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Avalanche contribution to shear modulus of granular materials
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Shear modulus of frictionless granular materials near the jamming transition under oscillatory shear is
numerically investigated. It is found that the shear modulus G satisfies a scaling law to interpolate between
G ∼ (φ − φJ )1/2 and G ∼ γ

−1/2
0 (φ − φJ ) for a linear spring model of the elastic interaction between contacting

grains, where φ, φJ , and γ0 are, respectively, the volume fraction of grains, the fraction at the jamming point,
and the amplitude of the oscillatory shear. The linear relation between the shear modulus and φ − φJ can be
understood by slip avalanches.
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I. INTRODUCTION

Amorphous materials consisting of densely packed parti-
cles such as granular materials [1], colloidal suspensions [2],
emulsions, and foams [3] have rigidity above a critical density,
while they lose rigidity below the critical density. Such rigidity
transition, known as the jamming transition, has attracted much
attention among researchers in these days [4].

In the vicinity of the jamming point taking place at the
volume fraction of the jamming point φJ , amorphous materials
exhibit critical behavior. Assemblies of frictionless particles
exhibit a mixed transition, in which the coordination number
shows a discontinuous transition, while the pressure, the elastic
moduli, and the characteristic frequency of the density of
state exhibit continuous transition [5–7]. Moreover, critical
scaling laws, similar to those observed in equilibrium critical
phenomena, exist in the rheology of the sheared disordered
particles [8–22]. On the other hand, assemblies of soft
frictional grains exhibit a discontinuous transition associated
with a hysteresis loop and a discontinuous shear-thickening in
the rheology under steady shear [23–31].

The shear modulus G, the ratio of the shear stress to
the shear strain, is one of the most important quantities to
characterize the jamming transition. It is well known that G

slightly above the jamming point satisfies the scaling

G ∼ (φ − φJ )1/2 (1)

for grains interacting by a linear spring model, where φ is
the volume fraction [5–7]. This power law as well as the
frequency dependence of G can be explained by the analysis
of the soft mode, and the validity of these laws is verified
through simulations [32,33]. On the other hand, Refs. [34,35]
have recently reported that G might obey a different power
law of the excess volume fraction, φ − φJ , as

G ∼ γ −c
0 (φ − φJ ) (2)

through an experiment and a simulation of soft spherical
particles at finite temperature, although the strain amplitude
γ0 dependence with an exponent c has not been discussed.
The conflict between Eqs. (1) and (2) may be understood
from the amplitude of the shear strain. Indeed, conventional
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studies assume that the contact network is unchanged during
the process because of an infinitesimal amplitude of the shear
strain, but it might be inappropriate for a finite strain even near
the jamming point. In fact, as shown in Fig. 1 obtained from
a simulation under an oscillatory shear, many bonds between
contacting grains near the jamming point are broken under the
shear strain γ larger than 10−4, which causes slip avalanches
distributed in a broad range of sizes [36–38]. To interpolate
previously reported relations, Eqs. (1) and (2), we postulate
the scaling for the shear modulus:

G(φ,γ0) = G0(φ − φJ )aG[γ0/(φ − φJ )b], (3)

where a and b are the critical exponents, and G0 is the char-
acteristic shear modulus, which is determined from the
elasticity and the diameter of grains. We also assume that
the scaling function G(x) satisfies

lim
x→0

G(x) = const, lim
x→∞G(x) = x−c. (4)

To be consistent with the known results, the exponents
should satisfy a = 1/2 and a + bc = 1. A similar analysis
on the nonlinear rheology of an unchanged contact network
is reported in Ref. [39], but they do not discuss the effect of
the slip avalanches. It should be noted that the plastic-elastic
rheology of jammed granular materials under large strain
amplitude is studied in Ref. [40], but studies of the shear
modulus depending on the stress avalanche by the shear strain
do not exist as far as we know.

