair distribution
function by each increase of density. The lines correspond from the
top to the sequence of reduced densities: 0.9648, 0.7848, 0.6352,
0.4465, 0.2976, 0.1726, and 0.0496.
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FIG. 2. (Color online) Structure factors S(k) of the soft-sphere
fluids for seven densities. Lines correspond to the same reduced
densities as in Fig. 1.

heat at constant pressure CP , and the ratio of specific heats
γ = CP /CV can have maxima on different lines outcoming
from the critical point (Pc,Tc). These lines merge into a
single Widom line at temperatures T < 1.1Tc and become
practically completely smeared at T ∼ 2.5Tc [35]. Usually, the
computer simulations nicely reproduce the density dependence
of specific heats and their ratio [24] for Lennard-Jones systems
simulated not close to the critical point. For soft-sphere sys-
tems the specific heat is a monotonically increasing function
of density, while the linear thermal expansion coefficient and
the ratio of specific heats γ are monotonically decreasing
with density. γ drops down to ∼1.17 at the highest density
simulated here (Fig. 3). Note that γ is a measure of coupling
between the viscous and thermal processes that is important in
dynamics, when the visibility of the side peaks of the dynamic
structure factors is defined by the Landau-Placzek ratio of
the integral intensities of the central to side peaks and which
is equal to γ − 1. The smaller the Landau-Placzel ratio the
more pronounced are the Brillouin peaks in dynamic structure
factors S(k,ω), which correspond to propagating acoustic
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FIG. 3. (Color online) Thermodynamic quantities of the soft-
sphere fluids at T ∗ = 0.5843 for seven densities: reduced isothermal
compressibility S(k = 0) = κT nkBT , linear thermal expansion coef-
ficient αT , specific heats at constant volume CV and pressure CP in
units of kB , and ratio of specific heats γ .
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modes [2]. Similarly, for heat density dynamics it was very
recently shown [36] that the quantity γ − 1 is a measure of
relative weights of contributions from collective excitations
and heat relaxing mode to the specific heat CV . Hence, the
soft-sphere fluids at high density behave similarly to liquid
metals with close to unity value of γ and CV ∼ 3kB . Therefore,
one can expect for the high-density soft-sphere fluids the same
features of collective dynamics inherent to liquid metals.

B. Dispersion of collective excitations

The dispersions of the longitudinal (plus symbols) and
transverse (cross symbols) propagating modes for soft-sphere
fluids with different densities are shown in Fig. 4. One can
immediately see that for high-density fluids the dispersion
of longitudinal collective excitations has quite large positive
dispersion in comparison with the hydrodynamic dispersion
law. The values of the adiabatic speed of sound cs as a function
of density are shown in Fig. 5. The cs was estimated from
the long-wavelength extrapolation of a smooth dependence√

γ (k)/S(k) multiplied by the thermal velocity. To date, this
is the most precise methodology of calculations of adiabatic
speed of sound from classical [24] and ab initio [37,38]
simulations. The change in the dispersion of longitudinal
collective excitations with reduction of density has the follow-
ing features: (i) smearing out of the well-defined maximum
at k ∼ 3.5 and minimum at k ∼ kmax. For densities smaller
than n∗ = 0.2976 the dispersion becomes a monotonically
increasing function of wave number; (ii) a reduction of the
positive dispersion of collective excitations with the decrease
of density in the high-density region. The positive dispersion
is vanishing between the densities n∗ = 0.4465 and 0.2976,
while it becomes again nonzero for further decrease of density.
The last feature was observed for Lennard-Jones fluids too [9].

