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Two-strain competition in quasineutral stochastic disease dynamics
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We develop a perturbation method for studying quasineutral competition in a broad class of stochastic
competition models and apply it to the analysis of fixation of competing strains in two epidemic models.
The first model is a two-strain generalization of the stochastic susceptible-infected-susceptible (SIS) model.
Here we extend previous results due to Parsons and Quince [Theor. Popul. Biol. 72, 468 (2007)], Parsons et al.
[ Theor. Popul. Biol. 74, 302 (2008)], and Lin, Kim, and Doering [J. Stat. Phys. 148, 646 (2012)]. The second
model, a two-strain generalization of the stochastic susceptible-infected-recovered (SIR) model with population
turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of
the two strains are identical, a system with an infinite population size approaches a point on the deterministic
coexistence line (CL): a straight line of fixed points in the phase space of subpopulation sizes. Shot noise drives
one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total
population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the
subpopulations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for
mathematically “typical” initial conditions, it is the fast strain that is more likely to win in the important situation
when a few infectives of both strains are introduced into a susceptible population.
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I. INTRODUCTION

Competition for resources is a central paradigm in ecology,
epidemiology, and social sciences [1–3]. It is also ubiquitous
in physics, for example, in the context of mode competition in
lasers [4] or in the competition for the material among droplets
of the minority phase in the process of Ostwald ripening [5].
Competition among different strains of a disease for a pool of
susceptible individuals (or for resources of a single individual
infected with multiple strains) arises naturally in outbreaks of
infectious diseases. This is because diseases commonly occur
in multiple strains that result from mutations [6]. Citing a
recent review [7], “multiple-strain infections have been shown
unambiguously in 51 human pathogens (and 21 nonhuman
ones) and are likely to arise in most pathogen species.
Competition and mutualism between strains change pathogen
and disease dynamics and promote pathogen evolution.” It
is, therefore, important to understand how different strains
compete among themselves. One way of achieving this goal is
to use mathematical models of spread of infectious diseases in
populations.

*obk5@cornell.edu

Two basic models of this type, and their extensions,
have been especially popular: the susceptible-infected-
susceptible (SIS) and the susceptible-infected-recovered (SIR)
model [6,8,9]. In the SIS model an individual can be in either
of the two states and can transit from the susceptible to infected
state upon a contact with another infected or recover and
become susceptible again. In the SIR model with population
turnover, an infected individual can be removed (leave, recover
with immunity, or die), while the susceptibles are removed
and renewed. The basic reproduction number R0, which is the
average number of new infectives produced by an infected
host in a fully susceptible population, is given in both of
these models by the rate of infectivity divided by the rate
of recovery. These two simple models have been extended
in different directions [6,8,9]. One direction is to incorporate
multiple strains of disease [10–12]. This paper continues this
line of research by studying stochastic competition between
two strains in the context of the SIS model and the SIR model
with population turnover. We focus on the important special
case when both strains have identical values of R0. In this case
the rate of infectivity of the first strain is a fraction of the rate
of infectivity of the second strain, and the rate of recovery of
the first strain is the same fraction of the rate of recovery of the
second strain. Thus, one strain may be labeled as the “faster”
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and the other as the “slower.” This situation with different
rates but identical R0 has been termed “quasineutral,” since
the strains are only neutral in the deterministic limit [10,13].
We refer the reader to Ref. [10] for evolutionary arguments for
importance of the quasineutral case. In the quasineutral case
small fluctuations due to the finite size of the population (which
we call the shot noise) have a much stronger impact on the long-
time behavior of the disease than in the cases with different
R0. In the deterministic limit each of the two models exhibits
a coexistence line (CL), which is a line of fixed points. The
shot noise qualitatively changes the dynamics—the system
effectively performs random walk along the CL, resulting
ultimately in the extinction of one of the strains, usually
referred to as fixation of the other strain. The mean time for
fixation scales with the characteristic population size N [13].

