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We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs,
which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system
in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We
obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of
stochastic thermodynamics. From this inequality we can derive an information processing entropy production,
which gives the second law in the presence of information reservoirs. We also develop a systematic linear response
theory for information processing machines. For a unicyclic machine powered by an information reservoir, the
efficiency at maximum power can deviate from the standard value of 1/2. For the case where energy is consumed
to erase the tape, the efficiency at maximum erasure rate is found to be 1/2.
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I. INTRODUCTION

Including information processing into thermodynamics has
received much attention since its starting point with Maxwell’s
demon [1,2]. The first considerations of “violations” of the
second law induced by an external controller were restricted
to thought experiments that could not be reproduced in the
laboratory. The situation has recently changed, as experiments
with colloids allow the verification of Landauer’s principle [3]
and the conversion of information into work [4], for example.
Moreover, this fundamental generalization of thermodynamics
should play an important role in improving our understanding
of problems like computer dissipation [5] and cellular sensing
[6].

One approach to study the relation between information and
thermodynamics is to consider feedback driven systems [7], for
which a controller measures the state of the system and changes
the protocol according to the measurement outcome and some
probabilistic rule. The second law of thermodynamics for
feedback driven systems also includes the mutual information
between the system and controller [8]. Prominently among
the many recent works on the relation between information
and thermodynamics [9–40], Sagawa and Ueda obtained a
fluctuation relation for feedback driven systems generalizing
this second law [13].

A different approach to study the thermodynamics of
information processing has been recently proposed by Mandal
and Jarzynski (MJ) [41]. They introduced a simple model for
a thermodynamic system interacting with a tape (a sequence
of bits), where work can be extracted from a system in contact
with a single heat bath by increasing the Shannon entropy of
the tape, i.e., by writing information on the tape. Within the
MJ model a tape full of zeros is a thermodynamic resource
that can be consumed to do useful work, an idea expressed
by Bennett some time ago [5]. Two generalizations of the
MJ model feature a tape that can move in both directions
[42] and a thermal tape with nonzero temperature [43].
Furthermore, a similar model for a refrigerator powered by
writing information on a tape was introduced in [44].

More generally, this tape can be viewed as an information
reservoir [45,46], which is a reservoir that only changes
the entropy balance. Thus it must be accounted for in the

second law while leaving the first law intact, as no energy is
exchanged between the information reservoir and the system.
Deffner and Jarzynski have obtained the generalizations
of the second law with an information reservoir using a
Hamiltonian framework [45]. We have shown that the theory
of stochastic thermodynamics could be generalized to include
an information reservoir [46].

In this article we further extend the result obtained in
[46], by proving an inequality that allows us to general-
ize stochastic thermodynamics to the presence of several
information reservoirs. This generalization is achieved by
introducing an information processing entropy production (IP
entropy production), which takes into account information
reservoirs interacting with the system. A master fluctuation
theorem leading to our generalized inequality is also proved.
Furthermore, we obtain the modified forms for the second
and first law in the presence of information reservoirs and
demonstrate with specific examples that our formalism can
be used to study a generic thermodynamic system interacting
with information reservoirs.

A precursor in analyzing thermodynamic systems out of
equilibrium is linear response theory [47,48]. Whereas even
fluctuation theorems are available for information processing
machines [13,15,20,27], a systematic linear response theory is
needed (see our case study in [42]). Our present framework
allows for the development of such a linear response theory.
We obtain a general form for the IP entropy production in
terms of the affinities and the Onsager matrix. For unicyclic
machines, we show that an IP efficiency, involving information
processing, at maximum power varies between 1/2 and 2/3,
whereas the IP efficiency at maximum erasure rate is 1/2.

This article is organized as follows. In Sec. II, we explain
the notion of an information reservoir using a two-state
version of the MJ model. A general inequality, from which
the standard entropy production of stochastic thermodynamics
and a novel IP entropy production accounting for information
reservoirs are obtained, is proved in Sec. III. Furthermore,
with the transition rates fulfilling a generalized detailed
balance relation, we identify the general first and second
law for a thermodynamic system interacting with information
reservoirs. In Sec. IV, we study a simple three-state model
illustrating how an information reservoir changes the second
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law and a two-state system that only interacts with information
reservoirs, with no heat dissipation or work exchange. A linear
response theory including information processing is developed
in Sec. V. We conclude in Sec. VI. In the Appendix, we prove
a master fluctuation theorem generalizing the inequality from
Sec. III.

II. PARADIGMATIC MODEL

A. Description of the model

We can motivate our generalization of stochastic thermo-
dynamics and give a clear interpretation of an information
reservoir by starting with a simple paradigmatic model [46],
which corresponds to a reduced (from six to two states) version
of the MJ model. The system consists of two states, labeled
d and u. State d has internal energy 0 and the internal energy
of state u is E. Transitions between the states are mediated by
the thermal reservoir at temperature kBT = 1, implying

k+/k− = exp(−E), (1)

where k+ is the transition rate from d to u and k− is the
transition rate from u to d. The system is also connected to a
work reservoir.

In order to extract work from a single heat bath an
information reservoir is also needed, which can be understood
as a sequence of bits, i.e., a tape, that interacts with the system.
As represented in Fig. 1, a bit from the tape interacts with the
system for a certain time interval in such a way that the bit state
0 (1) is coupled to the system state d (u). For example, during
this time interval, if the system makes a thermal transition
from d to u the bit changes from 0 to 1. After this interaction
time interval the tape moves one step forward, with the bit that
interacted with the system leaving and a next bit from the tape
coming to interact with the system. This new incoming bit can
generate effective transitions between the states of the system,
leading to an exchange of energy with the work reservoir, as
shown in Fig. 2.

More precisely, if the system finishes the time interval in
state u and the new incoming bit is in state 0, the energy levels
of the system are interchanged with the occupied level u being
lowered to energy 0 and the empty level d being raised to
energy E. The lowering of the occupied level u leads to a
work extraction of E. After changing the energy levels, the
labels of the states are also interchanged and, therefore, this
operation leads to a transition from u to d. In the same way,
if the system finishes the time interval in state d and the new
incoming bit is in state 1, then an effective transition from d
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FIG. 1. (Color online) Two-state system interacting with a bit. If
a thermal transition happens from d (u) to u (d) the bit changes its
state from 0 (1) to 1 (0).
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FIG. 2. (Color online) Possible effective transitions generated by
the new incoming bit. Case 1 corresponds to the system being in state
u and the new incoming bit in state 0, leading to extracting a quantity
E of work. In case 2 the system is in state d and the new incoming bit
is in state 1, which leads to a quantity E of work entering the system
from the work reservoir. Case 3 (4) corresponds to the system being
in state d (u) and the the new incoming bit in state 0 (1), which does
not involve an exchange of energy with the work reservoir. The letter
b in the tape represents a bit that can be in either state 0 or state 1.

to u resulting in work E flowing from the work reservoir to
the system occurs. In the other two cases, namely, the system
finishing the time interval in state d and the new incoming bit
being 0 or the system finishing in state u and the new incoming
bit being 1, no work exchange takes place.

The probability that the new incoming bit is in state 1
is ε and in state 0 is 1 − ε. The interaction time interval is
assumed to be exponentially distributed with the rate γ , which
characterizes the velocity of the tape. Assuming a constant time
interval, as in [41], does not change the qualitative behavior of
the model [46]. The advantage of working with exponentially
distributed time intervals is that the model can be described
as a nonequilibrium steady state. The transition rates for the
four-state Markov process, corresponding to a duplication of
the two-state system, are displayed in Fig. 3. This duplication
is necessary to include transitions generated by the new
incoming bit. More precisely, a transition between the different
subscripts A and B is generated by the new incoming bit and
implies the tape moving forward. The time scale for these
transitions is then 1/γ and, as the new incoming bit does not
depend on the state of the system, the transition rates between
states with different subscripts are independent of the state of
the system; e.g., the transition rate from uA to dB is the same

dA

k+k−

uA

dA

k+k−

uA

FIG. 3. Transition rates for the four-state model. The thermal
transitions take place with rates k+ and k−. Transitions between states
with a different subscript are related to the tape moving forward and a
new bit coming to interact with the system. The solid arrows represent
transitions with rate γ (1 − ε) and the dashed arrows transitions with
rate γ ε.
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as the transition rate from dA to dB . Transitions between states
with the same subscript are related to the thermal reservoir.