The theory of positive dispersion developed within the ther-
moviscoelastic dynamic model of generalized hydrodynamics
[9] gives the first correction to the hydrodynamic dispersion
law as

ωs(k) ≈ csk + βk3 + · · · (3)

with the prefactor β that reads as [9]

β = csD
2
L

8

5 − (c∞/cs)2

c2∞ − c2
s

− (γ − 1)DT

[
6DL + (γ − 5)DT

8cs

− cs

2d0
3

]
, (4)

where d0
3 is the long-wavelength limit of the kinetic thermal-

stress-relaxation mode, DL and DT are longitudinal kinematic
viscosity and thermal diffusivity, respectively, and c∞ is the
high-frequency speed of sound (6). In the case when the
coupling between the thermal and viscous processes can be
neglected (within a viscoelastic approximation, when the ratio
of specific heats γ ≡ 1), one obtains very simple expression
for the dispersion of collective excitations on the boundary of
hydrodynamic regime:

ω(k) ≈ csk + csD
2
L

8

5 − (c∞/cs)2

c2∞ − c2
s

k3. (5)

In order to analyze the density dependence of the positive
dispersion, we show in Fig. 5 the adiabatic speed of sound cs

as well as the high-frequency speed of sound c∞ as functions
of density. The latter was calculated via

lim
k→0

〈J̇ L(−k)J̇ L(k)〉
〈JL(−k)JL(k)〉 ∝ c2

∞k2. (6)

The existence of two characteristic speeds of sound cs and
c∞ for fluids reflects their viscoelasticity, i.e., hydrodynamic
mechanism (due to conservation laws) of sound propagation on
macroscopic distances and elastic mechanism on nanoscales.
The high-frequency speed of sound is always higher than
the adiabatic one. Figure 5 gives evidence that the high-
frequency speed of sound c∞ is well defined for all the
studied densities of soft-sphere fluids. Note that c∞ is the
propagation speed in elastic medium without any account
for dissipation processes and can be easily calculated either
from (6) or using an integral expression for the fourth
and second frequency moments of the dynamic structure
factor [2], i.e., from exact sum rules. In the region of wave
numbers outside the hydrodynamic region, where the elastic
mechanism of sound propagation takes place, the dissipation
processes, which essentially depend on k, renormalize down
the c∞ giving rise to the apparent speed of sound capp(k) =
ωsound(k)/k. The dissipation processes responsible for damp-
ing of acoustic collective excitations σsound(k) in the elastic
regime lead to the following renormalization of the “bare”
frequency [39,40]:

ωsound(k) =
√

c2∞(k)k2 − σ 2
sound(k),

where c∞(k) is the wave-number-dependent high-frequency
speed of sound that follows from (6). All this is in contrast with
a claim made in [21] that the dynamic crossover “marks the
point at which the positive dispersion disappears completely
because this crossover corresponds to the complete loss of
shear waves that can exist in a liquid and corresponding loss
of the high-frequency sound.” In fact, there is no loss of the
high-frequency sound but renormalization of its propagation
speed due to dissipative processes, which are usually taken
into account within the memory function formalism as well as
in the GCM theory.

Now, we will discuss the claimed in [21] complete
“loss of shear waves” for low-density fluids. By definition
[2], the generalized high-frequency shear modulus reads as
follows:

G∞(k) = ρ

k2

〈J̇ T (−k)J̇ T (k)〉
〈J T (−k)J T (k)〉 ≡ ρ

k2
〈ω2〉T (k), (7)

where 〈ω2〉T is the normalized second frequency moment of
the transverse current spectral function CT (k,ω). In order
to check the prediction of [23] that for nonrigid fluids in
all the range of frequencies the shear modulus is equal to
zero, that means the complete absence of shear waves in
those fluids, we calculated the wave-number-dependent shear
modulus G∞(k) for different densities of our soft-sphere fluids
(Fig. 6). Note that the G∞(k) is connected with the second
frequency moment 〈ω2〉T (k) of the transverse current spectral
function CT (k,ω), i.e., with the exact sum rules. The 〈ω2〉T (k)
is always a positive function of wave numbers. In complete
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FIG. 4. (Color online) Dispersion of longitudinal (L) and transverse (T) collective excitations for soft-sphere fluids at reduced densities
0.9648 (a), 0.7848 (b), 0.6352 (c), 0.4465 (d), 0.2976 (e), and 0.1726 (f). The hydrodynamic linear dispersion law ω = csk is shown by a dotted
line.