The previous works on quasineutral competition [10,13,14]
dealt with two-population models systems. Here we develop a
new perturbation method that can be applied to multipopula-
tion models. The method is based on time-scale separation.

We use this perturbation method to study fixation in two-
strain extensions of the SIS and SIR models: the SI1I2S model
and the SI1I2R model with population turnover. A model,
mathematically identical to the SI1I2S model, was studied
earlier, using a different method, in the context of population
genetics [10,13], see also Ref. [14]. As the total population
size in the SI1I2S model is fixed, this model is two dimensional
and simpler for analysis. For pedagogical reasons, we will
introduce our perturbation method for the SI1I2S model. As in
Ref. [14], we derive an effectively one-dimensional description
of the dynamics of the probability distribution along the CL.
Apart from that, we provide an explicit description of the
dynamics of the probability distribution of the subpopulations
in the vicinity of the CL. Our method is not limited to two-
dimensional models, as we demonstrate for the intrinsically
three-dimensional stochastic SI1I2R model with population
turnover. Here we reduce the three-dimensional model to
effectively one-dimensional and determine analytically the
fixation probability and the mean time to fixation.

We also show, for both models, that the competitive advan-
tage of strains depends in a somewhat peculiar way on the ini-
tial conditions. For a uniform distribution of initial conditions
the slow strain is more likely to reach fixation, as observed
earlier in models with a fixed total population size [10,13,14].
The fast strain, however, is more likely to win the competition
in the important situation when only a few infectives of both
strains are introduced into a susceptible population.

In Sec. II we introduce the SI1I2S model and the SI1I2R
models with population turnover and discuss the nature of their
deterministic solutions focusing on the quasineutral case. Our
perturbation method is presented in Sec. III, which starts with a
qualitative discussion of how the shot noise leads to extinction
of one strain and fixation of the other. It also discusses the
time-scale separation that is crucial to the perturbation method.
The derivation itself is presented in Sec. III B for the simpler
SI1I2S model. We then apply the method, in Sec. III C, to
the more involved SI1I2R model with population turnover. We
compute the fixation probabilities and the mean fixation times
for both models in Sec. IV. Section V analyzes the competitive
advantage of the strains for different initial conditions. The
results are summarized and discussed in Sec. VI.

TABLE I. Transition rates for the stochastic SI1I2S model.

Event Type of transition Rate

Infection with strain 1 S → S − 1, I1 → I1 + 1 (β1/N )SI1

Infection with strain 2 S → S − 1, I2 → I2 + 1 (β2/N )SI2

Recovery of I1 I1 → I1 − 1, S → S + 1 κ1I1

Recovery of I2 I2 → I2 − 1, S → S + 1 κ2I2

II. MODELS

A. SI1I2S model and its deterministic limit

Consider two infectious strains competing for the same
susceptible population in the framework of the SIS model [6,9].
This model includes the following processes, see Table I. A
susceptible individual S can become I1, that is, infected with
strain 1, upon contact with another I1. The rate of this process
is (β1/N )SI1, where N � 1 is a fixed total population size.
An I1 can recover with rate κ1I1 and become susceptible again.
The same two processes occur for strain 2, except that the rates
are now (β2/N )SI2 and κ2I2, respectively.

Let us start with the deterministic limit of this model.
Introducing the basic reproduction numbers R1 = β1/κ1 and
R2 = β2/κ2 for I1 and I2, respectively, we can write the
following deterministic equations:

İ1 = κ1

(R1

N
S − 1

)
I1,

İ2 = κ2

(R2

N
S − 1

)
I2, (1)

Ṡ = −κ1

(R1

N
S − 1

)
I1 − κ2

(R2

N
S − 1

)
I2,

where the dots stand for the time derivatives. Since the total
population size I1 + I2 + S = N = const, we can eliminate S

and obtain

İ1 = κ1

[
R1 − 1 − R1

N
(I1 + I2)