In this paper, we numerically study the behavior of the
shear modulus G of granular materials near the jamming
point φJ under an oscillatory shear. In Sec. II, we explain
our setup and model. In Sec. III, we present the details of
our numerical results. In Sec. IV, we phenomenologically
estimate the values of the exponents a, b, and c we have
introduced. We determine the values of exponent a in Eq. (3) in
terms of a phenomenological argument in Sec. IV A, estimate
the exponent c in the asymptotic form (4) caused from the
slip avalanches in Sec. IV B, and discuss the exponent b in
Eq. (3) in Sec. IV C. In Sec. V, we discuss and conclude our
results. In Appendix A, we explain the method to determine
the jamming transition point. In Appendix B, we rederive the
size distribution of the avalanche obtained in Ref. [36].
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FIG. 1. (Color online) Time evolution of a frictionless granular
system of a linear spring between contacting grains for the packing
fraction φ = 0.660 under an oscillatory shear, where the jamming
fraction φJ is 0.6494. (a) A snapshot of grains without shear strain,
i.e., γ = 0. (b) A snapshot of the grains whose bonds between
contacting pairs at γ = 0 are broken at γ = 1.2 × 10−4. (c) A
snapshot of the grains whose bonds between contacting pairs at
γ = 0 are broken at γ = 4.8 × 10−4. (d) A snapshot of the grains
whose bonds between contacting pairs at γ = 0 are broken at
γ = 7.5 × 10−4.

II. SETUP OF OUR SIMULATION

Let us consider a three-dimensional frictionless granular
assembly in a cubic box of linear size L. The system includes
N spherical grains, where each of them has an identical mass
m. The position and the velocity of the grain i are, respectively,
denoted by r i and vi . There exist four types of grains for the
diameter, 0.7d0, 0.8d0, 0.9d0, and d0, where the number of
each species is N/4. Throughout this paper, we use the volume
fraction φ to characterize the density of the grains.

Because the grains are frictionless, the contact force has
only the normal component of the elastic force f (el)

ij and the

dissipative force f (dis)
ij , which are, respectively, given by

f (el)
ij = k(dij − rij )��(dij − rij )nij , (5)

f (dis)
ij = −ηvij�(dij − rij )nij (6)

with the elastic constant k, the viscous constant η, the
diameter di of grain i, r ij ≡ r i − rj , nij ≡ r ij /rij , rij ≡ |r ij |,
dij ≡ (di + dj )/2, and vij ≡ (vi − vj ) · nij . Here, �(x) is the
Heaviside step function satisfying �(x) = 1 for x � 0 and
�(x) = 0 otherwise. The exponent � characterizes the elastic
repulsive interaction, i.e., � = 3/2 for spheres of Hertzian
contact force, and � = 1 for the linear spring model. Note
that the characteristic shear modulus G0 introduced in Eq. (3)
corresponds to kd�−2

0 .

In this paper, we apply an oscillatory shear along the y

direction under the Lees-Edwards boundary condition [41].
As a result, there exists macroscopic displacement only along
the x direction. The time evolution of such a system, known
as the SLLOD system [41], is given by

d r i

dt
= pi

m
+ γ̇ (t)yiex, (7)

d pi

dt
=

∑
j �=i

{
f (el)

ij + f (dis)
ij

} − γ̇ (t)pi,yex, (8)

where pi and ex are, respectively, the peculiar momentum and
the unit vector parallel to the x direction.

We use the viscous constant η = 1.0
√

mkd�−1
0 , which

corresponds to the constant restitution coefficient e = 0.043
for � = 1. We adopt the leapfrog algorithm, the second-order
accuracy in time with the time interval �t = 0.2τ , where τ is
the characteristic time of the stiffness, i.e., τ =

√
md1−�

0 /k .
The number N of particles is 16 000 except in Appendix A,
where we estimate the jamming point φJ from a finite-size
scaling. We have verified that the shear modulus is almost
independent of the system size for N � 4000.

