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Cattaneo-type subdiffusion-reaction equation
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Subdiffusion in a system in which mobile particles A can chemically react with static particles B according
to the rule A + B → B is considered within a persistent random-walk model. This model, which assumes a
correlation between successive steps of particles, provides hyperbolic Cattaneo normal diffusion or fractional
subdiffusion equations. Starting with the difference equation, which describes a persistent random walk in a
system with chemical reactions, using the generating function method and the continuous-time random-walk
formalism, we will derive the Cattaneo-type subdiffusion differential equation with fractional time derivatives in
which the chemical reactions mentioned above are taken into account. We will also find its solution over a long
time limit. Based on the obtained results, we will find the Cattaneo-type subdiffusion-reaction equation in the
case in which mobile particles of species A and B can chemically react according to a more complicated rule.
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I. INTRODUCTION

Subdiffusion-reaction equations have been studied exten-
sively during the last decade [1–14]. Subdiffusion occurs in a
medium where the mobility of particles is strongly hindered
due to the internal structure of the medium as, for example, in
porous media or gels [15,16]. Subdiffusion can be treated as a
random-walk process, which is characterized by the relation

〈(�x)2〉 = 2Dα

�(1 + α)
tα , (1)

for 0 < α < 1, for α = 1, one deals with normal diffusion,
〈(�x)2〉 denotes a mean square displacement of a random
walker, Dα is a subdiffusion coefficient, � denotes the Gamma
function. Subdiffusion is non-Markovian stochastic process,
different from normal diffusion. However, as was shown in
Ref. [17], there is a non-Markovian process that provides the
relation Eq. (1) in which α = 1. Thus, it seems to be a good
idea to include a stochastic interpretation in the definition of
anomalous diffusion together with the relation Eq. (1). Such a
simple interpretation has a random walk, which is used in our
considerations. We mention here that the random-walk model
is universal; for example, it has been used to derive normal
diffusion-reaction equations [18–20] or subdiffusion-reaction
equations [9,12–14,21–23].

The most commonly used differential equation describing
anomalous diffusion is the following equation with the
Riemann-Liouville fractional derivative:

∂

∂t
P (x,t) = Dα

∂1−α
RL

∂t1−α

∂2

∂x2
P (x,t). (2)

The derivative is defined for α > 0 as follows [24,25]:

dα
RL

dtα
f (t) = 1

�(n − α)

dn

dtn

∫ t

0
(t − t ′)n−α−1f (t ′)dt ′, (3)

where n is a natural number fulfilled, α � n < α + 1.
Equation (2) was derived within the continuous-time random-
walk formalism [15,26]. This equation can be transformed to
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the following equation with the Caputo fractional derivative
[see Eqs. (A7) and (A8), Appendix A]:

∂α
C

∂tα
P (x,t) = Dα

∂2

∂x2
P (x,t), (4)

where [25]

dα
C

dtα
f (t) = 1

�(n − α)

∫ t

0
(t − t ′)n−α−1 dn

dt ′n
f (t ′)dt ′, (5)

where n − 1 < α � n. The fundamental solution to Eqs. (2)
and (4) (the Green function), which is defined by its initial
condition P (x,t ; x0) = δx,x0 (in the following δx,x0 denotes
both the Dirac-δ function for continuous variables and the
Kronecker symbol for discrete ones), is interpreted as a
probability density to find a random walker at point x after time
t under the condition that its initial position is x0. However,
it is well known that the Green function of Eq. (2) has a
nonphysical property. Namely, it has nonzero values for any
x at t > 0. This means that some of the particles move with
an arbitrarily chosen large velocity. To avoid this absurdity
the persistent random-walk model was proposed [27–29].
Under the assumption that the actual random walker’s step
is correlated with the previous one, which means that the
direction of successive steps is retained with some probability,
for the normal diffusion process, one obtains the following
differential hyperbolic Cattaneo equation:

τ
∂2

∂t2
P (x,t) + ∂

∂t
P (x,t) = D

∂2

∂x2
P (x,t), (6)

where D is the normal diffusion coefficient. A solution to this
equation is above zero in a finite domain only, which ensures
that a random walker’s velocity is limited. We mention here
that one of the simplest interpretations of this process is that
the probability flux is delayed over time by parameter τ with
respect to the probability gradient,

J (x,t + τ ) = −D
∂

∂x
P (x,t). (7)

Assuming τ � t , there is

J (x,t) + τ
∂

∂t
J (x,t) = −D

∂

∂x
P (x,t). (8)
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Combining the above equation with the continuity equation,

∂

∂t
P (x,t) = − ∂

∂x
J (x,t), (9)

one obtains Eq. (6). For τ = 0, we have the normal diffusion
equation. The generalization of Eq. (6) to the subdiffusion
system is not obvious. As was discussed in Ref. [30], there
are various forms of such a generalization, which are not
equivalent to each other.

The situation is more complicated when diffusing parti-
cles of species A and B can chemically react with each
other according to the formula nAA + nBB −→ ∅ (inert).
Phenomenologically, the diffusion-reaction equations are de-
rived on the basis of a normal diffusion equation (without
the persistent effect, τ = 0) by subtracting a reaction term
�(CA,CB) from the right-hand side of Eq. (6). Within the
mean-field approximation the reaction term reads [2]

�(CA,CB) = kC
nA

A C
nB

B , (10)

where k is a reaction rate, and CA,B denotes substance
concentrations. Such a procedure provides the standard normal
diffusion-reaction equation,

∂

∂t
Ci(x,t) = Di

∂2

∂x2
Ci(x,t) − nikC

nA

A C
nB

B , (11)

where i = A,B. A similar procedure was applied to obtain
a subdiffusion-reaction equation. However, there arose a
problem concerning which of the subdiffusion equations,
Eq. (2) or Eq. (4), should be taken into account. In Ref. [6]
the reaction term was subtracted from the right-hand side
of Eq. (2), whereas in Ref. [5] it was shown that this term
should be subtracted from the right-hand side of Eq. (4). The
above-mentioned versions of subdiffusion-reaction equations
describe the processes whose dynamics differ from each other
(see Appendix B). The latter version of the equation has been
considered in many papers, for example, in Refs. [3,4]. We
mention here that another version of the subdiffusion-reaction
equation was derived in Ref. [8].