]
I1,

(2)
İ2 = κ2

[
R2 − 1 − R2

N
(I1 + I2)

]
I2,

so the system is two dimensional. We assume that R1 >

1 and R2 > 1. If, in addition, R1 �= R2, the dynamical
system (2) has three fixed points (FPs) with non-negative
population sizes: FP1 at [I1 = 0,I2 = N (1 − 1/R2)], FP2 at
[I1 = N (1 − 1/R1) ,I2 = 0], and FP3 at (I1 = 0,I2 = 0). FP3
is a repeller; of the other two fixed points one is a saddle and
the other is an attractor. Both I1 = 0 and I2 = 0 lines are
absorbing: the system cannot escape from them. If R1 > R2,
FP1 is a saddle point: The attracting eigenvector lies along
the I2 axis, and the repelling eigenvector has a nonzero I1

component, while FP2 has both eigenvectors attracting. If
R1 < R2, the character of the fixed points FP1 and FP2
is interchanged. Therefore, the state with the larger Ri (a
one-strain state) is the only attracting state: No coexistence
of the two strains is possible. For any initial condition with
nonzero I1 and I2, the system approaches the attracting
fixed point. The characteristic relaxation time scale—the time
scale for reaching the vicinity of the globally attracting fixed
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point—is determined by the eigenvalues of the attracting state
and is independent of the total population size N .

A different picture emerges in the particular case of our
interest here: R1 = R2 ≡ R. Here the nontrivial fixed points
of the dynamical system obey the relation

I1 + I2 = N

(
1 − 1

R

)
, (3)

and form a straight line—the deterministic coexistence line
(CL)—on the I1I2 plane. This CL describes a continuum
family of endemic states with an arbitrary proportion of
strains 1 and 2, whereas the edge points N (1 − 1/R,0) and
N (0,1 − 1/R) of the CL describe one-strain endemic states.

Introducing the rescaled population sizes x = I1/N and
y = I2/N , denoting a = κ2/κ1 and rescaling time by 1/κ1,
we can rewrite the deterministic equations as

ẋ = Rx(1 − x − y) − x,
(4)

ẏ = a [Ry(1 − x − y) − y] ,

whereas the CL is described by the equation

x + y = 1 − 1/R ≡ r. (5)

Equations (4) have two rescaled parameters: the basic re-
production number R > 1, or 0 < r < 1, and the parameter
a > 0. Without losing generality we can assume a � 1. When
R > 1, the system approaches the CL on a fast, N -independent
relaxation time scale along one of the lines

y = Mxa, (6)

parameterized by 0 � M < ∞. Equation (6) can be obtained
by dividing the second of Eq. (4) by the first one and integrating
the resulting differential equation for y = y(x). The arbitrary
constant M is set by the initial conditions x(t = 0) and
y(t = 0). Figure 1 shows the phase plane of the system.

B. SI1I2R model with population turnover
and its deterministic limit

Our second model deals with two infectious strains compet-
ing for the same susceptible population in the framework of
the SIR model (where R stands for recovered or removed)
with population turnover [6,8,9]. The SIR model includes
the following processes, see Table II. The susceptibles S are
removed (leave or die) with rate μ′S and renewed with constant
rate μ′N , where the large parameter N � 1 sets the scale
of population size. A susceptible individual S becomes I1,
that is, infected with strain 1 with rate (β1/N )SI1. An I1 is
removed—leaves, recovers with immunity or dies—with rate
κ1I1. The same two processes occur for strain 2, except that
the rate constants are now (β2/N )SI2 and κ2I2, respectively.