We randomly place the grains in the system as an initial
state, and we wait until the kinetic energy of each grain
becomes smaller than 10−14kd1+�

0 . Then, we apply the shear
with the shear rate

γ̇ (t) = γ0ω sin(ωt), (9)

where time t is measured from the relaxed static configuration
and ω is the angular frequency of the oscillatory shear. From
Eq. (9), the shear strain is given by

γ (t) = γ0{1 − cos(ωt)}. (10)

We examine the shear modulus for various strain amplitudes
γ0 = 100, 10−1, 10−2, 10−3, 10−4, and 10−5 for ωτ = 10−4

[42]. We analyze the real part of the complex shear modulus
[43] (storage modulus) defined by

G(φ,γ0,ω) = −ω

π

∫ 2π/ω+t0(γ0)

t0(γ0)
dt

S(t) cos(ωt)

γ0
, (11)

where t0(γ0) is the time when γ (t) = 0 under the strain
amplitude γ0. Here, the shear stress S(t) is calculated from

S(t) = − 1

L2

〈
N∑
i

∑
j>i

rij,x(t)
{
f

(el)
ij,y(t) + f

(dis)
ij,y (t)

}〉

− 1

L2

〈
N∑

i=1

px,i(t)py,i(t)

2m

〉
. (12)

In this paper, we do not analyze the loss modulus because (i)
it has only a linear dependence on ω in our simulation, and
(ii) it seems to be independent of density. Note that the stress
S(t) exhibits a strong nonlinearity on the strain γ (t) as shown
in Fig. 2, where we plot the shear stress S(t) against γ (t) with
φ = 0.652 and γ0 = 0.1 for � = 1. It should also be noted
that G is almost independent of ω for γ0 � 10−2. We thus
investigate only a γ0 and φ dependence of G in this paper.
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FIG. 2. (Color online) The shear stress S(t) against γ (t) with φ =
0.652 and γ0 = 0.1 for � = 1.

III. NUMERICAL RESULTS

In Fig. 3, we plot G against φ − φJ with γ0 = 10−5, 10−3,
and 10−2 for � = 1. It should be noted that the jamming
point φJ is numerically estimated as 0.6494 using the method
explained in Appendix A. For the smallest strain amplitude
(γ0 = 10−5), G reproduces the well-known behavior Eq. (1)
[6,32], but G seems to satisfy Eq. (2) for large γ0 = 10−2.
Thus, it is natural to postulate the scaling form Eq. (2) to
interpolate two equations.

Figure 4 shows the scaling plot based on Eq. (3) for � = 1.
This figure supports the scaling ansatz, Eq. (3), where we have
used exponents

a = 0.50 ± 0.02, b = 0.98 ± 0.02. (13)

The exponents are determined by the Levenberg-Marquardt
algorithm [44], where we use the functional form for the
scaling function:

G(x) = B0

1 + e
∑3

n=1 Bn(log x)n
(14)

with fitting parameters B0 = 0.39 ± 0.03, B1 = 1.1 ± 0.06,
B2 = −0.08 ± 0.04, and B3 = −0.008 ± 0.008. Here, we use
the critical fraction estimated from a finite-size scaling in
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FIG. 3. (Color online) The shear modulus G against the excess
volume fraction φ − φJ with γ0 = 10−5, 10−3, and 10−2 for � = 1.
The solid and dashed lines represent the power-law functions with
the exponent 1/2 and 1, respectively.
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FIG. 4. (Color online) Scaling plot of G characterized by
Eq. (3) with φ = 0.650, 0.652, 0.655, 0.660, 0.670, and γ0 =
10−4, 10−3, 10−2, 10−1 for � = 1. The dashed line is the scaling
function given by Eq. (14). The solid line represents the second
equation in Eqs. (4) with the exponent c = 1/2.