B. Work and Shannon entropy difference

In the limit k+,k− � γ , the probability of finishing the
interaction time interval in state u is p ≡ 1/(1 + exp E).
We denote the stationary probability of, for example, state
uA as PuA

. Defining τ ≡ k/(k + γ ), with k ≡ k+ + k−, the
stationary probability of state u, in the four-state model in
Fig. 3, is

pτ = τp + (1 − τ )ε, (2)

where pτ ≡ PuA
+ PuB

. This stationary probability corre-
sponds to the probability of finishing an interacting time
interval in state u. In other words, pτ is the probability of
being in state u before a jump between different subscripts
occurs.

The rate of extracted work is

ẇout = γE[pτ (1 − ε) − (1 − pτ )ε] = γE[pτ − ε]. (3)

Since pτ is the probability of being in state u at the end of
an interacting time interval, the probability of finding a 1 in
the outgoing tape, which amounts to the sequence of bits that
has already interacted with the system, is pτ . This outgoing
tape is then a record of the interaction with the system and has
Shannon entropy

H (pτ ) ≡ −pτ ln pτ − (1 − pτ ) ln(1 − pτ ), (4)

while the incoming tape has Shannon entropy H (ε). As we
demonstrate in the next section, the following second law
inequality holds,

ṡ1 = γ [H (pτ ) − H (ε)] − ẇout � 0, (5)

where ṡ1 is the IP entropy production. The physical meaning
of the inequality is the following. Let us consider the case
p � 1/2 and ε � 1/2. For ε < p, the system operates as
a machine, with the extracted work being bounded by the
Shannon entropy change in the tape H (pτ ) − H (ε), which is
positive. Considering a tape with larger Shannon entropy as
containing more information, the capacity of the tape to store
information is the thermodynamic resource that is consumed
in this process. If ε > p, it is convenient to rewrite Eq. (5) as

ṡ1 = ẇ − γ [H (ε) − H (pτ )] � 0, (6)

where ẇ = −ẇout is the rate of work entering the system. In
this case the system operates as an eraser: work is consumed in
order to decrease the Shannon entropy of, or erase information
from, the tape. For a complete discussion of the full phase
diagram of a similar model see [41]. We note that the
exact same model can be interpreted as a feedback driven
system with a controller performing measurements. With this
interpretation a different entropy production is obtained [46].

C. Reduction to a two-state model

The stationary state properties of the four-state model are
identical to the stationary state properties of the two-state
model represented in Fig. 4, with the stationary probability
of state u in the two-state model Pu = PuA

+ PuB
. Within this

uγε

γ(1−ε)

k−

k+d

FIG. 4. Two-state reduction of the four-state model from Fig. 3.

reduced two-state model, one link, with the transition rates k+
and k−, is related to a thermal reservoir. The other transitions
are generated by the information reservoir as explained above.
Whenever the system makes a transition through the thermal
link, heat is exchanged with the heat reservoir. If the transition
is through the link associated with the information reservoir
the system exchanges work with the work reservoir. From the
first law the heat taken from the thermal reservoir equals
the extracted work. The contribution to ṡ1 in Eq. (5) related
to the link associated with the thermal reservoir is the rate
of dissipated heat −ẇout and the contribution of the link
associated with the information reservoir is γ [H (pτ ) − H (ε)].

As we show in the next sections a more general second law
inequality allows for this interpretation of any link between
states as being associated with an information reservoir. The
terms in ṡ1 related to information reservoirs are proportional
to a Shannon entropy change, as is H (pτ ) − H (ε) in Eq. (5).

D. Relation with the standard entropy production

Besides ṡ1, the standard thermodynamic entropy production
of stochastic thermodynamics [49] for the two-state model
reads

ṡ = γ (pτ − ε) ln
1 − ε

ε
− ẇout � 0. (7)

Comparing with the entropy rate (5) we obtain ṡ � ṡ1. The
contribution γ (pτ − ε) ln 1−ε

ε
has a clear physical interpreta-

tion. Let us first take p < ε. Consider another two-state system
with which we can reset the tape. The energy difference of this
auxiliary system is chosen as E′ = ln[(1 − ε)/ε], the incoming
tape is characterized by the probability of a 1 being pτ , and
k′ � γ , where k′ is the time- scale of its thermal transitions.
The auxiliary two-state system acts as an eraser and its entropy
rate (6) becomes

ṡ ′
1 = γ (pτ − ε) ln

1 − ε

ε
− γ [H (pτ ) − H (ε)] � 0, (8)

where the first term is obtained from Eq. (3) with energy E′ =
ln[(1 − ε)/ε]. Hence, the term γ (pτ − ε) ln 1−ε

ε
, appearing in

Eq. (7) is the rate of work that must be consumed, which equals
the rate of heat that must be dissipated, in order to recover the
original tape with Shannon entropy H (ε) from a tape with
Shannon entropy H (pτ ), using an auxiliary two-state system
with k′ � γ and E′ = ln[(1 − ε)/ε].

Similarly, if p < ε, the term γ (ε − pτ ) ln 1−ε
ε

in ṡ cor-
responds to the work that would be extracted from an
incoming tape with Shannon entropy H (pτ ) interacting with
the auxiliary two-state system with E′ = ln[(1 − ε)/ε] and
k′ � γ . Hence, the standard entropy production of stochastic
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thermodynamic ṡ contains the full thermodynamic cost of
restoring the tape to its original distribution [46].

III. GENERAL THEORY

A. First and second law

We consider a thermodynamic system with generic states
denoted by i and j with internal energy Ei and Ej . This
system is in contact with reservoirs ν at inverse temperature
βν . In a transition from i to j , besides exchanging heat with
the reservoir ν the system can also exchange work if a generic
quantity dα

ij changes. The field associated with this quantity
and reservoir ν is f α

ν . For example, if dα
ij = Nj − Ni , where

Ni is the number of particles in the system in state i, then
f α

ν = μν is the chemical potential of these particles. Note that
changing the parameter ν corresponds to a different chemical
potential and the same particles, whereas changing α could
correspond to another kind of particle that is exchanged with
the system.

Besides these standard reservoirs the system also interacts
with information reservoirs, which can be understood as a
tape interacting with a pair of states of the system in the
way explained in Sec. II. An information reservoir n is
characterized by εn, the probability that an incoming bit is
in the state 1. The coupling between information reservoirs
and the system changes the entropy balance while keeping
the first law intact, as they do not exchange energy with the
system. In Fig. 5, a system interacting with both standard and
information reservoirs is depicted. There is also an additional
work reservoir, which is related to the fact that if the system
goes from state i to j through a transition mediated by an
information reservoir the change in internal energy of the
system is assumed to be compensated by an exchange of work
with this additional work reservoir.

The system is assumed to be described by Markovian
dynamics with the transition rates from i to j related to a
standard reservoir ν being W

(ν)
ij . These transition rates fulfill

the local detailed balance relation [50]

ln
W

(ν)
ij

W
(ν)
ji

= −βν(Ej − Ei) + βν

∑
α

f α
ν dα

ij . (9)

2β 2f

...
...

1β 1f

System

1ε

ε 2

wE

WR

d1
q
1

d2q
2

FIG. 5. (Color online) Sketch of a system interacting with stan-
dard reservoirs with inverse temperature βν and field fν . Information
reservoirs are characterized by εn, the probability of a bit in state
1. The additional work reservoir, related to transitions mediated by
the information reservoir for which the internal energy of the system
changes, is indicated by WR.