Introducing the basic reproduction numbers R1 ≡ β1/κ1

and R2 ≡ β2/κ2 for I1 and I2, respectively, we can write the
deterministic equations for I1, I2, and S as follows:

İ1 = κ1

(R1

N
S − 1

)
I1,

İ2 = κ2

(R2

N
S − 1

)
I2, (7)

Ṡ = μ′(N − S) − R1κ1

N
I1S − R2κ2

N
I2S.

a 0.25
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FIG. 1. (Color online) The deterministic phase plane of the
quasineutral SI1I2S model in the rescaled variables x/r = I1/(rN )
and y/r = I2/(rN ), where r = 1 − 1/R. The coexistence line (CL)
is indicated by the dotted line. The thick curve is the borderline of
the phase diagram of the stochastic quasineutral system: The fixation
probability of each of the strains is equal to 1/2 on this curve. For the
points of the CL below (above) the borderline the fixation of strain 1
is more (less) likely than that of strain 2. The parameter a = 0.25.

This model is intrinsically three dimensional [15]. ForR1 > 1,
R2 > 1, and R1 �= R2, the dynamical system (7) has three
fixed points with non-negative populations: FP1 at [I1 =
0,I2 = μN

κ2
(1 − 1

R1
),S = N

R2
], FP2 at [I1 = μN

κ1
(1 − 1

R1
),I2 =

0,S = N
R1

], and FP3 at (I1 = 0,I2 = 0,S = N ). FP3 is a saddle
with only one attracting direction: the one along the S axis.
Of the other two fixed points, one is a saddle and the other
is an attractor. Both I1 = 0 and I2 = 0 planes are absorbing.
If R1 > R2, FP1 is a saddle, with two attracting directions in
the I2S plane, and the third direction coming out of this plane
is repelling. FP2 has all three directions that are attracting.
If R1 < R2, the character of the fixed points FP1 and FP2
is interchanged. Thus, as in the SI1I2S model with R1 �= R2,
there is always only one globally attracting state. The time
scale for reaching the vicinity of this globally attracting state,
the relaxation time scale, is determined by the eigenvalues of
the attracting state and is independent of N .

TABLE II. Transition rates for the stochastic SI1I2R model with
population turnover.

Event Type of transition Rate

Removal of susceptibles S → S − 1 μ′S
Renewal of susceptibles S → S + 1 μ′N
Infection with strain 1 S → S − 1, I1 → I1 + 1 (β1/N )SI1

Infection with strain 2 S → S − 1, I2 → I2 + 1 (β2/N )SI2

Removal of I1 I1 → I1 − 1 κ1I1

Removal of I2 I2 → I2 − 1 κ2I2
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When R1 = R2 ≡ R, the nontrivial fixed points of this
dynamical system obey the relations

κ1I1 + κ2I2 = μ′N
(

1 − 1

R

)
, S = N

R , (8)

and form a straight line: the deterministic coexistence line
(CL) in the three-dimensional phase space I1I2S.

As in the SI1I2S model, when R > 1, the deterministic
trajectories approach the CL on the fast relaxation time scale,
independent of N � 1. In contrast to the SI1I2S model, here
the character of fixed points making the CL can change
depending on the parameters R, μ, and a and, in general, on
the coordinate along the CL. A point of the CL can be either a
stable node or a stable spiral in the direction transverse to the
CL, see Appendix A. Introducing the rescaled population sizes
x = I1/N , y = I2/N , and z = S/N , denoting a = κ2/κ1 � 1
and μ = μ′/κ1, and rescaling time by 1/κ1 we can rewrite
the deterministic equations (7) for the SI1I2R model with
population turnover as

ẋ = x(Rz − 1),

ẏ = ay(Rz − 1), (9)

ż = μ(1 − z) − Rz(x + ay),

whereas the rescaled CL is given by

x + ay = r ≡ μ (1 − 1/R) , z = 1/R. (10)

Unlike in the case of the SI1I2S model, here the length of
the CL increases as a becomes smaller. As one can see, the
deterministic theory of the SI1I2R model is characterized by
three rescaled parameters: the basic reproduction number 1 �
R � ∞, or 0 � r � 1, the rescaled rate constant μ, and the
parameter a. Figure 2 shows a sketch of the deterministic
phase space of the quasineutral SI1I2R model in the rescaled
variables x, y, and z.