Appendix A. It should be noted that the estimated values
of the exponents do not change within the error margin if
we use φJ as a free parameter in the Levenberg-Marquardt
algorithm. From Fig. 4, the estimated exponent c in Eq. (4)
is approximately given by 1/2. From Eq. (13) and c =
1/2, we obtain a + bc = 0.99 ± 0.02, which also supports
Eq. (2).

Figure 5 confirms the validity of Eq. (3) for � =
3/2, where the scaling exponents are numerically estimated
as

a = 0.99 ± 0.02, b = 0.98 ± 0.01 (15)

with the fitting parameters B0 = 0.76 ± 0.16, B1 = 1.1 ±
0.18, B2 = −0.089 ± 0.073, B3 = −0.020 ± 0.016, and the
critical fraction φJ = 0.6486 ± 0.0001, which is numerically
estimated by the method explained in Appendix A. The
exponent c in Eq. (4) is approximately given by 1/2. It
should be noted that the estimated values of the exponents
do not change within the error margin if we use φJ as a free
parameter.
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FIG. 5. (Color online) Scaling plot of G characterized by Eq. (3)
with γ0 = 10−5, 10−4, 10−3, 10−2 and γ0 = 10−4, 10−3, 10−2, 10−1

for � = 3/2. The dashed line is the scaling function given by Eq. (14).
The solid line represents the second equation in Eqs. (4) with the
exponent c = 1/2.
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IV. PHENOMENOLOGICAL EXPLANATION

In this section, we try to evaluate the exponents for the
scaling law Eqs. (3) and (4) in terms of a mean-field-like phe-
nomenological argument. In the first part, we derive the expo-
nent a in Eq. (3). In the second part, we determine the exponent
c in Eq. (4). Finally, we discuss the exponent b in Eq. (3).

A. Exponent a

Let us derive the exponent a. From the relationship between
the mean-field compress force f and the compression δ,
f ∼ keffδ ∼ δ�, with the effective spring constant keff , we
immediately obtain the relation keff ∼ δ�−1. In the vicinity
of the jamming point, the compression δ should satisfy
δ ∼ φ − φJ [14]. On the other hand, from Refs. [32,45],
we may deduce G/keff ∼ δz ∼ √

φ − φJ , where δz is the
excess coordination number and we have used the well-known
relation δz ∼ √

φ − φJ [7]. Thanks to the above relations, we
reach G ∼ (φ − φJ )�−1/2. Therefore, we obtain the exponent
a as

a = � − 1/2. (16)

Equation (16) is consistent with the numerical estimation given
by Eqs. (13) and (15) for � = 1 and 3/2, respectively.

B. Exponent c

We assume that the shear stress under the oscillatory shear
is described by a generalized elastic-plastic model [46]. Here,
the elastic-plastic model consists of an infinite number of series
connections with an elastic element of equal shear modulus G0

and a slip element characterized by the stress drop s in each
avalanche process. We assume that the time evolution of the
shear stress S(t) is given by

S(t) =
∫ ∞

0
ρ(s)S̃(s,t)ds, (17)

where S̃(s,t) is the stress of an individual element having the
stress drop s, and ρ(s) is the probability density of the stress
drop.

We assume that the individual stress S̃(s,t) for 0 � t �
2π/ω behaves as a linear function of the strain γ (t) given by
Eq. (10) until |S̃(s,t)| reaches the maximum value s, while it
drops to 0 when |S̃(s,t)| exceeds s due to the breakdown of
the contact network. Thus, S̃(s,t) satisfies

S̃(s,t) =

⎧⎪⎨
⎪⎩

G0γ (t) [0 � θ (t) < θc],
0 [θc � θ (t) < π ],
G0[γ (t) − 2γ0] [π � θ (t) < π + θc],
0 [π + θc � θ (t) < 2π ],

(18)

as illustrated in Fig. 6, where θ (t) is the phase of the shear
strain:

θ (t) = ωt. (19)

The explicit expression of the critical phase θc for S(s,t) = s

is given by

θc(s/(G0γ0)) = cos−1

(
1 − s

G0γ0

)
, (20)

where we have used Eqs. (10), (18), and (19).