For an information reservoir n, the associated transition rates
fulfill

ln
W

(n)
ij

W
(n)
ji

= ln
εn

1 − εn

, (10)

where state i is related to the bit state 0 and state j to 1.
The steady state probability of state i is denoted Pi and the

stationary probability current from i to j related to reservoir ξ

is

J
(ξ )
ij ≡ PiW

(ξ )
ij − PjW

(ξ )
ji , (11)

where ξ can be either a standard or an information reservoir.
The rate of internal energy variation related to transitions
mediated by reservoir ξ is

Ėξ ≡
∑
i<j

J
(ξ )
ij (Ej − Ei), (12)

where
∑

i<j means a sum over all pairs ij without summing
the same pair twice. In the steady state, the contribution due
to all reservoirs must be 0, i.e.,

Ė ≡
∑

ξ

Ėξ = 0. (13)

Furthermore, the rate of variation of a generic quantity dα
ij due

to the interaction with a standard reservoir ν reads

ḋα
ν =

∑
i<j

J
(ν)
ij dα

ij . (14)

The rate of heat dissipated in reservoir ν is identified as

q̇ν = −Ėν +
∑

α

f α
ν ḋα

ν . (15)

Information reservoirs n, on the other hand, do not involve any
heat dissipation.

The rate of work entering the system is

ẇ ≡
∑
ν,α

f α
ν ḋα

ν +
∑

n

Ėn ≡
∑
ν,α

f α
ν ḋα

ν + ẇE, (16)

where the contribution ẇE = ∑
n Ėn is the work entering the

system from the additional work reservoir. The first law then
becomes

Ė = −
∑

ν

q̇ν + ẇ = 0. (17)

The second law inequality generalizing stochastic thermo-
dynamics for a system interacting with information reservoirs,
which follows from a more general inequality proved in the
next subsection, reads

ṡ1 =
∑

ν

βνq̇ν +
∑

n

ḣn � 0, (18)

where

ḣn ≡
∑
i<j

γ
(n)
ij [H (pij ) − H (εn)], (19)

with

γ
(n)
ij ≡ (Pi + Pj )

(
W

(n)
ij + W

(n)
ji

)
(20)
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and

pij ≡ Pj/(Pi + Pj ). (21)

The term ḣn is the rate at which the entropy of the information
reservoir changes due to the interaction with the system. The
term γ

(n)
ij in Eq. (19) is the time scale for transitions between

i and j through n multiplied by the stationary probability of
the pair of states Pi + Pj , whereas the term H (pij ) − H (εn)
is the Shannon entropy change, with the outgoing tape being
a record of the stationary relative probability of the pair pij .

If an information reservoir labeled by n is related to more
than one pair of states, one can imagine that each pair is
related to a different tape, with all incoming tapes having
distribution εn and each outgoing tape having distribution pij .
The information reservoir does not need to be understood as
a tape of ordered bits running through the system. Another
possibility is to consider it as some bath of particles that can
be in states 0 and 1 [42]. During a transition, the system takes
a new particle from this bath with distribution εn and releases
the old particle to another bath that will have distribution pij .
Within this view, the same bath is related to all pair of states
associated with n.

We note that it is also possible to study entropic interactions
with the standard entropy production. Specifically, assigning
an intrinsic entropy to a state i [51,52], entropic currents related
to this intrinsic entropy appear in the standard thermodynamic
entropy production, modifying the second law while keeping
the first law unaltered. Entropic currents can also be interpreted
as being related to a Maxwell’s demon monitoring the
transitions of the system [29]. Moreover, in a recent case study
of a quantum dot interacting with a tape, the term related to
the Shannon entropy change was found to be proportional to
an entropic current [53].

B. Proof of the generalized second-law-like inequality

Assuming first that there is only one link for each pair of
states, the stationary master equation reads∑

j �=i

[PjWji − PiWij ] = 0. (22)

The standard thermodynamic entropy production is

ṡ ≡
∑

i

∑
j �=i

PiWij ln
Wij

Wji

� 0. (23)

To obtain a more general formula, we consider the auxiliary
transition rates Wij . Moreover, we define the quantities Ri � 0
and Ri � 0, which are constrained to fulfill the relation

Ri +
∑
j �=i

Wij = Ri +
∑
j �=i

W ij . (24)

With these auxiliary transition rates we define

ω̇ ≡
∑

i

⎛
⎝∑

j �=i

PiWij ln
Wij

Wji

+ PiRi ln
Ri

Ri

⎞
⎠ . (25)

Using the inequality − ln x � 1 − x and summing∑
i

∑
j �=i PiWij ln(Pi/Pj ) = 0 to the right-hand side of

the above equation, we obtain

ω̇ �
∑

i

∑
j �=i

(PiWij − PjWji) +
∑

i

Pi(Ri − Ri)

=
∑

i

∑
j �=i

(PiWij − PjWji) = 0, (26)

where we use Eq. (24). This inequality is a generalization of
Eq. (23), since for the choice Wij = Wij the rate ω̇ becomes
the entropy production ṡ. A fluctuation theorem generalizing
Eq. (26) is proved in the Appendix.

We now consider the possibility of more than one link
between the same pair of states, since different reservoirs can
be related to the same pair of states. This is the case of the two-
state model of Sec. II. In this case the total transition rate reads
Wij = ∑

ξ W
(ξ )
ij , where ξ label different links (reservoirs).

The same is valid for the auxiliary rates Wij = ∑
ξ W

(ξ )
ij .

Furthermore, for convenience, we write Ri = ∑
j �=i

∑
ξ R

(ξ )
ij

and Ri = ∑
j �=i

∑
ξ R

(ξ )
ij . For multiple reservoirs we then

define the quantity

ω̇′ ≡
∑

i

∑
j �=i

∑
ξ

⎛
⎝PiW

(ξ )
ij ln

W
(ξ )
ij

W
(ξ )
ji

+ PiR
(ξ )
ij ln

R
(ξ )
ij

R
(ξ )
ij

⎞
⎠ � 0,

(27)
which, from the log sum inequality, is larger than ω̇ defined in
Eq. (25).

The standard entropy production with multiple links be-
comes [49]

ṡ ≡
∑
i<j

∑
ξ

J
(ξ )
ij F (ξ )

ij , (28)

where F (ξ )
ij ≡ ln(W (ξ )

ij /W
(ξ )
ji ). This formula can also be ob-

tained from Eq. (27) by setting W
(ξ )
ij = W

(ξ )
ij and Ri = Ri .

To obtain the IP entropy production we separate the links ξ

into links related to standard reservoirs ν and links related to
information reservoirs n. For the ν links the choice for the
auxiliary rates is the same as the one used to obtain ṡ. For

reservoirs n, choosing W
(n)
ij = pij (W (n)

ij + W
(n)
ji ), W

(n)
ji = (1 −

pij )(W (n)
ij + W

(n)
ji ), R

(n)
ij = W

(n)
ji , and R

(n)
ij = W

(n)
ji , Eq. (27)

becomes the IP entropy production

ṡ1 =
∑
i<j

(∑
ν

J
(ν)
ij F (ν)

ij

)
+

∑
n

ḣn, (29)

where ḣn is defined in Eq. (19)
From Eqs. (28) and (29), we obtain the difference between

ṡ and ṡ1 as

ṡ − ṡ1 =
∑
i<j

∑
n

γ
(n)
ij DKL(pij ||εn) � 0, (30)

where

DKL(pij ||εn) ≡ pij ln
pij

εn

+ (1 − pij ) ln
(1 − pij )

(1 − εn)
� 0

(31)

is the Kullback-Leibler distance [54]. The physical meaning
of this inequality is the same as in the two-state model. The
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standard entropy production ṡ contains the thermodynamic
cost of resetting each tape n, using an auxiliary two-state
system as discussed in Sec. II.

IV. FURTHER EXAMPLES

A. Refrigerator powered by a tape

In the model analyzed in Sec. II, the presence of an
information reservoir allowed the work extraction from a
single heat bath. Using inequality (18), we now introduce a
simple model where the presence of an information reservoir
allows heat to flow from a cold to a hot reservoir. A four-state
model with fixed interaction time intervals for a refrigerator
powered by a tape has been analyzed in [44].