Dividing the second of Eqs. (9) by the first one and
integrating, we obtain the equation

y = Mxa, 0 � M < ∞, (11)

0.00 0.05 0.10x

0.0

0.2

0.4
y

0.5

0.6

0.7

0.8

z

FIG. 2. (Color online) A sketch of the deterministic phase space
of the SI1I2R model in the rescaled variables x = I1/N , y = I2/N ,
and z = S/N . The coexistence line (CL) is shown by the dotted line.
The rescaled parameters are R = 1.5, μ = 0.3, and a = 0.2.

which coincides with Eq. (6). That is, the projections of the
phase-space trajectories of the SI1I2R model onto the I1I2

plane lie on curves that coincide with the phase trajectories of
the SI1I2S model, see Fig. 1. This property holds for a whole
family of quasineutral competition models described by the
rescaled equations of the type

ẋ = x K(x,y,z),

ẏ = ay K(x,y,z),

and an equation for ż, leading to Eq. (11).

III. PERTURBATION METHOD AND EFFECTIVE
ONE-DIMENSIONAL FOKKER-PLANCK EQUATION

A. Quasineutral stochastic dynamics: A qualitative picture
and time-scale separation

Before embarking on the derivation of the perturbation
method, we give a physical picture and a road map we
follow in the remainder of the paper. The random character of
elementary processes of infection, recovery, etc., introduces
shot noise into the system. In the quasineutral case the
shot noise changes qualitatively the nature of the dynamics
compared to predictions from the deterministic theory. This is
because the noise makes the system wander randomly (mostly)
along the CL, eventually reaching extinction of one strain and
fixation of the other [10,13,14]. This effect is illustrated by
a sample stochastic trajectory of the SI1I2R model, generated
using Gillespie algorithm [16] and shown in Fig. 3.

At the level of probabilistic description, we characterize the
system by the probability distribution to have, at time t , certain
population sizes of each relevant subpopulation. For example,
for the SI1I2R model, which we will use for explanations in
this subsection, this probability distribution is Pm,n(t), where
m � 0 and n � 0 denote the population sizes of strains 1 and 2,
respectively. The time evolution of the probability distribution
is described by the master equations presented below: for the
SI1I2S model [Eq. (12)] and for the SI1I2R model [Eq. (34)].
Employing the van Kampen system size expansion, based on
the small parameter 1/N � 1, we will first approximate the
master equation by a Fokker-Planck equation of corresponding
dimension [17]. Then we will employ time-scale separation,
intrinsic to the quasineutral stochastic dynamics, and derive
an effective one-dimensional Fokker-Planck equation for the
slowly evolving probability distribution of the system along the
CL. This one-dimensional Fokker-Planck equation then can
be analyzed in a standard way [17] to determine the fixation
probabilities and the mean time to fixation of each of the two
strains.

Throughout this work we assume N � 1. We also assume
a “macroscopic” initial condition P (m,n,t = 0) = δm,m0 δn,n0

that involves fixed (and sufficiently large) numbers of infected
with the two strains: m0,n0 � 1. In this case the evolution of
the probability distribution P (m,n,t) has three distinct stages.
During the first stage, Pm,n(t) develops a sharp peak at the CL
around the stable fixed point that is determined by x0 = m0/N

and y0 = n0/N : the (rescaled) initial numbers of infected with
strains 1 and 2. The characteristic formation time of this peaked
distribution is independent of N and therefore short.