S(s,t)

γ2γ0s/G0

2γ0 - s/G0

0

s

-s

~

FIG. 6. The stress S̃(s,t) of an individual element for 0 � t �
2π/ω.

The expression of the stress-strain relation (17) depends
on the probability density ρ(s), which is predicted to
satisfy

ρ(s) = A(φ)s−3/2e−s/sc(φ) (21)

for s0(φ) � s, where s0(φ) and sc(φ) are the lower cutoff
and the characteristic stress drop, respectively [36–38]. [The
derivation and the numerical result for ρ(s) are presented in
Appendix B.] It should be noted that the cutoff size of the stress
drop distribution should exist, because the rearrangement of
one grain gives the minimum size of the stress drop, though
the cutoff might differ from s0(φ). Here, we simply assume
that the distribution lower than s0(φ) does not contribute to
the shear modulus. Here, A(φ) is the normalization constant
satisfying A(φ) = 1/

∫ ∞
s0(φ) ds s−3/2e−s/sc(φ), which depends on

the volume fraction.
Substituting Eq. (17) into Eq. (11), we obtain

G =
∫ ∞

0
ds G̃(γ0,s)ρ(s), (22)

where G̃(γ0,s) is the shear modulus of the individual element:

G̃(γ0,s) = −ω

π

∫ 2π/ω

0
dt

S̃(s,t) cos(ωt)

γ0
. (23)

Substituting Eq. (18) into Eq. (23), we obtain

G̃(γ0,s) = G0F

(
s

G0γ0

)
, (24)

where

F (x) =
{

1 (x � 1),
T (x)/π (x < 1), (25)

with

T (x) = θc(x) − 2 sin θc(x) + sin 2θc(x)

2
. (26)

Substituting Eqs. (21) and (24) into Eq. (22), we obtain

G = A(φ)G0

∫ ∞

s0

ds s−3/2e−s/sc(φ)F

(
s

G0γ0

)
. (27)
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Using x = s/G0γ0 and expansion e−x(G0γ0)/sc = 1 −
x(G0γ0)/sc + · · · for s � sc(φ), we obtain

G = A(φ)G1/2
0 γ

−1/2
0

{ ∫ ∞

s0
G0γ0

dx x−3/2F (x) + O

(
G0γ0

sc

)}
.

(28)

For s0/G0 	 γ0 	 sc/G0, the second term in this equa-
tion is negligible and the lower cutoff of the integral
can be s0/(G0γ0) → 0. Then, G is approximately given
by

G 
 A(φ)G1/2
0 γ

−1/2
0

∫ ∞

0
dx x−3/2F (x). (29)

Because the integral in Eq. (29) is apparently converged, we
obtain

c = 1/2 (30)

from Eqs. (3) and (4).

C. Exponent b

From Eqs. (16) and (30) with the aid of Eqs. (3) and (4),
Eq. (2) for the general � is replaced by

G ∼ γ
−1/2
0 (φ − φJ )�+(b−1)/2. (31)

It should be noted that the dimensions of the shear
modulus G and the pressure P are identical. G under large
strain amplitude γ0 might obey the same dependence on
(φ − φJ ) as that of P [6], P ∼ (φ − φJ )�, which leads to
b = 1. This is consistent with the numerical estimation given
by Eqs. (13) and (15) for � = 1 and 3/2, respectively. Thus, we
believe that b = 1 can be used in our setup, which is consistent
with the recent experiments [47].

V. DISCUSSION AND CONCLUSION

This section consists of two parts. In the first part, we
discuss our results, and we conclude our work in the second
part.

A. Discussion

Now, let us discuss our results. First, we discuss the
relationship between our result and the scaling law of G

proposed in Ref. [33]. Second, we compare our results with
those on the power spectrum of the shear stress. Finally, we
mention the effect of the friction on the scaling for the shear
modulus.