The character of transport processes (normal diffusion or
subdiffusion) strongly influences the dynamics of chemical
reactions [5,7]. There arises a question concerning the influ-
ence of the persistent random walk effect on the subdiffusion-
reaction process. In some physical systems this effect plays
an important role. For example, as we showed in Ref. [31],
in electrochemical systems the Nyquist plots of subdiffusive
impedance strongly depend on parameter α as well as on
the parameter described by persistent random walk effect. A
similar effect can occur in a system in which subdiffusive
particles of species A can chemically react with particles
B. The reason is that the reaction efficiency depends on
the particle’s concentration. The probability that the reaction
between particles A and B, which are located close to each
other, occurs in some time interval strongly depends on the
character of particles’ transport mechanism [5]. Moreover, as
we will discuss later, the reaction rate for the persistent random
walk is changed compared to the nonpersistent one.

In our paper, we derive a Cattaneo-type subdiffusion-
reaction equation that describes the persistent subdiffusive
random walk with a chemical reaction of type A + B → B.
We assume that the three-dimensional system is homogeneous

in the plane perpendicular to the x axis, so it can be treated
as a one-dimensional system. The particles B are assumed
to be immobile and all of them are located at the position
xr . In practice, this problem can be treated as a particle’s
random walk on a lattice with a single immobile trap. This
system was chosen for theoretical study for the following
reasons. First, the concentration of particles B does not change
over time; thus, the analytical treatment of the problem is
relatively simpler than for other systems. The results obtained
can be treated as the background to finding a more general
equation for the case of chemical reactions nAA + nBB → ∅
in a system with both mobile A and B species. Second,
the model can be used for a theoretical description of the
process in a system in which the reaction is ruled according to
A + B → ∅ if the concentration of static particles B (located at
the permeable membrane) remains “almost constant,” which
is achieved if the concentration is very large compared to
the concentration of particles A [32]. Such a model can
be useful to describe transport in a porous medium with
a chemical reaction occurring at the medium surface [33].
Moreover, the time evolution of the concentration of A

particles can be measured experimentally, for example, by
means of the laser interferometric method [16], which gives the
possibility of the experimental verification of the theoretical
subdiffusion-reaction model. We add that the experimental
method of concentration measurement mentioned above is
effective for the (sub)diffusion-reaction systems with only one
mobile substance.

The paper is organized as follows. In Sec. II we consider a
nonpersistent random walk in a system in which a particle A

can be absorbed with some probability into an arbitrary chosen
site (this situation corresponds to the reaction A + B → B

occurring at this site). Starting from difference equations with
discrete time and space variables, we will derive the fractional
subdiffusion-reaction equation for continuous variables. Next,
we will generalize the obtained equation for the case of mobile
A and B particles, which can chemically react according
to a more complicated rule. The main aim of this section
is to check if the method used in this paper provides the
subdiffusion-reaction equation, which was derived in Ref. [5]
for the nonpersistent random-walk model. In Sec. III we will
use a procedure to find the subdiffusion-reaction equation
within the persistent random walk model. We will also find
the solution to the equation over a long time limit for the case
of the reaction A + B (static) → B (static). The discussion of
various aspects of the model will be presented in Sec. IV. The
details of the calculations and some useful formulas will be
presented in the four Appendices.

II. SUBDIFFUSION-REACTION EQUATION

We consider the nonpersistent random walk in a discrete
system in which a random walker A can react with a static
particle B located at mr , according to the formula A + B → B.
The subdiffusion-reaction equation was already derived using
the random-walk model with a continuous time, and here we
will show that the lattice random-walk model with discrete
time (which is represented by the number of steps) provides the
subdiffusion-reaction equation equivalent to the one derived in
Ref. [5].
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A. General equation

Let Pn(m; m0) denote a probability of finding a particle A,
which arrives at site m at the nth step, m0 is the initial position
of the particle, P0(m; m0) = δm,m0 . If a particle arrives at the
site mr then it can react during its stay at site mr with a
particle B with the probability R. This process is described by
the following difference equation:

Pn+1(m; m0) = 1
2Pn(m + 1; m0) + 1

2Pn(m − 1; m0)

− δm,mr
RPn(m; m0). (12)

This equation is usually solved by means of the generating
function method [34,35]. The generating function is defined
as

S(m,z; m0) =
∞∑

n=0

znPn(m; m0). (13)

From Eqs. (12) and (13), we obtain

S(m,z; m0) − P0(m; m0)

= z

2
S(m + 1,z; m0) + z

2
S(m − 1,z; m0)

− zδm,mr
RS(m,z; m0). (14)

The probability of finding the particle at site m for a
continuous time equals P (m,t ; m0) = ∑∞

n=0 Pn(m; m0)	n(t),
where 	n(t) is the probability that a particle, starting from
m0, reaches site m in n steps. The function 	n depends
on the waiting time probability density ω(t) needed to take
the particle’s next step. In terms of the Laplace trans-
form, L[f (t)] ≡ f̂ (s) = ∫ ∞

0 exp(−st)f (t)dt , one obtains [15]
	̂n(s) = [1 − ω̂(s)]ω̂n(s)/s, which, together with Eq. (13),
provides

P̂ (m,s; m0) = 1 − ω̂(s)

s
S[m,ω̂(s); m0]. (15)

When a particle A reaches the site mr , it can react with a
particle B if these particles meet in a reaction region. We note
that a discrete system is an approximation of a continuous one;
a discrete site represents an interval in the continuous model.
Thus, it is not obvious that the particles really meet even when
they are assigned to the same discrete site (this problem was
discussed in more detail in Ref. [23]).