During the much slower second stage (which duration turns
out to be ∼N ), this sharp peak evolves into a sharp ridge, as
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FIG. 3. (Color online) A stochastic realization of the SI1I2R
model with population turnover in the phase space of I1, I2, and S (the
upper panel), and its projection onto the I1,I2 plane (the lower panel).
Extinction of I1 and fixation of I2 can be seen. The deterministic CL
and its projection onto the I1,I2 plane are shown as dashed lines. The
parameters are R = 2, a = 0.5, μ = 0.5, and N = 2000.

the probability distribution spreads along the CL. It is the
probability distribution spread along the CL that ultimately
causes the extinction of one strain and fixation of the other on
reaching the end of the CL at m = 0 or n = 0. Throughout this
process, large fluctuations away from the CL are suppressed
by the deterministic drift toward the CL. The with of the sharp
ridge around the CL, where noise and the deterministic flow
are comparable, is ∼1/

√
N .

The still-much-longer third stage involves an exponentially
slow leakage of the single-strain probability distribution to the
infection-free state, leading to a complete extinction of the
disease from the populations. The extinction of a single-strain
endemic disease has been extensively studied for the SIS model
with and without population turnover [18], and for the SIR
model with population turnover [19,20]. The mean time of
the disease extinction here is exponentially large in N . In
this work we are interested in the intermediate second stage
that determines which of the two strains has a competitive
advantage to become established, for a very long time, in the
susceptible population.

B. SI1I2S model: A case of two dimensions

The Markov stochastic dynamics in the discrete state space
of the subpopulation sizes is described by the master equation
for the probability Pm,n(t) to observe m individuals infected
with strain 1 and n individuals infected with strain 2. With
time rescaled by 1/μ, as in the deterministic equations (4),
this master equation is

Ṗm,n(t) = R
N

(m − 1)(N − m + 1 − n)Pm−1,n(t)

− R
N

m(N − m − n)Pm,n(t)

+ (m + 1)Pm+1,n(t) − mPm,n(t)

+ a
R
N

(n − 1)(N − m + 1 − n)Pm,n−1(t)

− a
R
N

n(N − m − n)Pm,n(t)

+ a(n + 1)Pm,n+1(t) − anPm,n(t). (12)

Using the large parameter N � 1, we can perform the van
Kampen system size expansion [17] and approximate the exact
master equation (12) by the Fokker-Planck equation for the
quasicontinuous probability density ρ(x,y,t),

∂tρ(x,y,t) = − ∂

∂x
{[Rx(1 − x − y) − x] ρ}

− a
∂

∂y
{[Ry(1 − x − y) − y] ρ}

+ 1

2N

∂2

∂x2
{[Rx(1 − x − y) + x] ρ}

+ a

2N

∂2

∂y2
{[Ry(1 − x − y) + y] ρ} . (13)

The small noise enters the equation via the diffusion terms
that scale as 1/N � 1. We anticipate that the noise rapidly
establishes a sharp distribution across the CL and then slowly
spreads this distribution along the CL. Let us introduce the
new variables

X = x − y, Y ′ = x + y − r, (14)
where X is the slow variable that measures the distance
along the CL and Y ′ is the fast variable that measures the
distance away from the CL. The CL is given by Y ′ = 0, so
x = (r + X)/2 and y = (r − X)/2 on the CL. In the new
variables the Fokker-Planck equation is

∂tρ(X,Y ′,t)

= −
(

∂

∂Y ′ + ∂

∂X

){
Y ′ + X + r

2
[R(1 − Y ′ − r) − 1]ρ

}

− a

(
∂

∂Y ′ − ∂

∂X

){
Y ′ − X + r

2
[R(1 − Y ′ − r) − 1]ρ

}

+ 1

2N

(
∂

∂Y ′ + ∂

∂X

)2{
Y ′ + X + r

2
[R(1 − Y ′ − r) + 1]ρ

}

+ a

2N

(
∂

∂Y ′ − ∂

∂X

)2{
Y ′ − X + r

2
[R(1 −Y ′− r) + 1]ρ

}
.