agreement with these arguments, we observed even for very
small densities nonzero values of the high-frequency shear
modulus G∞(k). This fact completely justifies the obtained
dispersion of transverse propagating eigenmodes shown by
cross symbols in Fig. 4. Again, as in the case of the high-
frequency sound, the dispersion of shear waves shown in
Fig. 4 is the renormalized one from the frequency of “bare”
shear modes, which are defined by the high-frequency shear
modulus. The theory of renormalization of bare modes due
to dissipative processes formulated within the perturbation
theory for the generalized hydrodynamic matrix can be found
in [40]. We would also like to stress that the dispersion
of longitudinal collective excitations easily can be studied
by finding well-defined maxima position of the longitudinal
current spectral function CL(k,ω) because of the condition

CL(k,0) ≡ 0. However, for the case of the transverse spectral
functions CT (k,ω) the contributions from transverse collective
excitations can be hidden under the relaxing part of CT (k,ω)
because CT (k,0) �= 0. Indeed, the zero-frequency limit of the
transverse spectral functions reads as CT (k,0) ∼ ρ/[k2η(k)],
where η(k) is the generalized shear viscosity, which tends
in the long-wavelength limit to its macroscopic value η.
The issue of the visibility of transverse collective excitations
in CT (k,ω) is not really well elaborated in the literature,
but it is obvious that the absence of the well-defined peak
in CT (k,ω) does not mean the complete absence of shear
waves propagating on nanoscales L ∼ 2π/k. Similarly, the
absence of a side peak in dynamic structure factors S(k,ω) for
large wave numbers does not mean the lack of longitudinal
collective excitations. In fact, their contribution simply is too
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FIG. 5. (Color online) Adiabatic (line connected plus symbols)
and high-frequency (line connected cross symbols) speeds of sound
for the soft-sphere fluids at T ∗ = 0.5843.

weak in comparison with the one from relaxation processes.
Therefore, in the case of transverse dynamics only the proper
analysis based on dynamic eigenmode calculations can reveal
the existence of transverse excitations, their dispersion, and
contribution to CT (k,ω) in a wide range of densities. The
long-wavelength region in which the transverse collective
excitations are not supported by the fluid is called a propagation
gap for shear waves. For dense fluids, the reduction of the gap
for shear waves with the increase of density is well known
[41]. However, the sequence of dispersions for shear waves
for different densities shown in Fig. 4 gives evidence that
for gaslike fluids, the width of the propagation gap ks can also
decrease with reduction of density, that actually is in agreement
with a theoretical prediction for the smallest wave number at
which a complex-conjugated pair of transverse eigenmodes
can emerge in fluids [30]

ks =
√

ρG∞
2η

taking into account the observed increase of the kinematic
shear viscosity η/ρ with the decrease of density for low-
density fluids [42].
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FIG. 6. (Color online) Generalized high-frequency shear modu-
lus G∞(k) for soft-sphere fluids at T ∗ = 0.5843 and six densities.
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FIG. 7. (Color online) Density dependence of the apparent speed
of sound capp(k) = ωsound(k)/k for the soft-sphere fluids at T ∗ =
0.5843 and six densities.