Tighe reported that the shear modulus G satisfies a power
law of the angular frequency ω for the oscillatory shear at the
jamming point:

G ∼ ω1/2 (32)

for an analysis of a model of emulsions [33]. In contrast,
both our simulation and phenomenology suggest that the
shear modulus is independent of ω. We believe that his
viscous force preventing grains from the rotation and the
sliding is the origin of the nontrivial relation (32) [45],
which is not involved in our model in Eq. (6). This is the

reason for the absence of the ω dependence of G in our
results.

In a simulation and an experiment of granular materials
under steady shear [37,48], the power spectrum of the shear
stress exhibits a nontrivial power-law dependence on the
frequency ω. In contrast, such a dependence of G does not
exist in our simulation under oscillatory shear. It should
be noted that the power spectrum is directly related to
the time correlation of the stress, but the shear modulus
G is related to the average of the stress, which is the
origin of the different ω dependences. To study the power
spectrum of the shear stress would be one of our future
subjects.

It is known that the rheology is drastically affected by
friction between particles, at least for assemblies of soft grains
under steady shear [23,25–29]. The friction plays a key role in
causing the shear thickening in rheology, and thus a study on
the rheology of frictional grains under an oscillatory shear is
practically important. The friction dependence of the scaling
law (3) will be discussed elsewhere.

B. Summary

In conclusion, we numerically study the frictionless gran-
ular particles, and we propose a scaling law that inter-
polates between G ∼ (φ − φJ )�−1/2 for infinitesimal strain
and G ∼ γ

−1/2
0 (φ − φJ )� for finite strain, where � is the

exponent to characterize the local elastic interaction be-
tween contacting grains. These scaling exponents are verified
through our simulation. The scaling of the shear strain under
the large strain can be understood by the theory of slip
avalanches.
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APPENDIX A: DETERMINATION OF TRANSITION POINT

In this appendix, we explain how to determine the critical
volume fraction φJ . Here, we assume that φJ is the volume
fraction where the pressure P in the system of N → ∞
becomes finite under sufficiently small and slow shear strain.
We thus introduce f as the fraction of samples where P is
larger than a threshold value Pth = 10−6kd�−2

0 for γ0 = 10−4
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FIG. 7. (Color online) The jammed fraction f against φ with
different system sizes N = 1000, 4000, and 16 000 for � = 1.

and ωτ = 10−4. It should be noted that the estimated φJ is
independent of the choice of Pth within the error margin, at
least for 5.0 × 10−7 < Pth/(kd�−2

0 ) < 1.0 × 10−5. Here, P is
given by

P = 1

3L2

〈
N∑
i

∑
j>i

r ij · (
f (el)

ij + f (dis)
ij

)〉

+ 1

3L2

〈
N∑

i=1

| pi |2
2m

〉
. (A1)

Figures 7 and 8 plot the jammed fraction f against φ for � = 1
and 3/2, respectively. Here, f is zero for low φ and f is finite
for large φ. It should be noted that the slope of f around
φ = 0.65 becomes steeper as the system size increases.

To determine φJ from the data in Figs. 7 and 8, we assume
that f (φ,N ) satisfies a scaling relation

f (φ,N ) = H [(φ − φJ )Nα] (A2)

with an exponent α and a scaling function H (x), which satisfies
limx→∞ H (x) = 1 and limx→−∞ H (x) = 0. Figures 9 and 10
verify the assumption (A2), and thus we can determine φJ =
0.6494 ± 0.0001 and 0.6486 ± 0.0001, respectively. Here, we
have assumed the functional form of the scaling function as

H (x) = {1 + tanh(A0 + A1x)}/2 (A3)
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f
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FIG. 8. (Color online) The jammed fraction f against φ with
different system sizes N = 1000, 4000, and 16 000 for � = 3/2.
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FIG. 9. (Color online) Scaling plot of the jammed fraction f

characterized by Eq. (A2) for � = 1. The solid line is the scaling
function given by Eq. (A3).

with the fitting parameters A0 = 0.4 ± 0.2, A1 = 11 ± 6, and
α = 0.66 ± 0.07 for � = 1, while A0 = 0.06 ± 0.1, A1 =
45 ± 41, and α = 0.42 ± 0.12 for � = 3/2.