Let us assume that the distribution function of the reaction
is

ψ(t) = γ exp(−γ t), (16)

where γ is the reaction rate. The choice of Eq. (16), which
seems to be the most often used distribution to describe the
reaction process, is motivated by the Kramer’s reaction rate
model. The waiting-time distribution that the reaction will
produce if particles A and B meet in a reaction region is as
follows:

ψr (t) = γ exp(−γ t)

[
1 −

∫ t

0
ω(t ′)dt ′

]
, (17)

the last term on the right-hand side of the above equation (in
the square brackets) represents the probability that the particle
does not change its position in the time interval (0,t). The

probability that the particle reacts with single-particle B equals

R = p

∫ ∞

0
ψr (t ′)dt ′ = p[1 − ω̂(γ )], (18)

where p is the probability that particle A, which has jumped
to the site mr , meets a particle B in a reaction region. Let
us assume that the distance between discrete sites equals �x.
To pass from a discrete to a continuous space variable one
puts x = m�x, P (m,t ; m0) = (�x)P (x,t ; x0), and assumes
that �x goes to zero. Taking into account the following
approximation

P (x ± �x,t ; x0) = P (x,t ; x0) ± (�x)
∂

∂x
P (x,t ; x0)

+ (�x)2

2

∂2

∂x2
P (x,t ; x0), (19)

and Eqs. (14)–(18), with z = ω̂(s), we obtain the following
equation:

[1 − ω̂(s)]P̂ (x,s; x0) − 1 − ω̂(s)

s
P (x,0; x0)

= ω̂(s)
(�x)2

2

∂2

∂x2
P̂ (x,s; x0)

− δx,xr
Rω̂(s)P̂ (x,s; x0). (20)

The above equation, written in terms of Laplace transform, is
the basis for further considerations. In the next subsection we
will find the equation for a continuous time variable.

B. Continuous-time random-walk approach

Subdiffusion can be interpreted as a random walk in which
the mean waiting time between a particle’s successive steps is
infinite, whereas all the moments of the step length distribution
are finite. Within the continuous-time random-walk formalism,
function ω̂(s) is considered in a limit of small s, which,
according to the Tauberian theorems, corresponds to the limit
of a large time t , is

ω̂(s) ≈ 1 − ταsα. (21)

In our approach, the length of the particle’s step is not a random
variable, but we can choose the parameter �x in such a way
that the coefficient (�x)2/2 equals the variation of step-length
distribution, which can be involved into a stochastic model.
The definition of the subdiffusion coefficient then reads

Dα = (�x)2

2τα

. (22)

The parameters α and Dα control subdiffusion and are
measured experimentally [16]. The parameter �x is related
to τα by Eq. (22). Thus, we consider both �x and τα as “small
parameters”. From Eqs. (18) and (21), over the limit of small
values of τα we obtain R̃ ≡ R/τα = γ α . From Eqs. (20)–(22),
keeping the terms of the first order with respect to τα , after
simple calculations we obtain

∂α
C

∂tα
P (x,t ; x0) = Dα

∂2

∂x2
P (x,t ; x0) − R̃P (x,t ; x0). (23)

Let us generalize Eq. (23) to a system containing a
large number of particles A and B. Using the relation
CA(x,t) = NAP (x,t), where CA is the concentration of the
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particles A, NA denotes the initial number of particles A in the
system (NA � 1), we find that Eq. (23) is fulfilled by concen-
tration CA and the reaction term reads �(CA) = R̃CA(x,t).
The function R̃ is now proportional to the concentration of B

particles, thus we obtain �(CA,CB) = γ αCA(x,t)CB(xr ). The
essential assumption is that the above reaction term is correct
in the case of mobile particles B, which react with particle A

according to the more general formula nAA + nBB → ∅. In
general, within the mean-field approach the reaction term is
proportional to the probability that nA particles of species A

and nB particles of species B meet in such a small volume that
chemical reaction is possible with a probability controlled by
the reaction rate k (in the considerations presented above we
have k = γ α). Thus, the arguments presented above suggest
that the equation

∂α
C

∂tα
Ci(x,t) = Dα

∂2

∂x2
Ci(x,t) − ni�(CA,CB), (24)

where i = A,B and the reaction term is given by Eq. (10), is
the generalization of Eq. (23).

III. CATTANEO-TYPE SUBDIFFUSION-REACTION
EQUATION

A. General equation

Let P +
n (m), P −

n (m) denote probabilities that the particles
arrive at site m at step n with a positive or negative velocity,
respectively (in the following we will skip the symbol m0

for shortening the notation); β is a probability that a particle
changes its velocity sense after arriving at site m. The persistent
random walk with a reaction with a particle B located at mr is
described by the following equations [29]:

P +
n+1(m) = (1 − β)P +

n (m − 1) + βP −
n (m − 1)

−RβP +
n (m)δm,mr

, (25)

P −
n+1(m) = (1 − β)P −

n (m + 1) + βP +
n (m + 1)

−RβP −
n (m)δm,mr

. (26)

As in the previous section, we solve the equations by means
of the generating function method.

The β parameter strongly influences the random walk.
Consequently, it is natural to consider the influence of this
parameter on the reaction rate coefficient. To do this we

should refer to a particular model of a chemical reaction.
Various theoretical reaction models applied to the reaction A +
B (static) → B (static) assume that the particle A overcomes
a potential barrier during its movement along the reaction
coordinate axis [36,37]. In many models, such as the transition
state theory, the coefficient is proportional to the Arhenius
factor e−�Eb/(kBT ), where �Eb is the height of a potential
barrier (measured from the level of particle’s energy), which
should be passed through the particle for a reaction to occur, kB

is the Boltzmann constant, T denotes temperature. However,
the probability of passing the barrier depends on a particle’s
energy. If the particle comes to the site mr and its velocity
sense is not changed after arriving at this site, we assume that
the reaction occurs with reaction rate γ1, but if the particle’s
velocity sense is changed, the energy of the particle will be
lower than in the previous case, thus the reaction occurs with
the reaction rate γ2, γ2 < γ1. The probability of the “choice”
of the reaction rate depends on β. Thus, we postulate that

Rβ = p(1 − β)[1 − ω̂(γ1)] + pβ[1 − ω̂(γ2)]. (27)

The motivation of Eq. (27) based on a more detailed phe-
nomenological model is as follows [36–48]. The position of
nuclei of N particles, which constitute reactants A and B,
is represented by a point r = (r1,r2, . . . ,r3N ). In the reaction
region the particles interact with each other by means of the
internal potential U (q), where q is a vector of particles’ internal
coordinates. The state of molecules is then represented by a
point Q on a hypersurface in (q, energy) coordinate system, Q
performs random walk due to energy fluctuations. Initially this
point is located at Q0 inside a reactant well on the hypersurface.
The reaction rate can be defined as γ = 1/(2tM ), where tM is
a mean first-passage time from Q0 to a separatrix located
between the reaction well and a product well. The velocity
sense of particle A located in its initial position Q0 influences
the mean first time to achieve the separatrix, and consequently
influences the reaction rate. The specially chosen way, which
minimizes the energy, is called the reaction way. This way
joins the points Q0 and QP (which is located in a product
well) on the energy hypersurface. The random walk of point
Q on this way is described by the Klein-Kramers equation.
This equation provides two values of the reaction rate γ1 and
γ2, which depend on a particle’s velocity sense at point Q0.