C. Crossover in collective dynamics of soft-sphere fluids

The crossover in collective dynamics from gaslike to liq-
uidlike behavior was studied in [6,8,9] on the basis of positive
dispersion of collective excitations in supercritical fluids. Later
on, another specific nonzero positive dispersion was found in
MD simulations of supercritical argon for low-density states
[12]. The dispersion of collective excitations in soft-sphere
fluids shown in Fig. 4 gives evidence of similar features as were
observed before for supercritical fluids. In order to observe the
density change of the positive dispersion, we show in Fig. 7 the
apparent speed of sound capp(k) = ωsound(k)/k. The apparent
speed of sound gives evidence of a strong positive dispersion
for the most dense studied here soft-sphere fluid. The positive
dispersion of sound in soft-sphere fluids is reducing with the
reduction of density reaching almost zero-PSD state between
the densities n∗ = 0.4465 and 0.2976 as follows from Fig. 7.
For further decrease of density one observes again nonzero
PSD, that gives evidence of a very similar scenario of behavior
of PSD as it was observed in the case of Lennard-Jones fluids
[8,12]. This means that for the systems with and without
coexistence gas-liquid binodal and critical point, the behavior
of the PSD is very similar.

In order to make a link between the dynamics of systems
with and without the coexistence gas-liquid binodal, we cal-
culated from the most long-wavelength dynamic eigenmodes
the values of the thermal diffusivity DT and longitudinal
kinematic viscosity DL. Their density dependence is shown
in Fig. 8. Note that here, for the case of soft-sphere fluids,
we observed similar DT (n) dependence as it was known for
real supercritical fluids [42] and were reported in studies of
critical behavior of thermal diffusivity DT of CO2, C2H6 [43],
and H2O [44]. Interestingly, both density dependencies DT (n)
and DL(n) for soft-sphere fluids have minima right in the
region of the smallest PSD, at the density n∗ ∼ 0.37 (see
Fig. 8). Both quantities DT and DL define the behavior of
the PSD as it follows from the analytical expression reported
in Eq. (4). On the other hand, in more realistic LJ supercritical
fluids (see [12]), minima in DT and DL have been found to
correspond to maxima in CP . When the attractive part in the
Lennard-Jones potential is removed, hence in the soft-sphere
potential, the Widom line is no longer defined (no gas-liquid
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FIG. 8. (Color online) Dependence of the thermal diffusivity DT

and kinematic viscosity DL on density for the soft-sphere fluids at
T ∗ = 0.5843.

coexistence line and its continuation into supercritical regime)
yet a link between high-frequency dynamics and macroscopic
transport and thermodynamic quantities is retained. Put in
different words, when soft-sphere potential is turned into
the Lennard-Jones one by adding the attractive part, the
correspondence between the dynamic crossover in PSD and
the Widom line is reproduced. In this sense, the soft-sphere
fluids support such a relationship.

For realistic fluids, the critical behavior of thermal
diffusivity

DT = λ

nCP

depends on the divergence of thermal conductivity λ and
specific heat at constant pressure CP at the critical point [45].
The experiments [43,44] give evidence of a rapid decay of DT

on approaching the critical point, i.e., leading contribution
from the CP and, consequently, the line of the minimum
of DT (n) for realistic fluids should be very close to their
Widom line. This makes a strong argument in connecting the
dynamic crossover in systems with and without coexistence
gas-liquid binodal. We suggest here that the dynamic crossover
in soft-sphere fluids takes place at the line of minima of
DT (n), which almost coincides with the line of minima of
DL(n). This is in agreement with our previous observations for
supercritical Ar [12] as well as the very first suggestions on the
role of the Widom line in the observed dynamic crossover [8].
Both quantities, thermal diffusivity and longitudinal kinematic
viscosity, define the relaxation behavior of fluids because they
define the hydrodynamic correlation times and damping of the
long-wavelength collective excitations [1,2] as well as they
define the width of hydrodynamic regime [9]. It seems that,
namely, these two quantities are responsible for the dynamic
crossover for all fluids: supercritical ones and soft-sphere
systems. We checked out whether the GCM theory supports
the correspondence between the suggested dynamic crossover
with the behavior of the positive dispersion. We have calculated
the density dependence of the factor β in the dispersion law
of acoustic modes on the boundary of hydrodynamic regime
(4). In Fig. 9, it is clearly seen that the density dependence
of factor β shows a minimum with practically β = 0 right
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FIG. 9. (Color online) Dependence of the factor β in (4), which
characterizes the leading correction to hydrodynamic dispersion law
within the GCM theory. The viscoelastic and thermal contributions
to β are shown by spline-interpolated dashed and dotted lines,
respectively.