For a system interacting with one information reservoir,
related to the rate of Shannon entropy change ḣ from Eq. (19),
and two heat reservoirs at inverse temperatures β1 and β2, with
β2 � β1, the first law (17) becomes

q̇2 = −q̇1 ≡ q̇, (32)

where q̇ is the rate at which heat flows from the cold to the hot
reservoir defined in Eq. (15). The IP entropy production (18)
is

ṡ1 = ḣ − q̇(β1 − β2) � 0. (33)

Hence, if ḣ � 0 then q̇ can be positive; i.e., heat can flow
from the cold to the hot reservoir. This specific form of the
second law has also been obtained in [45] using an Hamiltonian
formalism.

A specific three-state model with states a, b, and c is
represented in Fig. 6. The transition rates between a and b

are associated with the cold reservoir at inverse temperature
β1, whereas the transition rates between b and c are associated
with the hot reservoir with inverse temperature β2 � β1. States
a and c have internal energy 0, and state b has internal energy
E. The local detailed balance relation then reads

ln
Wab

Wba

= −β1E and ln
Wbc

Wcb

= β2E. (34)

We choose these transition rates as Wab = ke−Eβ1/2, Wba =
keEβ1/2, Wbc = keEβ2/2, and Wcb = ke−Eβ2/2. The parameter k

sets the time scale of the thermal transitions.
The transition rates between a and c are related to an

information reservoir such that state a (c) is coupled to the
bit state 0 (1). With the probability of a bit in state 1 being
ε � 1/2 in the incoming tape, the transition rates are then

γ(1−ε)
ca

abW
baW

bcW
cbW

b

γε

FIG. 6. Three-state model. The rates Wac = γ ε and are Wca =
γ (1 − ε) are relate to the information reservoir. They are the same
for both the refrigerator powered by a tape (Sec. IV A) and the
thermoelectric machine interacting with a tape (Sec. IV B).

written as Wac = γ ε and Wca = γ (1 − ε), where γ sets the
time scale of the information reservoir.

Calculating the stationary probability distribution we obtain

pτ ≡ Pc

Pa + Pc

= C1pτ + C2ε(1 − τ )

C1τ + C2(1 − τ )
, (35)

where C1 ≡ eβ2E + eβ1E , C2 ≡ e(β1+β2)E/2(eβ2E/2 + eβ1E/2),
and τ ≡ k/(k + γ ). Furthermore, the probability current in
the clockwise direction in Fig. 6 is

J ≡ γ [(1 − ε)Pc − εPa] = γ (Pa + Pc)[pτ − ε] ∝ (p − ε),

(36)

where

p ≡ lim
τ→1

pτ = 1

1 + e(β1−β2)E
� 1/2. (37)

Restricting to ε � 1/2, for p > ε the probability current in
Eq. (36) is positive, leading to heat flowing from the cold to
the hot reservoir. More precisely, the IP entropy production
(18) becomes

ṡ1 = γ (Pa + Pc)[H (pτ ) − H (ε)] − q̇(β1 − β2), (38)

where q̇ = JE is the rate at which heat flows from the cold to
the hot reservoir. The refrigerator mode of operation (p > ε) is
powered by the tape, which has its Shannon entropy increased
from H (ε) to H (pτ ). For p < ε the probability current J

becomes negative and heat flows from the hot to the cold
reservoir. In this case information is erased from the tape
and the rate of Shannon entropy decrease of the tape is
compensated by the rate of entropy increase of the external
environment due to the heat flow, i.e., γ (Pa + Pc)[H (ε) −
H (pτ )] � −q̇(β1 − β2).

B. Thermoelectric machine interacting with a tape

We now consider the case where the system also exchanges
particles with the standard reservoirs. The system is in contact
with a reservoir at inverse temperature β1 and chemical
potential μ1, another reservoir characterized by β2 and μ2, and
an information reservoir. The chemical potentials fulfill 
μ ≡
μ2 − μ1 � 0, where 1 is assumed to be the hot reservoir, i.e.,
β2 � β1. The first law (17) is reduced to

−q̇2 − q̇1 = −ẇ, (39)

where −ẇ = Ṅ
μ is the rate of work extracted from the
system to move particles against the chemical potential
gradient 
μ (from 1 to 2) at a rate Ṅ , and q̇1 (q̇2) is the rate
of dissipated heat related to reservoir 1 (2). The IP entropy
production (18) for this case reads

ṡ1 = ḣ + β1q̇1 + β2q̇2 � 0, (40)

where ḣ is the rate of Shannon entropy change given in
Eq. (19). First, we note that if β1 = β2 a positive ḣ can move
particles against the chemical potential. This corresponds to
extracting work from a single heat bath, which was also the
case for the model from Sec. II. Second, for the case where the
temperature gradient β2 − β1 drives the particles against 
μ,
the pseudoefficiency

ηps ≡ −ẇ/(−q̇1) (41)
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becomes

ηps � ηc + ḣ

β2(−q̇1)
, (42)

where ηc ≡ 1 − β1/β2 is the Carnot efficiency. Hence this
pseudoefficiency can exceed the Carnot efficiency ηc . Actually,
it can even exceed 1 as demonstrated below. A relation similar
to Eq. (42) has also been obtained in [29,45] using different
frameworks.

As a specific model describing such a situation we take the
three-state model from Fig. 6. We now assume that in state b

the number of particles in the system is N = 1 and in states a

and c it is N = 0. The local detailed balance relation must be
modified to

ln
Wab

Wba

= −β1(E − μ1) and ln
Wbc

Wcb

= β2(E − μ2),

(43)

where μ1 and μ2 are chemical potentials. We set these
transition rates to Wab = ke−(E−μ1)β1/2, Wba = ke(E−μ1)β1/2,
Wbc = ke(E−μ2)β2/2, and Wcb = ke−(E−μ2)β2/2. The transition
rates between a and c are mediated by an information reservoir
and are as in the model from Sec. IV A.

Calculating the stationary distribution we obtain

pτ ≡ Pc

Pa + Pc

= C1τp + C2(1 − τ )ε

C1τ + C2(1 − τ )
, (44)

where τ ≡ k/(k + γ ), C1 ≡ eβ2E+β1μ1 + eβ1E+β2μ2 , C2 ≡
e(β1+β2)E/2(eβ2E/2+β1μ1/2 + eβ1E/2+β2μ2/2), and

p ≡ 1/{1 + eβ2[(μ2−μ1)+ηc(μ1−E)]}. (45)

The probability current is again

J ≡ γ [(1 − ε)Pc − εPa] = γ (Pa + Pc)[pτ − ε] ∝ (p − ε).

(46)

Therefore, the rate of heat taken from the hot reservoir becomes

−q̇1 = (E − μ1)J, (47)

the rate of heat dissipated in the cold reservoir becomes

q̇2 = (E − μ2)J, (48)

and the rate of extracted work becomes

−ẇ = (μ2 − μ1)J. (49)

Moreover, the rate at which the Shannon entropy of the
information reservoir increases due to the interaction with the
system is

ḣ = γ (Pa + Pc)[H (pτ ) − H (ε)]. (50)

We restrict to the case ε � 1/2 and p � 1/2, which from
Eq. (45) implies E � (β2μ2 − β1μ1)/(β2 − β1). From Eqs.
(47) and (49), the pseudoefficiency (41) is given by

ηps = (μ2 − μ1)/(E − μ1). (51)

We define p2 (p1) as the probability p, given in Eq. (45), for
E = μ2 (E = μ1). The phase diagram of the model is shown
in Fig. 7. First we take p > ε, for which ḣ � 0. For p > p2,
corresponding to region IA in Fig. 7, the pseudoefficiency
ηps is smaller than 1 and the system operates as a standard

0 0.5
ε

0

0.5

p

p
2

1p

IA

IIA

IIIA IIIB

IIB

IB

FIG. 7. (Color online) Phase diagram of the three-state model
from Fig. 6 with particle exchange with the reservoirs. The signs of the
triplet (q̇1,q̇2,ẇ) are (−, + ,−) in IA, (−, − ,−) in IIA, (+, − ,−)
in IIIA, (+, − ,+) in IB, (+, + ,+) in IIB, and (−, + ,+) in
IIIB. The differences between the phases are explained in the text.

thermoelectric machine with an improved efficiency. In region
IIA with p < p2, the system takes heat from the hot and
the cold reservoir; i.e., q̇2 in Eq. (48) becomes negative. The
pseudoefficiency then fulfills ηps > 1, since the extracted work
is larger than the heat taken from the hot reservoir. For p →
p1 from above ηps → ∞. Crossing to region IIIA, where
p < p1, the pseudoefficiency becomes formally negative:
the system takes heat from the cold reservoir, dissipates heat
in the hot reservoir, and does work against the chemical
gradient. The unusual modes of operation IIA and IIIA

are only possible because of the entropy increase in the
information reservoir.