Proceeding similarly as in the previous case (see Sec. II),
Eqs. (25) and (26), transformed to the continuous variables
(x,t), in terms of Laplace transform read

P̂ +(x,s) − 1 − ω̂(s)

s
P +(x,0) = ω̂(s)

{
(1 − β)

[
P̂ +(x,s) − (�x)

∂

∂x
P̂ +(x,s) + (�x)2

2

∂2

∂x2
P̂ +(x,s)

]

+ β

[
P̂ −(x,s) − (�x)

∂

∂x
P̂ −(x,s) + (�x)2

2

∂2

∂x2
P̂ −(x,s)

]}
− RβP̂ +(x,s)δx,xr

, (28)

P̂ −(x,s) − 1 − ω̂(s)

s
P −(x,0) = ω̂(s)

{
(1 − β)

[
P̂ −(x,s) + (�x)

∂

∂x
P̂ −(x,s) + (�x)2

2

∂2

∂x2
P̂ −(x,s)

]

+ β

[
P̂ +(x,s) + (�x)

∂

∂x
P̂ +(x,s) + (�x)2

2

∂2

∂x2
P̂ +(x,s)

]}
− RβP̂ −(x,s)δx,xr

. (29)
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The probability density of finding a particle at site x is

P̂ (x,s) = P̂ +(x,s) + P̂ −(x,s). (30)

Let us define the flux as follows:

Ĵ (x,s) = P̂ +(x,s) − P̂ −(x,s). (31)

Adding and next subtracting Eqs. (28) and (29), taking into
account Eqs. (30) and (31), we obtain

[1 − ω̂(s)]P̂ (x,s) − 1 − ω̂(s)

s
P (x,0)

= ω̂(s)

[
(�x)2

2

∂2

∂x2
P̂ (x,s) − (1 − 2β)(�x)

∂

∂x
Ĵ (x,s)

]

− ω̂(s)δx,xr
RβP̂ (x,s), (32)

and

[1 − (1 − 2β)ω̂(s)]Ĵ (x,s) − 1 − ω̂(s)

s
J (x,0)

= −ω̂(s)(�x)
∂

∂x
P̂ (x,s) + (1 − 2β)ω̂(s)

× (�x)2

2

∂2

∂x2
Ĵ (x,s) − ω̂(s)δx,xr

RβĴ (x,s). (33)

The assumption that the probability of a particle’s first step
being taken with negative velocity is equal to the probability
of a particle’s first step being taken with positive velocity
gives J (x,0) = 0. Combining Eqs. (32) and (33), we obtain
the following equation, which is the base for the derivation
of differential subdiffusion-reaction equations for various
probability densities ω:

[1 − ω̂(s)][1 − (1 − 2β)ω̂(s)]

[
P̂ (x,s) − P0(x)

s

]

= ω̂(s)[1 + (1 − 2β)ω̂(s)]
(�x)2

2

∂2

∂x2
P̂ (x,s)

+ (1 − 2β)ω̂(s)[1 − ω̂(s)]
(�x)2

2

∂2

∂x2

[
P̂ (x,s) − P0(x)

s

]

−Rβδx,xr
ω̂(s)

{
[1 − ω̂(s)]

[
P̂ (x,s) − P0(x)

s

]

+ [1 − (1 − 2β)ω̂(s)]P̂ (x,s)

− 2(1 − β)
(�x)2

2

∂2

∂x2
P̂ (x,s) − ω̂(s)Rβδx,xr

P̂ (x,s)

}
.

(34)

In Eq. (34) we have omitted a term containing the fourth-
order derivative of the function P̂ (s,t) with respect to the x

variable. The reason is this term is much smaller compared
to the term with a derivative of a second order, which can be
easily noted when continuous-time random-walk formalism is
used to derive a (sub)diffusion equation [15].

B. Continuous-time random-walk approach

Parameter β controls the correlation of jumps, namely
the correlation coefficient is cor = 〈(�x)n(�x)n+1〉 = (1 −
2β)(�x)2, where (�x)n is the particle’s displacement during
its nth step [28,49]. Thus, the case of β = 1/2 corresponds to

the “ordinary” nonpersistent random walk, described by the
(sub)diffusion equation. In the various forms of the Cattaneo
subdiffusion equation, a parameter analogous to τ occurring in
Eq. (6) is present (in the following we denote this parameter by
τ̃α). Motivated by the above-mentioned facts, we assume that
all terms containing τ̃α in the Cattaneo subdiffusion-reaction
equation should vanish if β = 1/2 and the equation obtained
take the form of a “standard” subdiffusion-reaction Eq. (24)
with the reaction term Eq. (10). Moreover, in different versions
of the Cattaneo subdiffusion equation that have been consid-
ered until now, the terms of the order �(τ̃ 2

α ) do not occur [30].
In order to derive a new equation from Eq. (34), which

fulfills the above conditions, we set the following rules:
(1) the approximation of the function ω̂(s) is given by

Eq. (21);
(2) the parameters α and Dα [the last one is defined by

Eq. (22)] are the same for both persistent and nonpersistent
models, moreover

(�x)2 = 2Dατα; (35)

(3) according to Eqs. (21) and (27), for small τα ,

Rβ = ταR̃β, (36)

where R̃β = p(1 − β)γ α
1 + pβγ α

2 ;
(4) in the obtained equation, we keep all terms up to the

first order with respect to τα; the terms of the second order with
respect to τα are kept only in terms which vanish at β = 1/2.
The other terms are neglected.