in the same region of densities where the minima of DT (n)
and DL(n) are located. The leading contribution to β is of
viscoelastic origin, while a nonzero negative contribution to β

comes from thermal processes only in the low-density region.
Hence, the GCM theory gives evidence of the nonmonotonic
density dependence of the positive dispersion in soft-sphere
fluids, that is completely supported by the observed apparent
speed of sound capp(k) in Fig. 7. These results that follow
from the analytical GCM approach in the long-wavelength
region provide the quantitative description of the crossover in
PSD for soft-sphere fluids and show the factors responsible
for it.

We would like to stress that the experimental studies [43,44]
were performed for fluids near the critical point. Therefore, for
temperatures far away from the critical region, new simulation
studies for Lennard-Jones fluids are required in order to
check the behavior of positive sound dispersion in a wide
range of temperatures: from critical region up to very high
temperatures. So far, the only study [12] was performed in
this direction on supercritical Ar. Its results were in agreement
with the actual findings for soft-sphere fluids on the connection
of thermal diffusivity DT and kinematic viscosity DL with
the nonmonotonic behavior of positive sound dispersion.
Furthermore, the NIST database [42] allows us to follow the
nonmonotonic behavior of the density dependence of DT and
DL in very wide temperature and pressure ranges, that will
definitely help in establishing their connection to the positive
sound dispersion far away from the critical region in realistic
liquids.

We tried also to shed light on the results on the proposed
in [21] “rigid”-“nonrigid” crossover, which should be general
for both supercritical and soft-sphere fluids. According to [23],
“the definition of τ ∗ as the average time necessary for a particle
to become displaced by an average interatomic distance”
can be easily used to calculate τ ∗ from the mean square
displacements 〈R2〉(t) and pair distribution functions for fluids
of different density. Similarly, having the spectra of collective
excitations, we can calculate the quantity τ0 = 2π/ωmax,
where ωmax is according to [23] “the maximum frequency
of acoustic excitations (on the order of Debye frequency),”
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function. The color and line types in (a) corresponded to the same densities as in Fig. 1.

which was estimated according to [21] from the linear sound
dispersion law and “taking maximum frequency ωmax as Debye
frequency.”

In Fig. 10, we show the behavior of the mean square
displacements of the soft-sphere fluids. The time τ ∗ needed
for particles to reach the distance Rmax, i.e., the location of the
main peak of the corresponding pair distribution function, is
shown by cross symbols in Fig. 10. As the ωmax we took the
values of observed in Fig. 4 first maxima of ω(k), which change
from the well-defined one in the case of dense fluids to very
smeared out in the low-density fluids, located approximately
at kmax/2, i.e., at the location of the pseudo-Brillouin zone
boundary, where kmax is the location of the first peak of
S(k). For the lowest-density fluid, we did not observe a clear
shoulder or maximum in dispersion in the region of kmax/2,
therefore, we did not calculate ωmax for that case. From the
comparison of τ ∗ and τ0 in Fig. 10 one can see that the proposed
in [21] criterion τ ∗ = τ0 for the rigid-nonrigid crossover
cannot be fulfilled. Another possibility for estimation of the τ0

was suggested in [21] to take “the minimal period of transverse
quasiharmonic waves.” Looking at the dispersion of shear
waves shown by cross symbols in Figs. 4(a)–4(f) one can see
that it is difficult to define the maximum oscillation frequency
for the shear waves. Furthermore, there is no sense to use the
Debye model and to define some “Debye frequency” for shear
waves because the dispersion of shear waves is not linear with
k as this is for transverse modes in solids and contains the
propagation gap in the long-wavelength region (see Fig. 4).