It should be noted that we estimate φJ from P at the
state with γ0 = 10−4, which is obtained by varying the strain
amplitude from 100 to sequentially decreasing values as γ0 =
100, 10−1, 10−3, 10−4. The estimated value of φJ depends on
the detail of the protocol to decrease γ0, which might be the
origin of the difference of φJ for � = 1 and 3/2.

APPENDIX B: DISTRIBUTION OF AVALANCHE SIZE

In this appendix, we rederive the probability density ρ(s)
of the stress drop s obtained in Refs. [36,37].

1. Setup

In Refs. [36,37], sheared granular materials are modeled as
a simplified lattice system on a coarse-grained scale (larger
than the grain diameter) consisting of N ′ sites and the linear
size L. We apply a strain by moving one boundary at a slow
speed V (see Fig. 11).
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N=4000

N=16000

FIG. 10. (Color online) Scaling plot of the jammed fraction f

characterized by Eq. (A2) for � = 3/2. The solid line is the scaling
function given by Eq. (A3).
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V

FIG. 11. Illustration of the sheared model lattice.

In this setup, the local shear stress σi at site i under the
mean-field approximation may be given by

σi = K(V t − ui) + J

N ′

N ′∑
j=1

(uj − ui), (B1)

where ui is the displacement at site i. The first term on the
right-hand side (RHS) of Eq. (B1) represents the contribution
of the global shear under the elastic constant K , which may
satisfy the relation K ∼ G0/L. The second term on the RHS
of Eq. (B1) represents the mean-field interaction with the
coupling constant J/N ′. We can rewrite Eq. (B1) as

σi = KV t + J ū − (K + J )ui, (B2)

where we have introduced

ū =
N ′∑

j=1

uj/N
′. (B3)

The stress σ of the system is defined as the average of σi :

σ = 1

N ′

N ′∑
i=1

σi. (B4)

When the local stress σi is lower than the local yield
stress σy, we regard the site i as a sticked site, where the
displacement ui does not change. As time t goes on, the local
stress σi given by Eq. (B2) increases. When the shear stress σi

exceeds σy, we assume that the site i slips in the shear direction
and ui grows to relax the shear stress σi to the “arrest stress”
σa. The time scale for the local slip may be sufficiently small
so that V t in Eq. (B1) is regarded as unchanged during a slip.
Thus, the displacement δui and the local stress drop sself due
to the slip are rewritten, respectively, as

δui = −σy − σa

K + J
, (B5)

sself = −(σy − σa), (B6)

which leads to the increase of the local stress at the other sites
as

soth = C(σy − σa)/N ′ (B7)

with

C = J

J + K
. (B8)

Then, the stress drop s of the total system is approximately
given by −(1 − C)(σy − σa)/N ′.

This increase of the local stress may lead to the slip of a site
j �= i, and result in a sequential avalanche with n slips, where
the stress drop is given by

s = (1 − C)(σy − σa)n/N ′. (B9)

2. Derivation of ρ(s)

As time goes on, the system is expected to reach a statistical
steady state. In this subsection, we derive the probability of
the stress drop s in the steady state.