Taking into account the above points, inverse Laplace
transform Eqs. (A4) and (A5) (Appendix A), and the following
formula (here 0 < α < 1) [25],

∂α
RL

∂tα
P (x,t) = ∂α

C

∂tα
P (x,t) + t−α

�(1 − α)
P (x,0), (37)

we obtain from Eq. (34) the following subdiffusion-reaction
equation:

(1 − 2β)τα

∂2α
C

∂t2α
P (x,t) + 2β

∂α
C

∂tα
P (x,t)

= 2(1 − β)Dα

∂2

∂x2
P (x,t)− (1 − 2β)ταDα

∂2

∂x2

∂α
C

∂tα
P (x,t)

− R̃βδx,xr

[
2βP (x,t) + (1 − 2β)τα

∂α
RL

∂tα
P (x,t)

− (1 − 2β)ταDα

∂2

∂x2
P (x,t)

]
. (38)

C. The solution

The general form of the solution to Eq. (38) in terms
of Laplace and Fourier transforms is given in Appendix C,
Eq. (C1). Over a long time limit, the solution given in terms
of Laplace transform reads (here xr = 0 and R̃ �= 0)

P̂ (x,s) = s−1+α/2

2
√

D̃α

exp

(
−|x − x0|sα/2√

D̃α

)

− s−1+α/2

2
√

D̃α

exp
( − (|x|+|x0|)sα/2√

D̃α

)
1 + (2

√
D̃αsα/2/R̃)

. (39)
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FIG. 1. Function Eq. (41) for various values of time t given in the
legend, Dα = 0.01, α = 0.9, β = 0.6, p = 1.0, γ1 = 0.5, γ2 = 0.2,
x0 = −1, xr = 0 (all quantities are given in arbitrary chosen units).

Using the following formula [50],

L−1{sνexp(−asγ )}

≡ fν,γ (t ; a) = 1

tν+1

∞∑
k=0

1

k!�(−kγ − ν)

(
− a

tγ

)
, (40)

where a,γ > 0, we obtain

P (x,t) = 1

2
√

D̃α

f−1+α/2,α/2

(
t ;

|x − x0|√
D̃α

)

− 1

2
√

D̃α

∞∑
k=0

(
− 2

√
D̃α

R̃β

)k

× f−1+(k+1)α/2,α/2

(
t ;

|x| + |x0|√
D̃α

)
, (41)

where

D̃α = 1 − β

β
Dα. (42)

We add that the mathematical condition of a long time limit
is briefly described in Appendix A, in the comment just after
Eq. (A9). In Figs. 1 and 2, example plots of function Eq. (41)
are presented. Figure 1 shows that the solutions to Eq. (38)
over the long time limit behave “almost” in the same way as
for the system with an absorbing wall located at xr . The plots
presented in Fig. 2 show that the solutions strongly depend on
parameter β.

D. More general form of subdiffusion-reaction equation

Let us generalize Eq. (38) to a many-particle system
containing substances A and B. The generalization is based
on the interpretation of the subdiffusion-reaction process. If
particles A move independently of each other, the particle’s
concentration, defined as CA(x,t) = NAP (x,t), also fulfils
Eq. (38), but now the reaction probability R̃β depends on the
concentration of particles B. For the reaction A + B (static) →

FIG. 2. Function Eq. (41) for various values of probability β

given in the legend, t = 2 000, the other parameters are the same as
described in the legend of Fig. 1.

B (static), if all particles B are located at xr , then R̃β =
kCB(xr ). To simplify the description let us introduce the
function �, whose value is proportional to the probability
of particles A and B meeting in such a small volume that a
chemical reaction is possible; the probability of the reaction
is then controlled by the reaction rate k. For the considered
reaction we have

�(CA,CB) = k�(x,t), (43)

with �(x,t) = CA(x,t)CB(xr ). When particles B are mobile,
the crucial assumption is that Eq. (43) is still valid and

�(x,t) = CA(x,t)CB(x,t). (44)

Equation (44) is also assumed to be valid for the reaction
A + B → ∅.

The parameters Dα , β, and τα are assumed to be defined
separately for substances A and B, whereas the parameter
α is assumed to be the same for both substances. The last
assumption is motivated by experiments [16], which suggest
that α is determined by the properties of a medium, whereas the
others depend on properties of both the particles and medium.
As suggested by Eq. (38), for β1,2 �= 0, the general form of the
Cattaneo-type subdiffusion-reaction equation reads

τ̃α,i

∂2α
C

∂t2α
Ci(x,t) + ∂α

C

∂tα
Ci(x,t)

= D̃α,i

∂2

∂x2
Ci(x,t) − τ̃α,iDα,i

∂2

∂x2

∂α
C

∂tα
Ci(x,t)

−�i[CA,CB], (45)

where i = A,B, τ̃α,i = (1 − 2βi)τα,i/(2βi), D̃α,i = (1 −
βi)Dα,i/βi , Ci(x,t) = NiPi(x,t), Pi(x,t) is the probability
density of finding a particle of species i at position x and
time t , and Ni denotes the initial number of particles i.

There is a problem in finding a proper reaction term �. It
is not obvious if the position of R̃β ≡ �/CA (now depending
on the variables x and t) is within the reaction term occurring
in Eq. (38). More particularly, one should find out whether the
derivative operators act on the product R̃βCA or on function
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CA alone. To solve this problem, we recall the interpretation
of the subdiffusion equation.

Subdiffusion is a non-Markovian process generated by
the anomalously long time of a particle’s remaining in
one position. On the other hand, it looks like some of
the particles apparently temporarily “vanish,” which means
that they temporarily do not take part in the random-walk
process. This interpretation is supported by the phenomeno-
logical method of deriving the fractional Cattaneo equation.
Namely, involving the fractional derivative into the flux
equation J (x,t) + τ

∂α
C

∂tα
J (x,t) = −D ∂

∂x
P (x,t), and combin-

ing the above equation with the fractional continuity equation
∂α
C

∂tα
P (x,t) = − ∂

∂x
J (x,t), we obtain a simplified form of the

Cattaneo subdiffusion Eq. (38) without chemical reactions.
However, the fractional continuity equation does not achieve
the number of particles, which can be interpreted as follows.
The approximation of the fractional Caputo derivative Eq. (5)
reads [4,24,25]

∂α
C

∂tα
CA(x,t) = 1

(�t)α

[
CA(x,t) − CA(x,t − �t)

−
L∑

k=1

wkCA(x,t − k�t)

]

− 1

tα�(1 − α)
CA(x,0), (46)

where w1 = α − 1, wk = α(1 − α) . . . (k − 1 − α)/k!, k � 2,
L is the memory length. The “apparently vanishing particles”
effect is represented by a fractional derivative in Eq. (38) [more
particularly, by the last term in square brackets in Eq. (46)] and
provides a reduced effective concentration of particles that
can be involved in chemical reactions. Thus, the subdiffusive
effect regards the functions on which the fractional differential
operator acts.