Second we consider p < ε, corresponding to erasure of
information from the tape. In region IB the system operates
as a refrigerator, with the work entering the system ẇ being
used to erase the tape and produce a heat flow from the cold to
the hot reservoir. In region IIB the work entering the system
is dissipated as heat in both reservoirs. In region IIIB the
system takes heat from the hot reservoir and dissipates heat in
the cold reservoir.

C. System interacting with two tapes

It is also possible for a system to interact with more than one
information reservoir. The simplest case is a system interacting
with two information reservoirs, with no exchange of energy.
As an example, we consider a two-state model with two links
between the states as the model from Sec. II. However, instead
of one link being related to a thermal reservoir, both links
are associated with information reservoirs. For one tape the
probability of a 1 is ε1 � 1/2 and for the other one this
probability is ε2 � 1/2. The bit state 0 (1) couples with state
d (u). The transition rates from d to u are γ1ε1 for link 1 and
γ2ε2 for link 2. The reversed transition rates from u to d are
γ1(1 − ε1) and γ2(1 − ε2), respectively.

The IP entropy production (18) is

γ1[H (pτ ) − H (ε1)] + γ2[H (pτ ) − H (ε2)] � 0, (52)

where pτ ≡ (γ1ε1 + γ2ε2)/(γ1 + γ2). Assuming ε1 < ε2 �
1/2, information is written on tape 1 and erased from tape
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2. The efficiency of erasing information is

η ≡ γ2[H (ε2) − H (pτ )]

γ1[H (pτ ) − H (ε1)]
� 1. (53)

We call any efficiency involving a rate of Shannon entropy
change of an information reservoir, like the efficiency above,
an IP efficiency. For γ2 � γ1 we obtain

η → H (ε2) − H (ε1) − DKL(ε1||ε2)

H (ε2) − H (ε1)
, (54)

and for γ2 	 γ1 the IP efficiency reaches

η → H (ε2) − H (ε1)

H (ε2) − H (ε1) + DKL(ε2||ε1)
. (55)

It is interesting to compare the present situation with the case
of a model in contact with two heat baths, for which heat
flows from the hot to the cold reservoir. For the system in
contact with thermal reservoirs, the heat that leaves the hot
reservoir is the heat entering the cold reservoir. On the other
hand, information (or entropy), unlike energy, is in general
not conserved, with the information erased from tape 2 being
smaller than the information written on tape 1.

V. LINEAR RESPONSE THEORY

A. IP entropy production within linear response

We denote ordinary affinities by Fk and the conjugate flux
by Jk . The number of independent ordinary affinities (or fluxes)
depends on how many standard reservoirs ν and fields f α

ν we
have. For example, for two reservoirs ν = 1,2 exchanging
energy and particles, related to the chemical potentials μ1

and μ2, there are two ordinary affinities k = I,II . The first
affinity is FI = β2 − β1 and the associated flux is JI =∑

i<j J
(1)
ij (Ej − Ei). The second affinity is FII = μ2β2 −

μ1β1 and the associated flux is JII = ∑
i<j J

(2)
ij (Nj − Ni).

For simplicity we assume that each information reservoir
n is related to only one pair ij so that γ

(n)
ij = γn and pij =

pn, where γ
(n)
ij is defined in Eq. (20) and pij in Eq. (21).

The standard entropy production ṡ is known to be given by
a sum of terms composed of a current multiplying an affinity
[49]. Hence, from Eqs. (10) and (28), the affinity related to an
information reservoir is

Fn = ln[(1 − εn)/εn], (56)

with the associated current being Jn = −J
(n)
ij . The variable ξ

in the formulas below can be either the index k or the index n,
so that

∑
ξ = ∑

k +∑
n. Near equilibrium, where all affinities

are close to 0, a flux can be written as

Jξ =
∑
ξ ′

Lξξ ′Fξ ′ , (57)

where

Lξξ ′ ≡ ∂Jξ

∂Fξ ′

∣∣∣∣
F=0

(58)

is the Onsager coefficient, withF representing a vector with all
affinities. The standard entropy production (28) then becomes

ṡ =
∑
ξξ ′

Lξξ ′FξFξ ′ . (59)

From Eqs. (10), (20), and (21), the current related to
reservoir n, as given in Eq. (11), can be written as

Jn = −J
(n)
ij = γn(pn − εn), (60)

which leads to

pn = εn + Jn

γn

. (61)

Assuming pn − εn is small, we expand the rate of Shannon
entropy change (19) in the following way:

ḣn = FnJn − J 2
n

2γnεn(1 − εn)
+ O(Jn)3

= FnJn − 2
J 2

n

γn

+ O(Jn)3, (62)

where we set εn = 1/2 for the term εn(1 − εn). The choice εn =
1/2 corresponds to the genuine equilibrium of the system,
with the affinity in Eq. (56) being Fn = 0. On the other hand,
εn = pn �= 1/2 corresponds to a “stall force” case. Hence,
setting εn = 1/2 in Eq. (62) implies a linear response treatment
with respect to genuine equilibrium. Using Eqs. (18), (57), and
(62), we obtain the IP entropy production in the linear response
regime:

ṡ1 =
∑
ξξ ′

(
Lξξ ′ − 2

∑
n

LnξLnξ ′

γn

)
FξFξ ′ . (63)

Note that γn = (Pi + Pj )(W (n)
ij + W

(n)
ji ) can be obtained from

the equilibrium probabilities with F = 0.

B. IP efficiency at maximum power

A well known result in linear response theory is that
the efficiency at maximum power for unicyclic machines is
1/2 [49]. We now calculate the IP efficiencies at maximum
power for unicyclic machines. The standard efficiency contains
the work entering the system in its denominator, which
corresponds to the work to reset the tape appearing in the
standard entropy production, as explained in Sec. II. Since this
work is larger than the rate of Shannon entropy change, the IP
efficiency at maximum power should not be smaller than 1/2.

We consider the generic unicyclic machine with N + 1
states on a ring depicted in Fig. 8. The transition rates between
states 0 and 1, which are related to the information reservoir,

0 1
W+1

−W 1

2

−WN

0
W+N

N...
γ(1−ε)

γε

FIG. 8. Unicyclic model. The transition rates between states 0
and 1 are associated with an information reservoir, whereas the other
transition rates are related to a standard reservoir. Note that we have
a cyclic system with N + 1 being the 0 state again.
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are γ (1 − ε) and γ ε, with the first being from 0 to 1. The other
transition rates are related to standard reservoirs with inverse
temperature β = 1, and the transition rate from n (n + 1) to
n + 1 (n) is Wn

+ (Wn
−). We assume that the affinity

Fout = ln(W−/W+), (64)

where W+ = ∏N
n=1 Wn

+ and W− = ∏N
n=1 Wn

−, is related to
work extracted from the system.