Let us consider the distribution of σi just before the
avalanche begins in order to derive the probability of s. Here,
we introduce a variable Xn as

Xn = σi(n+1), (B10)

where i(n) is the index of the site that has the nth largest stress
(see Fig. 12). The largest value X0 is σy. Xn decreases as n

increases with the gap

δXn = Xn−1 − Xn, (B11)

which is randomly distributed.
Assuming that σi is likely to take any allowable value

between σa and σy, Xn obeys a Poisson process. The prob-
ability of the intervals divided by variables obeying a Poisson
process satisfies an exponential distribution [49]. Therefore,
the distribution of δXn is given by

ρX(δXn) = N ′

σy − σa
e
− N ′

σy−σa
δXn . (B12)

σy

σa

n

Xn

avalanche size

critical line

δXn

FIG. 12. (Color online) The schematic picture of Xn. The solid
line is the critical line σy − nsoth.
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n

Zn

avalanche size

FIG. 13. (Color online) The schematic illustration of Zn.

When the avalanche starts, the site i(1) slips and the local
stress at other sites increases by soth = C(σy − σa)/N ′. If the
local stress at the site i(2) exceeds σy because of the increase of
the stress, it slips. This means that the slip proceeds to the site
i(2) if X1 is larger than σy − soth. Similarly, the site i(n + 1)
slips if Xn is larger than σy − nsoth. In Fig. 12, we plot the
critical line σy − nsoth. Therefore, the size of the avalanche of
the sample shown in this figure is given by the length of the
region where Xn exceeds the critical line.

To obtain the probability distribution of the avalanche size,
we define

Zn = Xn − (σy − nsoth). (B13)

We plot the schematic illustration of Zn in Fig. 13. The
avalanche size is the length of the region where Zn exceeds 0.
Since Zn is considered as a biased random walk, the avalanche
size is calculated as the first passage time of the biased random
walk.

Here, we assume that δZn = Zn − Zn−1 obeys a Bernoulli
trial, which has �x and −�x with the probability p and 1 − p,
respectively. Then, the average μZ and the variance VZ are
given by

μZ = (2p − 1)�x, (B14)

VZ = 4�x2p(1 − p). (B15)

Because δZn = Zn − Zn−1 is rewritten with Eq. (B13) as

δZn = −δXn + soth (B16)

and the probability distribution of δXn satisfies Eq. (B12), μZ

and σZ are given, respectively, by

μZ = −(1 − C)
σy − σa

N ′ , (B17)

VZ = (σy − σa)2

N
′2 . (B18)

100

102

104

106

108

10-10 10-8 10-6

ρ
(s

)

s

FIG. 14. (Color online) The probability density ρ(s) against s for
φJ = 0.6700, γ0 = 10−2, with � = 1. The dotted and solid lines,
respectively, represent the power-law function with the exponent 3/2
and Eq. (21) with A = 2.0 × 10−5, sc = 1.4 × 10−6.

From Eqs. (B14), (B15), (B17), and (B18), the probability p

and the step size �x are given, respectively, by

p = 1

2

(
1 + C − 1√

1 + (C − 1)2

)
, (B19)

�x =
√

1 + (C − 1)2
σy − σa

N ′ . (B20)

Here, we introduce λn as the probability that Zn =∑n
m=1 δZm becomes negative for the first time at the nth step.

As shown in Ref. [49], such a probability for the first passage
problem is given by

λ2n−1 = 0, (B21)

λ2n = 1

2p

(
1/2
n

)
(−1)(n+1){4p(1 − p)}n. (B22)

With the aid of Stirling’s formula with Eq. (B20), λ2n for
sufficiently large n is approximately given by

λ2n = 1

4π1/2p

1

n3/2
e−n/nc , (B23)

with nc = −1/ log[4p(1 − p)] = 1/ log[1 + (C − 1)2].
Because the avalanche size n is proportional to the stress

drop s as shown in (B9), the probability density ρ(s) of the
stress drop s is thus approximately given by Eq. (21).

Figure 14 is the numerical result of the stress drop, which
well reproduces Eq. (21) in the region s > 10−8, where the
probability density ρ(s) against s for φJ = 0.6700, γ0 = 10−2

with � = 1 is shown.
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