Let us return for a moment to Eq. (38), putting P (x,t) →
CA(x,t), R̃β → kCB(x,t). If we assume that the second term
in the square bracket on the right-hand side of this equation
is in the form kCB(x,t)∂α

CCA(x,t)/∂tα , the subdiffusion effect
does not concern the particles B during the reaction process.
The derivative of the second order with respect to x can be
approximated as ∂2Ci(x,t)/∂x2 ∼ [Ci(x + �x,t) + Ci(x −
�x,t)]/2 − Ci(x,t). This term describes temporal changes
in concentration generated by the concentration difference
between the concentration measured in x and the mean
concentration measured in its vicinity; the velocity of this
process is controlled by the subdiffusion coefficient. In this
term, the memory effect is not present, but taking into account
that a chemical reaction can be present at point x as well
as in its vicinity, we assume the following term occurring
in Eq. (38) ∂2[CA(x,t)CB(x,t)]/∂x2. Summarizing the above
considerations, in order to keep the subdiffusive effect in both
substances we assume the following form of the reaction term

�i(CA,CB) = �(x,t) + τ̃α,i

∂α
RL

∂tα
�(x,t)

− τ̃α,iDα,i

∂2

∂x2
�(x,t), (47)

where �(x,t) is given by Eq. (44).

The generalization in the more general chemical reaction
nAA + nBB → ∅ (inert) seems to be natural within the mean
field approximation and is given by the following equation:

τ̃α,i

∂2α
C

∂t2α
Ci(x,t) + ∂α

C

∂tα
Ci(x,t)

= D̃α,i

∂2

∂x2
Ci(x,t) − τ̃α,iDα,i

∂2

∂x2

∂α
C

∂tα
Ci(x,t)

− ni�i[CA,CB], (48)

where i = A,B, and the reaction term is given by Eq. (47),
with

�(x,t) = C
nA

A (x,t)CnB

B (x,t). (49)

E. Comparison to other models

It is interesting to compare the obtained Eq. (38) with the
subdiffusion-reaction equations derived in other papers [8,12],
in which various equations of a rather unexpected form were
derived for the case of a “parabolic” subdiffusion-reaction
process (for which β = 1/2) in which particle A vanishes
with a probability that is assumed to be independent of any
space and time variables. The more general case, in which
a particle’s vanishing probability depends on the particle’s
position, was considered in Ref. [22]. To find a connection
between the models considered in the above cited papers and
the model presented in this paper, we refer to Ref. [23], in
which various models of subdiffusion with reactions A −→
B and A + B −→ B were considered with constant rates
independent of time and space variables. It was shown in this
paper that a Laplace transform of the subdiffusion-reaction
equation reads

1 − ω̂M (s)

ÛM (s)
P̂ (x,s) − P (x,0) = ω̂M (s)(�x)2

2ÛM (s)

∂2

∂x2
P̂ (x,s),

(50)

which contains the Laplace transforms of the following func-
tions: ωM (t), which is a waiting time probability density which
is needed for a particle A to take its next step and continue to
exist until time t and UM (t), which is the probability that the
particle has not performed any step over time interval (0,t) and
continues to exist at time t . When a reaction can occur with a
constant per capita rate during the time that the particle waits
before taking its next step, then

ω̂M (s) = (1 − p)ω̂(s) + pω̂(s + γ ), (51)

and

ÛM (s) = (1 − p)
1 − ω̂(s)

s
+ p

1 − ω̂(s + γ )

s + γ
. (52)

Inserting the approximation Eq. (21) of ω̂(s) and the following
approximation,

ω̂(s + γ ) = 1 − τα(s + γ )α, (53)

into Eqs. (50)–(52) and next calculating the inverse transform
of obtained equation, we get (the details of the calculation are
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presented in Appendix D)

(1 − p)
∂α
CP (x,t)

∂tα
+ pe−γ t ∂α

C

∂tα
eγ tP (x,t) = Dα

∂2P (x,t)

∂x2
.

(54)

The relation Eq. (21) is valid under the condition that
ταsα � 1, which corresponds to the condition t � τ

1/α
α . Due

to Eq. (22), supposing that �x is small, we can treat τα as
a small coefficient. The relation Eq. (53) should be treated
as an approximation of ω̂(s + γ ), which is acceptable if
τα(s + γ )α � 1, this condition provides s � (1/τ

1/α
α ) − γ

(which is correct under the condition that the right-hand side
of the above inequality is positive, i.e., for γ τ

1/α
α < 1), and

finally to

t � τ 1/α
α /

(
1 − γ τ 1/α

α

)
. (55)

Thus, Eq. (54) works for time given by Eq. (55).
For the case in which p = 1 the particle’s vanishing process

corresponds to the reaction A −→ B. Then, Eq. (54) is
equivalent to Eq. (60) in Ref. [12] and to the subdiffusion-
reaction equation derived in Ref. [8]. When p < 1, for

t � max

[
τ

1/α
α

1 − γ τ
1/α
α

,
1

γ
,

1

γ

(
p

1 − p

)1/(1−α)
]

, (56)

where max[a,b,c] represents the largest number from the set
{a,b,c}, Eq. (54) is equivalent to the following equation (see
Appendix D):

∂P (x,t)

∂t
= ∂1−α

∂t1−α

[
D̄α

∂2P (x,t)

∂x2
− μ2P (x,t)

]
, (57)

where

D̄α = Dα/(1 − p), μ =
√

pγ α/(1 − p). (58)

We add that a derivation of Eq. (57) from Eq. (54) is not
obvious. However, both of the equations have been derived
form Eqs. (50)–(53) for various domains of parameter s

(which is assumed to be small), which corresponds to various
domains of time t . Since both Eqs. (54) and (57) are derived
from the same general Eq. (50), but to derive the latter
the additional condition has been taken into account (see
Appendix D), Eq. (57) can be treated as a special case (or
“useful approximation”) of the more general Eq. (54). We
note that for γ > 1/(2τ

1/α
α ) and p < 1/2, both the above-

mentioned equations are valid for the same time interval. Let
us also note that for p −→ 1, Eq. (57) loses its validity for
finite times due to Eq. (56).