For the system to operate as a machine the probability
current from left to right in Fig. 8 must be positive. This
probability current is

J = γ (P0(1 − ε) − P1ε) = γ (P1 + P0)(pτ − ε), (65)

where pτ ≡ P0/(P0 + P1). The affinity related to the informa-
tion reservoir is

Fε = ln[(1 − ε)/ε]. (66)

It is convenient to define

C ≡
N−1∑
a=0

(
a∏

n=1

Wn
−

)
N∏

m=a+2

Wm
+ (67)

and

p ≡ 1/(1 + expFout). (68)

Using a diagrammatic method to obtain the stationary proba-
bility distribution [55], we obtain

pτ = τp + (1 − τ )ε, (69)

where τ ≡ k′/(k′ + γ ′), with k′ ≡ W−/C and γ ′ ≡ γ /[1 +
exp(−Fout)]. Note that this formula is similar to the formula
(2) for the two-state model of Sec. II, which corresponds to
N = 1. The parameter k′ has the dimension of a transition
rate and is related to the thermal transition rates. Therefore,
the parameter 0 � τ � 1 is dimensionless being 1 (0) if the
transitions of the information reservoir, which are proportional
to γ , are much slower (faster) than thermal transitions.

Up to first order in the affinities, the current (65) becomes

J = γ (P1 + P0)τ (p − ε) ≈ (Fε − Fout), (70)

where  ≡ γ (P0 + P1)τ/4. Hence, within linear response, the
rate of extracted work is

ẇout = FoutJ = (Fε − Fout)Fout, (71)

and the rate of Shannon entropy change (62) is

ḣ = (Fε − Fout)

[
Fε − τ

2
(Fε − Fout)

]
. (72)

We now maximize the power ẇout with respect to the output
Fout for fixed inputFε . The power is maximum atF∗

out = Fε/2,
which gives the IP efficiency at maximum power,

η∗ ≡ ẇ∗
out

ḣ∗ = 1

2 − τ/2
, (73)

where ẇ∗
out and ḣ∗ are obtained from Eqs. (71) and (72)

with F∗
out = Fε/2, respectively. The IP efficiency at maximum

power reaches its maximum value 2/3 for τ → 1, where the
transitions related to the information reservoir are much slower
than the thermal transitions. If we had taken the work to reset
the tapeFεJ in the denominator, leading to the usual efficiency
based on ṡ, the standard result 1/2 would have been obtained.

C. IP efficiency at maximum erasure rate

Another interesting case is the IP efficiency at maximum
erasure rate when the system operates as an eraser, i.e., J ′ =
−J � 0. The work entering the system to erase the tape is

ẇ = FinJ
′ = (Fin − Fε)Fin, (74)

whereFin = Fout. Rewriting Eq. (72), the erasure rate becomes

−ḣ = (Fin − Fε)
[
Fε + τ

2
(Fin − Fε)

]
. (75)

Maximizing the erasure rate with respect to Fε for fixed input,
we obtain that −ḣ is maximal at F†

ε = Fin(1 − τ )/(2 − τ ).
The IP efficiency at maximum erasure rate is then

η† ≡ −ḣ†

ẇ† = 1

2
, (76)

where ẇ† and −ḣ† are evaluated at Fε = F†
ε . Note that this

efficiency, unlike Eq. (73), is independent of τ , whereas F†
ε =

Fin(1 − τ )/(2 − τ ), unlikeF∗
out = Fε/2, depends on τ . In [42]

we have obtained an efficiency at maximum erasure for a
specific model of a system interacting with a tape that could
move in both directions. The result obtained in this reference
was 1/3. The difference with the present result comes from the
fact that in [42] we considered an extra term in the denominator
which was related to the possibility of taking back a bit from
the outgoing tape to interact with the system.

VI. CONCLUSION

We have generalized the theory of stochastic thermodynam-
ics to include information reservoirs. Such reservoirs can be
understood as a tape that has its Shannon entropy modified due
to the interaction with the system but does not exchange energy
with the system. Thus information reservoirs contribute to the
second law while leaving the first law unaltered. This gener-
alization is achieved with the IP entropy production, which
differs from the standard entropy production of stochastic
thermodynamics. Both entropy productions follow from the
more general inequality (26), which can be further generalized
with the fluctuation theorem proved in the Appendix.

In principle, with our framework any thermodynamic
system interacting with information reservoirs can be studied.
Our theory allows for the construction of simple models
that can be used to understand the qualitative behavior of
a thermodynamic system interacting with an information
reservoir. For example, with the three-state model for a
thermoelectric effect of Sec. IV, we have shown that that there
are regions in the phase diagram where the system can take
heat from the cold reservoir and drive particles against the
chemical potential gradient. Furthermore, a convenient feature
is that the full thermodynamic cost to reset the tapes to their
original configurations is easily accessible, being contained in
the standard entropy production.

The power of our approach is also demonstrated by the
fact that it allowed for the development of a systematic linear
response theory for information processing machines, which
was still lacking in the literature. As our main results, we
have obtained the IP entropy production in the linear response
regime in terms of the Onsager coefficients and the affinities,
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and we have obtained IP efficiencies (at maximum power and
maximum erasure rate) for uni-cyclic machines.
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APPENDIX: FLUCTUATION THEOREM GENERALIZING
INEQUALITY (26)

We prove a fluctuation theorem leading to the inequality
(26). We consider a generic Markov jump process with
transition rates denoted by Wij . The number of states is
duplicated, with state i being duplicated to iA and iB . The
transition rates in the new duplicated system are such that states
with the same subscript are not connected; i.e., the transition
rates between them are 0. The transition rates in the duplicated
system are related to the transition rates in the original system
system by the formula WiAjB

= WiBjA
= Wij . Moreover, the

transition rates between iA and iB are WiAiB = WiBiA = Ri .
The stationary probability in the duplicated system is the

same as that in the original system. More precisely, the
stationary master equation for PiA in the duplicated system
is ∑

j �=i

(
PjB

Wji − PiAWij

) + (
PiB − PiA

)
Ri = 0. (A1)

Comparing with Eq. (22), we see that Pi = PiA + PiB , where
Pi indicates the stationary probability of state i in the original
system. A definition that is useful for the discussion below is
the escape rate of state iA:

λ(iA) ≡
∑
j �=i

Wij + Ri. (A2)

Note that λ(iA) = λ(iB).
A stochastic trajectory in the duplicated system for the time

interval t ∈ [0,T ] is denoted XT = (x0,τ0; x1,τ1; . . . ; xN,τN ),
where xn is the state for t ∈ [tn,tn + τn], with t0 = 0, tn+1 =
tn + τn, and tN+1 = T . The probability of a trajectory is

P[XT ] = P (x0)

(
N−1∏
n=0

Wxnxn+1

)
N∏

n=0

exp[−λ(xn)τn], (A3)

where P (x0) denotes the initial probability. The probability of
the reversed trajectory X̃T = (xN,τN ; . . . ; x1,τ1; x0,τ0) with
modified transition rates Wij (or Ri is the jump is between iA
and iB) reads

P[X̃T ] = P̃ (xN )

(
N−1∏
n=0

Wxn+1xn

)
N∏

n=0

exp[−λ(xn)τn], (A4)

where P̃ (xN ) is the initial probability of the reversed trajectory
and λ(xn) is the escape rate for the modified rates. The ratio of
trajectory probabilities then becomes

P[XT ]

P[X̃T ]
= P (x0)

P̃ (xN )

(
N−1∏
n=0

Wxnxn+1

Wxn+1xn

)

×
N∏

n=0

exp{[λ(xn) − λ(xn)]τn}. (A5)

From Eq. (A2), we obtain that the term λ(xn) − λ(xn) = 0 if

Ri +
∑
j �=i

Wij = Ri +
∑
j �=i

W ij , (A6)

which is the constraint (24).
The activity for jumps from iA to jB and from iB to jA is a

functional of the trajectory XT defined as

Kij [XT ] ≡
N∑

n=0

(
δxn,iAδxn+1,jB

+ δxn,iB δxn+1,jA

)
. (A7)

With this activity we define the functional

�[XT ] ≡
∑

i

⎛
⎝∑

j �=i

Kij [XT ] ln
Wij

Wji

+ Kii[XT ] ln
Ri

Ri

⎞
⎠ .