IV. CONCLUSIONS

The molecular dynamics simulations and analysis of dy-
namic eigenmodes, based on the GCM approach, performed
on a wide range of densities of soft-sphere fluids revealed
the existence of positive dispersion of collective excitations at
high densities and its density evolution found to be similar to
the one observed for Lennard-Jones fluids [9]. Hence, for the
fluids with and without interparticle attraction, the dynamic
crossover takes place in the same way. We have found that the
vanishing positive dispersion corresponds to the density region
where the thermal diffusivity DT and kinematic viscosity
DL have their smallest values. These two transport quantities

define the damping of long-wavelength collective excitations
and main hydrodynamic correlation times. Hence, our results
for soft-sphere fluids and previously for the Lennard-Jones
ones allow us to conclude that the dynamic crossover between
the “liquidlike” and “gaslike” states of fluids takes place
with and without the gas-liquid binodal at the region where
thermal diffusivity and kinematic viscosity have their minima
as functions of density. As a matter of fact, in the soft-sphere
fluid, i.e., the case when the Widom line is not defined, still
a link between high-frequency dynamics and macroscopic
transport and thermodynamics exists. On the other hand, in
Lennard-Jones supercritical fluids (see [12]), minima in DT

and DL have been found to correspond to maxima in CP .
In other words, when a soft-sphere system is turned into
the Lennard-Jones one by adding the attractive part of the
potential, the correspondence between the dynamic crossover
in PSD and the Widom line is reproduced. In this sense, soft-
sphere fluids support such a relationship. This result is clearly
different from the case of supercooled liquid water, where
dynamical crossovers are predicted to occur in correspondence
of maxima of CP , even in absence of the secondary critical
point, i.e., when no Widom line exists [20,46].

We applied to the analysis of the PSD in soft-sphere
fluids an analytical theory of the long-wavelength behavior of
PSD derived in [9]. It showed similar contributions from the
viscoelastic and thermal processes to PSD as was observed
for supercritical Ar: at large densities, the PSD is almost
completely defined by the coupling with structural relaxation,
while at small densities the thermal relaxation processes
connected with diffusivity of local temperature give rise to
a negative contribution. For the case of supercritical fluids
by approaching the Widom line and the critical point, the
thermal diffusivity rapidly drops causing the large negative
contribution to the PSD. Hence, the reported here combi-
nation of MD simulations, GCM analysis of eigenmodes,
and analytical theory give an important quantitative de-
scription of the similarity and specific features of dynamic
crossover in the systems with and without gas-liquid critical
point.

Further, we discussed the dynamic crossover in fluids based
on the Frenkel’s idea of lifetimes of particles in the cages
of nearest neighbors to the observed behavior of positive
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dispersion in soft-sphere fluids [21]. Our determination of the
average time τ ∗ for the particles to reach the first coordination
shell and of the shortest period of oscillations τ0 show that for
soft-sphere fluids, these characteristic times differ and only
in the very low-density limit τ ∗ ≈ τ0 holds. Moreover, our
analysis of the density dependency of high-frequency speed
of sound shows that there is no sharp loss of the rigidity of
fluids. Similarly, the well-defined wave-number dependency
of the high-frequency shear modulus gives evidence of the
existence of the short-wavelength shear waves even in low-
density soft-sphere fluids. These observations were supported
by calculated transverse propagating eigenmodes, which exist

in the short-wavelength region even for the lowest-density
fluids, and by exact sum rules for transverse dynamics. Our
results give evidence that there is no loss of shear waves for all
frequencies, at variance with the idea that vanishing of shear
waves is the main feature that distinguishes the soft fluid from
the rigid liquid [23].

All together, our results do not support the existence of a
dynamic line that separates rigid and nonrigid fluids, while
positive sound dispersion behaves nonmonotonically as a
function of density and can be a measure of dynamic crossovers
regardless of the existence of a gas-liquid coexistence binodal
on the phase diagram.
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