Equation (54) has been derived under the assumption
that a reaction can occur at every moment of time between
the particle’s jumps with the probability density Eq. (16).
Assuming that a reaction can occur just before the jump of
particle A, the random walk with reaction A + B −→ B can
be described by the following difference equation:

Pn+1(m; m0) = 1
2Pn(m − 1; m0) + 1

2Pn(m + 1; m0)

−RPn(m; m0), (59)

which can be treated as an “extension” of Eq. (12) (or of
Eqs. (25) and (26) for β = 1/2) to the case in which reaction

occurs in a whole system. It was shown [23] that in this case
the process is described by Eq. (50) in which

ω̂M (s) = ω̂(s)

1 + Rω̂(s)
, (60)

and

ÛM (s) = Û (s)

1 + Rω̂(s)
. (61)

Equations (50), (60), and (61) give the subdiffusion-reaction
equation, which is the same as Eq. (57) after replacing D̄α −→
Dα and μ −→ √

Dακ , κ = √
2R/�x.

The case p = 1, which is characteristic of a reaction
A −→ B, is qualitatively different from the case p < 1, in
which particles A and B must first meet (with probability
p) for a reaction A + B −→ B to take place. Thus, the
equations describing both processes mentioned above are not
equivalent to each other (unless p = 1). The Cattaneo-type
subdiffusion reaction Eqs. (38), (45), and (48) derived in this
paper correspond to the case of p < 1.

IV. FINAL REMARKS

The Cattaneo-type subdiffusion reaction Eq. (38) for the
reaction A + B (static) → B (static) was derived within the
continuous-time random-walk formalism using the persistent
random-walk model, but its generalization in the cases of more
complicated reactions was made using a “heuristic” method
based on a stochastic interpretation of the subdiffusion-
reaction process. Thus, Eqs. (45) and (48) should be treated
rather as postulates. Nevertheless, we believe that this equation
will be useful in modeling subdiffusion-reaction processes
occurring in nature, since it has a relatively simple stochastic
interpretation.

Let us note that parameter β changes the effective subdif-
fusion coefficient. Namely, from Eq. (C2) (Appendix C) for
the system without chemical reactions (R̃β = 0), we obtain

〈(�x)2〉 = 2D̃α

�(1 + α)
tα, (62)

where D̃α is defined by Eq. (42). We note that there are two
definitions of subdiffusion coefficients. The first one, defined
by Eq. (62), shows how fast particles spread out over a long
time limit (in this case every particle performs large number
of steps); this coefficient we call the “effective subdiffusion
coefficient.” It is obvious that it depends on parameter β. For
example, if β = 1, then a particle changes its velocity sense
at every step with a probability of 1. In practice, the particle
does not change its position over time, which provides D̃α = 0.
The second subdiffusion coefficient refers to a particle’s single
step and is defined by Eq. (22) within the continuous-time
random-walk formalism and is independent of β. Both of them
are equal to each other for β = 1/2.

Persistent random walk is a process with memory, as well
as subdiffusion. There arises a question: are these two effects
simultaneously worth considering? The subdiffusive memory
effect, controlled by the parameter α, is long and vanishes in the
case of normal diffusion. The persistent random-walk memory
effect, which arises from the correlation of the successive
random walker’s steps, is relatively short. This is controlled
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by parameter β, which is assumed to be independent of α.
As we can see in Fig. 2, parameter β significantly influences
the solutions to Eq. (38). The considerations presented in this
paper show that the effect of step correlations changes the
effective subdiffusion parameter D̃α and provides new terms
in the subdiffusion-reaction equation, which can change the
dynamic of the process (at least in some situations).

The dynamic of the process depends on parameter β.
For β < 1/2 a particle prefers the direction of its previous
step. This occurs when the particle inertia effect is taken
into account. For 1/2 < β < 1, one obtains the effect of the
rapid changing of a particle’s step direction, which occurs
more frequently than in the case of the uncorrelated random
walk. This effect can be caused by the interaction of diffusing
particles and it is expected to be in a system with large particle
concentration. Diffusion or subdiffusion in dense systems,
in which the effective diffusion coefficient depends on the
concentration, is usually described by nonlinear equations, but
we suppose that—at least in some situations—such a process
can be described by the Cattaneo-type subdiffusion equation
with β > 1/2.

The simplest approximation of the reaction term seems
to neglect the terms occurring in Eq. (38), in which the
small parameter τα is contained. In this way, parameter β

will be involved in the reaction rate constant alone. However,
by consequently neglecting similar terms in the remaining
parts of the equation, we lose the steps’ correlation effect.
The reaction rate for the reaction A + B (static) → B (static)
is given by Eq. (27). However, this is the simplest situation
in which the persistent random-walk effect can be explicitly
taken into account in derivation of the reaction rate coefficient.
In the case of mobile B, and for more complicated reactions,
the reaction rate cannot be defined in such a simple form.
The generalization can be done using, for example, the
diffusion model of chemical reactions described by difference-
differential equations [51,52], in which rates depend on
parameter β.
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APPENDIX A: LAPLACE TRANSFORMS

The Laplace transform of the Riemann-Liouville fractional
derivative reads

L

{
dα

RLf (t)

dtα

}
= sαf̂ (s) −

n−1∑
k=0

sk dα−k−1f (t)

dtα−k−1

∣∣∣∣
t=0

, (A1)

where n − 1 � α < n, and where (γ > 0)

d
−γ

RL f (t)

dt−γ
= 1

�(−γ )

∫ t

0
(t − t ′)−γ−1f (t ′)dt ′. (A2)

Let 0 < α < 1 and f is bounded over the time interval (0,t),
|f (t)| < A, t ∈ (0,t). Thus,∣∣∣∣∣d

α−1
RL f (t)

dtα−1

∣∣∣∣∣ <
A

�(α − 1)

∫ t

0
(t − t ′)α−1dt ′

= Atα

α�(α − 1)
t→0→ 0. (A3)

Equations (A1)–(A3) provide

L

{
dα

RLf (t)

dtα

}
= sαf̂ (s). (A4)

The above equation is also applied for the initial distribution
function, which is given formally by the δ-Dirac function, since
this unbounded function is only an idealization of a realistic
initial condition and can be approximated by a bounded one.