(A8)

If the constraint (A6) is satisfied, by choosing uniform
distributions for both P (x0) and P̃ (xN ) in Eq. (A5), we obtain

P[XT ]

P[X̃T ]
= exp(�[XT ]). (A9)

This relation then implies

〈exp(−�)〉 ≡
∑
XT

exp(−�[XT ])P[XT ] =
∑
XT

P[X̃T ] = 1,

(A10)

where
∑

XT
represents an integral over all stochastic trajecto-

ries. This integral fluctuation theorem leads to the inequality

〈�〉/T � 0. (A11)

The above inequality is equivalent to Eq. (26), as 〈�〉/T = ω̇.
We note that the functional � is, in general, not antisymmetric;
i.e., it cannot be written as a sum of probability currents. It
does become antisymmetric if the auxiliary rates are chosen
so that 〈�〉/T becomes the standard entropy production but
for auxiliary rates leading to the IP entropy production it does
not.

Whereas the standard entropy production ṡ can be obtained
from a fluctuation theorem for the original system [49], in
order to obtain the IP entropy production ṡ1 we need this
fluctuation theorem for the duplicated system. This duplication
has a physical interpretation if we compare Fig. 3 with Fig. 4
for the paradigmatic model of Sec. II. The duplication in Fig. 3
is necessary to include the possibility of transitions from uA

to uB and dA to dB , which correspond to transitions where the
new incoming bit is in a state that couples to the state of the
system. Note that in the duplicated system of Fig. 3 the states
in the same replica are connected by the thermal transition
link, which is different from the duplication in this appendix.
If a set of links is assumed to be related to standard reservoirs,
then a duplicated system keeping these links connecting states
in the same replica and not in different replicas suffices to
obtain a fluctuation theorem leading to the corresponding ṡ1

[46]. The derivation of the fluctuation theorem in this case is
very similar. Here, we have chosen the duplication scheme
above in order to obtain the most general inequality.

042150-10



STOCHASTIC THERMODYNAMICS WITH INFORMATION . . . PHYSICAL REVIEW E 90, 042150 (2014)

[1] H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Clas-
sical and Quantum Information, Computing (IOP, Bristol and
Philadelphia, 2003).

[2] K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1
(2009).

[3] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillen-
schneider, and E. Lutz, Nature (London) 483, 187 (2012).

[4] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano,
Nat. Phys. 6, 988 (2010).

[5] C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
[6] W. Bialek, Biophysics: Searching for Principles (Princeton

University Press, Princeton, NJ, 2012).
[7] J. Bechhoefer, Rev. Mod. Phys. 77, 783 (2005).
[8] F. J. Cao and M. Feito, Phys. Rev. E 79, 041118 (2009).
[9] H. Touchette and S. Lloyd, Phys. Rev. Lett. 84, 1156 (2000).

[10] H. Touchette and S. Lloyd, Phys. A 331, 140 (2004).
[11] A. E. Allahverdyan and D. B. Saakian, Europhys. Lett. 81, 30003

(2008).
[12] A. Allahverdyan, D. Janzing, and G. Mahler, J. Stat. Mech.

(2009) P09011.
[13] T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 (2010).
[14] M. Ponmurugan, Phys. Rev. E 82, 031129 (2010).
[15] J. M. Horowitz and S. Vaikuntanathan, Phys. Rev. E 82, 061120

(2010).
[16] J. M. Horowitz and J. M. R. Parrondo, Europhys. Lett. 95, 10005

(2011).
[17] J. M. Horowitz and J. M. R. Parrondo, New J. Phys. 13, 123019

(2011).
[18] L. Granger and H. Kantz, Phys. Rev. E 84, 061110 (2011).
[19] M. Esposito and C. van den Broeck, Europhys. Lett. 95, 40004

(2011).
[20] D. Abreu and U. Seifert, Europhys. Lett. 94, 10001 (2011).
[21] D. Abreu and U. Seifert, Phys. Rev. Lett. 108, 030601 (2012).
[22] M. Bauer, D. Abreu, and U. Seifert, J. Phys. A: Math. Theor.

45, 162001 (2012).
[23] A. Kundu, Phys. Rev. E 86, 021107 (2012).
[24] S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, Phys. Rev.

Lett. 109, 120604 (2012).
[25] T. Munakata and M. Rosinberg, J. Stat. Mech. (2012)

P05010.
[26] L. B. Kish and C. G. Granqvist, Europhys. Lett. 98, 68001

(2012).
[27] T. Sagawa and M. Ueda, Phys. Rev. E 85, 021104 (2012).

[28] T. Sagawa and M. Ueda, Phys. Rev. Lett. 109, 180602 (2012).
[29] M. Esposito and G. Schaller, Europhys. Lett. 99, 30003

(2012).
[30] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Phys.

Rev. Lett. 110, 040601 (2013).
[31] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Phys.

Rev. E 88, 062107 (2013).
[32] J. M. Horowitz, T. Sagawa, and J. M. R. Parrondo, Phys. Rev.

Lett. 111, 010602 (2013).
[33] L. Granger and H. Kantz, Europhys. Lett. 101, 50004 (2013).
[34] G. Diana, G. B. Bagci, and M. Esposito, Phys. Rev. E 87, 012111

(2013).
[35] T. Sagawa and M. Ueda, New J. Phys. 15, 125012 (2013).
[36] S. Ito and T. Sagawa, Phys. Rev. Lett. 111, 180603 (2013).
[37] T. Sagawa, J. Stat. Mech. (2014) P03025.
[38] D. Hartich, A. C. Barato, and U. Seifert, J. Stat. Mech. (2014)

P02016.
[39] M. Bauer, A. C. Barato, and U. Seifert, J. Stat. Mech. (2014)

P09010.
[40] J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014).
[41] D. Mandal and C. Jarzynski, Proc. Natl. Acad. Sci. USA 109,

11641 (2012).
[42] A. C. Barato and U. Seifert, Europhys. Lett. 101, 60001 (2013).
[43] J. Hoppenau and A. Engel, Europhys. Lett. 105, 50002 (2014).
[44] D. Mandal, H. T. Quan, and C. Jarzynski, Phys. Rev. Lett. 111,

030602 (2013).
[45] S. Deffner and C. Jarzynski, Phys. Rev. X 3, 041003 (2013).
[46] A. C. Barato and U. Seifert, Phys. Rev. Lett. 112, 090601 (2014).
[47] S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics

(North-Holland, Amsterdam, 1962).
[48] N. Pottier, Nonequilibrium Statistical Physics: Linear Irre-

versible Processes (Oxford University Press, New York, 2009).
[49] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[50] U. Seifert, Phys. Rev. Lett. 106, 020601 (2011).
[51] U. Seifert, Eur. Phys. J. E 34, 26 (2011).
[52] M. Esposito, Phys. Rev. E 85, 041125 (2012).
[53] P. Strasberg, G. Schaller, T. Brandes, and C. Jarzynski,

arXiv:1407.7679.
[54] T. M. Cover and J. A. Thomas, Elements of Information Theory,

Wiley Series in Telecommunications and Signal Processing
(Wiley, Hoboken, NJ, 2006).

[55] T. L. Hill, Free Energy Transduction and Biochemical Cycle
Kinetics, 2nd ed. (Dover, Mineola, NY, 1989).