The Laplace transform of the Caputo fractional derivative
reads

L

{
dα

Cf (t)

dtα

}
= sαf̂ (s) −

n−1∑
k=0

sα−k−1 dkf (t)

dtk

∣∣∣∣
t=0

, (A5)

where n − 1 < α � n.
Using

F

{
∂2

∂x2
P (x,t)

}
= −k2P̂ (k,t), (A6)

for P (x,0) = δx,0 the Fourier and Laplace transforms of Eq. (2)
reads

sP̂ (k,s) − 1 = −s1−αk2DαP̂ (k,s). (A7)

Transforming the above equation to the form

sαP̂ (k,s) − sα−1 = −k2DαP̂ (k,s), (A8)

and using Eqs. (A5) and (A6), one obtains Eq. (4).
Using Eq. (40) and the exponent function exp(u) =∑∞
k=0 un/n!, we obtain

L−1

{
sν

∞∑
k=0

[
(−asγ )k

k!

]}

= 1

tν+1

∞∑
k=0

1

k!�(−γ k − ν)

(
− a

tγ

)k

. (A9)

From Eq. (A9) we obtain the condition s � 1/a1/γ corre-
sponding to t � a1/γ .

APPENDIX B: SUBDIFFUSION-REACTION EQUATIONS

The subdiffusion-reaction equation can be obtained heuris-
tically by adding the reaction term to the subdiffusion equation.
Putting CA(x,t) = NAPA(x,t) and CB(x,t) = NBPB(x,t),
where Ni denotes the initial number of particles of species i.
Therefore, Eqs. (2) and (4) are fulfilled also by concentrations
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CA and CB . In Ref. [6] the equation of the form was postulated

∂

∂t
Ci(x,t) = Dα

∂1−α
RL

∂t1−α

∂2

∂x2
Ci(x,t) − �(CA,CB), (B1)

where i = A,B. Thus, subdiffusion does not influence the
reaction process directly, since the reaction term is located
outside the fractional Riemann-Liouville derivative.

In Ref. [5] the derivation of the subdiffusion-reaction
equation provides the following equation:

∂

∂t
Ci(x,t) = ∂1−α

RL

∂t1−α

[
Dα

∂2

∂x2
Ci(x,t) − �(CA,CB)

]
. (B2)

In this case the kinetic of reactions is controlled by parameter
α. Equation (B2) can be transformed to

∂α
C

∂tα
Ci(x,t) = Dα

∂2

∂x2
Ci(x,t) − �(CA,CB). (B3)

APPENDIX C: GENERAL SOLUTION TO EQ. (38)

We assume that ∂2

∂x2 P (x,t)|x=xr
= 0; this assumption is

motivated by a quasistatic approximation of the solution
of the subdiffusion-reaction equation, which works near
a point where a reaction term takes its maximal value
(see Ref. [4]). The general solution to Eq. (38) in terms
of Laplace and Fourier transforms, F {f (x)} ≡ f̂ (k) =∫ ∞
−∞ exp(ikx)f (x)dx, is (here xr = 0)

P̂ (k,s) = (1 − 2β)ταs2α−1eikx0 + 2βsα−1eikx0 − k2(1 − 2β)ταsα−1 − R̃β[2β + (1 − 2β)ταsα]P̂ (0,s)

(1 − 2β)ταs2α + 2βsα + k2Dα[2(1 − β) − (1 − 2β)ταsα]
. (C1)

In the limit of small s, keeping the leading terms in Eq. (C1),
we obtain

P̂ (k,s) = sα−1eikx0 − R̃βP̂ (0,s)

sα + k2D̃α

, (C2)

where D̃α = (1 − β)Dα/β. Using the inverse Fourier trans-
form (a > 0) to Eq. (C2),

F−1

{
1

a2 + k2

}
= 1

2a
e−a|x|, (C3)

we get

P̂ (x,s) = 1

2
√

D̃αsα

[
sα−1e

− |x−x0 |√
D̃α

sα/2

− R̃P̂ (0,s)e
− |x|√

D̃α
sα/2]

.

(C4)

Calculating P̂ (0,s) from Eq. (C4), we finally obtain Eq. (39).

APPENDIX D: DERIVATION OF EQS. (54) and (57)

This section partially covers the results presented in
Ref. [23]. Putting Eqs. (21) and (53) into Eqs. (51) and (52),
we obtain

ω̂M (s) = 1 − (1 − p)ταsα − p(s + γ )α, (D1)

and

ÛM (s) = τα[(1 − p)sα−1 + p(s + γ )α−1]. (D2)

From Eqs. (50), (D1), and (D2), keeping the leading terms [as
previously the parameters s and τα are assumed to be small;
in the following we assume that τα � 1/(pγ α)], we get

(1 − p)[sαP̂ (x,s; x0) − sα−1P (x,0; x0)]

+p[(s + γ )αP̂ (x,s; x0) − (s + γ )α−1P (x,0; x0)]

= Dα

∂2P̂ (x,s; x0)

∂x2
. (D3)

Calculating the inverse Laplace transform of Eq. (D3) and
using the formula

L
{
e−γ t ∂α

C

∂tα
eγ tP (x,t)

}

= (s + γ )αP̂ (x,s) − (s + γ )α−1P (x,0), (D4)

we obtain Eq. (54).
For s � γ (which corresponds to t � 1/γ ), we use the

following approximation:

(s + γ )α ≈ γ α

(
1 + αs

γ

)
. (D5)

Substituting Eq. (D5) into Eqs. (D1) and (D2), and leaving the
leading terms in the limit of small s, we get

ω̂M (s) = 1 − pταγ α − (1 − p)ταsα, (D6)

and ÛM (s)=τα[(1 − p)sα−1 + γ α−1]. Supposing s � γ [(1 −
p)/p]1/(1−α) [which corresponds to t � (1/γ )[p/(1 −
p)]1/(1−α)], we have

ÛM (s) = (1 − p)τα

s1−α
. (D7)

From Eqs. (50), (D6), and (D7), in the limit of small s, we get

[ pγ α

1 − p
s1−α + s

]
P̂ (x,s; x0) − sα−1P (x,0; x0)

= s1−α Dα

1 − p

∂2P̂ (x,s; x0)

∂x2
. (D8)

The inverse Laplace transform of Eq. (D8) provides Eq. (57).
The considerations presented in this Appendix and in Sec. III E
lead to the conclusion that Eq. (54) is valid for the time defined
by Eq. (55) and can be simplified to Eq. (57) for the time given
by Eq. (56).
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