042150-11

http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1038/nphys1821
http://dx.doi.org/10.1038/nphys1821
http://dx.doi.org/10.1038/nphys1821
http://dx.doi.org/10.1038/nphys1821
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1103/RevModPhys.77.783
http://dx.doi.org/10.1103/RevModPhys.77.783
http://dx.doi.org/10.1103/RevModPhys.77.783
http://dx.doi.org/10.1103/RevModPhys.77.783
http://dx.doi.org/10.1103/PhysRevE.79.041118
http://dx.doi.org/10.1103/PhysRevE.79.041118
http://dx.doi.org/10.1103/PhysRevE.79.041118
http://dx.doi.org/10.1103/PhysRevE.79.041118
http://dx.doi.org/10.1103/PhysRevLett.84.1156
http://dx.doi.org/10.1103/PhysRevLett.84.1156
http://dx.doi.org/10.1103/PhysRevLett.84.1156
http://dx.doi.org/10.1103/PhysRevLett.84.1156
http://dx.doi.org/10.1016/j.physa.2003.09.007
http://dx.doi.org/10.1016/j.physa.2003.09.007
http://dx.doi.org/10.1016/j.physa.2003.09.007
http://dx.doi.org/10.1016/j.physa.2003.09.007
http://dx.doi.org/10.1209/0295-5075/81/30003
http://dx.doi.org/10.1209/0295-5075/81/30003
http://dx.doi.org/10.1209/0295-5075/81/30003
http://dx.doi.org/10.1209/0295-5075/81/30003
http://dx.doi.org/10.1088/1742-5468/2009/09/P09011
http://dx.doi.org/10.1088/1742-5468/2009/09/P09011
http://dx.doi.org/10.1088/1742-5468/2009/09/P09011
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevLett.104.090602
http://dx.doi.org/10.1103/PhysRevE.82.031129
http://dx.doi.org/10.1103/PhysRevE.82.031129
http://dx.doi.org/10.1103/PhysRevE.82.031129
http://dx.doi.org/10.1103/PhysRevE.82.031129
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1209/0295-5075/95/10005
http://dx.doi.org/10.1209/0295-5075/95/10005
http://dx.doi.org/10.1209/0295-5075/95/10005
http://dx.doi.org/10.1209/0295-5075/95/10005
http://dx.doi.org/10.1088/1367-2630/13/12/123019
http://dx.doi.org/10.1088/1367-2630/13/12/123019
http://dx.doi.org/10.1088/1367-2630/13/12/123019
http://dx.doi.org/10.1088/1367-2630/13/12/123019
http://dx.doi.org/10.1103/PhysRevE.84.061110
http://dx.doi.org/10.1103/PhysRevE.84.061110
http://dx.doi.org/10.1103/PhysRevE.84.061110
http://dx.doi.org/10.1103/PhysRevE.84.061110
http://dx.doi.org/10.1209/0295-5075/95/40004
http://dx.doi.org/10.1209/0295-5075/95/40004
http://dx.doi.org/10.1209/0295-5075/95/40004
http://dx.doi.org/10.1209/0295-5075/95/40004
http://dx.doi.org/10.1209/0295-5075/94/10001
http://dx.doi.org/10.1209/0295-5075/94/10001
http://dx.doi.org/10.1209/0295-5075/94/10001
http://dx.doi.org/10.1209/0295-5075/94/10001
http://dx.doi.org/10.1103/PhysRevLett.108.030601
http://dx.doi.org/10.1103/PhysRevLett.108.030601
http://dx.doi.org/10.1103/PhysRevLett.108.030601
http://dx.doi.org/10.1103/PhysRevLett.108.030601
http://dx.doi.org/10.1088/1751-8113/45/16/162001
http://dx.doi.org/10.1088/1751-8113/45/16/162001
http://dx.doi.org/10.1088/1751-8113/45/16/162001
http://dx.doi.org/10.1088/1751-8113/45/16/162001
http://dx.doi.org/10.1103/PhysRevE.86.021107
http://dx.doi.org/10.1103/PhysRevE.86.021107
http://dx.doi.org/10.1103/PhysRevE.86.021107
http://dx.doi.org/10.1103/PhysRevE.86.021107
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1088/1742-5468/2012/05/P05010
http://dx.doi.org/10.1088/1742-5468/2012/05/P05010
http://dx.doi.org/10.1088/1742-5468/2012/05/P05010
http://dx.doi.org/10.1209/0295-5075/98/68001
http://dx.doi.org/10.1209/0295-5075/98/68001
http://dx.doi.org/10.1209/0295-5075/98/68001
http://dx.doi.org/10.1209/0295-5075/98/68001
http://dx.doi.org/10.1103/PhysRevE.85.021104
http://dx.doi.org/10.1103/PhysRevE.85.021104
http://dx.doi.org/10.1103/PhysRevE.85.021104
http://dx.doi.org/10.1103/PhysRevE.85.021104
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1209/0295-5075/99/30003
http://dx.doi.org/10.1209/0295-5075/99/30003
http://dx.doi.org/10.1209/0295-5075/99/30003
http://dx.doi.org/10.1209/0295-5075/99/30003
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://dx.doi.org/10.1103/PhysRevE.88.062107
http://dx.doi.org/10.1103/PhysRevE.88.062107
http://dx.doi.org/10.1103/PhysRevE.88.062107
http://dx.doi.org/10.1103/PhysRevE.88.062107
http://dx.doi.org/10.1103/PhysRevLett.111.010602
http://dx.doi.org/10.1103/PhysRevLett.111.010602
http://dx.doi.org/10.1103/PhysRevLett.111.010602
http://dx.doi.org/10.1103/PhysRevLett.111.010602
http://dx.doi.org/10.1209/0295-5075/101/50004
http://dx.doi.org/10.1209/0295-5075/101/50004
http://dx.doi.org/10.1209/0295-5075/101/50004
http://dx.doi.org/10.1209/0295-5075/101/50004
http://dx.doi.org/10.1103/PhysRevE.87.012111
http://dx.doi.org/10.1103/PhysRevE.87.012111
http://dx.doi.org/10.1103/PhysRevE.87.012111
http://dx.doi.org/10.1103/PhysRevE.87.012111
http://dx.doi.org/10.1088/1367-2630/15/12/125012
http://dx.doi.org/10.1088/1367-2630/15/12/125012
http://dx.doi.org/10.1088/1367-2630/15/12/125012
http://dx.doi.org/10.1088/1367-2630/15/12/125012
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1103/PhysRevLett.111.180603
http://dx.doi.org/10.1088/1742-5468/2014/03/P03025
http://dx.doi.org/10.1088/1742-5468/2014/03/P03025
http://dx.doi.org/10.1088/1742-5468/2014/03/P03025
http://dx.doi.org/10.1088/1742-5468/2014/02/P02016
http://dx.doi.org/10.1088/1742-5468/2014/02/P02016
http://dx.doi.org/10.1088/1742-5468/2014/02/P02016
http://dx.doi.org/10.1088/1742-5468/2014/09/P09010
http://dx.doi.org/10.1088/1742-5468/2014/09/P09010
http://dx.doi.org/10.1088/1742-5468/2014/09/P09010
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1209/0295-5075/101/60001
http://dx.doi.org/10.1209/0295-5075/101/60001
http://dx.doi.org/10.1209/0295-5075/101/60001
http://dx.doi.org/10.1209/0295-5075/101/60001
http://dx.doi.org/10.1209/0295-5075/105/50002
http://dx.doi.org/10.1209/0295-5075/105/50002
http://dx.doi.org/10.1209/0295-5075/105/50002
http://dx.doi.org/10.1209/0295-5075/105/50002
http://dx.doi.org/10.1103/PhysRevLett.111.030602
http://dx.doi.org/10.1103/PhysRevLett.111.030602
http://dx.doi.org/10.1103/PhysRevLett.111.030602
http://dx.doi.org/10.1103/PhysRevLett.111.030602
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevX.3.041003
http://dx.doi.org/10.1103/PhysRevLett.112.090601
http://dx.doi.org/10.1103/PhysRevLett.112.090601
http://dx.doi.org/10.1103/PhysRevLett.112.090601
http://dx.doi.org/10.1103/PhysRevLett.112.090601
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1103/PhysRevLett.106.020601
http://dx.doi.org/10.1103/PhysRevLett.106.020601
http://dx.doi.org/10.1103/PhysRevLett.106.020601
http://dx.doi.org/10.1103/PhysRevLett.106.020601
http://dx.doi.org/10.1140/epje/i2011-11026-7
http://dx.doi.org/10.1140/epje/i2011-11026-7
http://dx.doi.org/10.1140/epje/i2011-11026-7
http://dx.doi.org/10.1140/epje/i2011-11026-7
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://arxiv.org/abs/arXiv:1407.7679