(15)

Since we expect the distribution of the fast variable Y ′ to
be sharply peaked about Y ′ = 0, with a characteristic width
∼1/

√
N , we introduce the new variable Y = √

NY ′. Now
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Y ∼ 1 in the region of the ridge where the probability density
ρ(X,Y,t) is substantial. Expanding the right-hand side of
Eq. (15) in powers of the small parameter ε = 1/

√
N up to

the second order, we obtain

∂tρ(X,Y,t) = (L̂(0) + εL̂(1) + ε2L̂(2))ρ(X,Y,t), (16)

where the linear differential operators L̂(0), L̂(1), and L̂(2) are
presented in Appendix B 1. Importantly, the operator L̂(0)

involves differentiation only with respect to the fast variable Y .
Being interested in the solution of Eq. (16) that develops on
a slow time scale of O(ε−2) = O(N ), we make the ansatz

ρ(X,Y,t) = ρ(0)(X,Y,ε2t) + ερ(1)(X,Y,ε2t)

+ ε2ρ(2)(X,Y,ε2t) + . . . . (17)

Plugging it into Eq. (16) we obtain

L̂(0)ρ(0) = 0 (18)

in the zeroth order of ε,

L̂(0)ρ(1) = −L̂(1)ρ(0) (19)

in the first order of ε, and

L̂(0)ρ(2) = ∂τρ
(0) − L̂(1)ρ(1) − L̂(2)ρ(0) (20)

in the second order of ε. Here τ = ε2t = t/N is the slow
time. The solution to Eq. (18) can be written as

ρ(0)(X,Y,τ ) =
√

R
2π

f (X,τ ) e− R
2 Y 2

, (21)

where f (X,τ ) is an arbitrary function. The function
ρ(0)(X,Y,τ ), with yet unknown f (X,τ ), is the “ridge
distribution” announced above. It is a Gaussian with respect to
Y , that is, a sharp Gaussian of width ∼N−1/2 with respect to Y ′.

The slow temporal evolution of ρ(0), i.e., of the Y -
independent function f (X,τ ), is described by Eq. (20). To
obtain an evolution equation for f (X,τ ), we can integrate
Eq. (20) with respect to Y from −∞ to ∞. Since the left-hand
side of Eq. (20) is a full derivative with respect to Y [see
Eqs. (B1) and (C6)], it vanishes on the integration, and we
obtain

∫ ∞

−∞
∂τρ

(0) dY = ∂τf =
∫ ∞

−∞
(L̂(1)ρ(1) + L̂(2)ρ(0)) dY. (22)

The integration of the second term on the right-hand side
of Eq. (22) reduces to the computation of the zero and
second moments of the Gaussian distribution (21) and can
be performed right away (see Appendix B 1 for the explicit

forms of the operators),∫ ∞

−∞
L̂(2)ρ(0)dY = 1 − a

2
∂Xf + 1

2
∂2
X [h(X)f ] ,

(23)
h(X) = (1 + a)r + (1 − a)X.

It remains to compute the integral of the first term on the
right-hand side of Eq. (22). A straightforward way to proceed
would be to first find ρ(1) from Eq. (19) that arises in the first
order in ε. Although this is not hard to do in two-dimensional
models like the SI1I2S, the solution becomes difficult, if at
all feasible, in higher dimensions. Fortunately, a bypass is
possible for a whole class of quasineutral competition models.
The key idea is to avoid solving for ρ(1) by exchanging it for
ρ(0). As we explain in Appendix C, it can be done with the
help of a function F (X,Y ) such that∫

L̂(1)ρ(1) dY ≡ ∂X

∫
F (X,Y )L̂(0)ρ(1) dY. (24)

Then, using Eq. (19), we obtain∫
L̂(1)ρ(1) dY = −∂X

∫
F (X,Y )L̂(1)ρ(0) dY. (25)

We show in Appendix C 2 how to calculate the function
F (X,Y ). The result is as follows:

F (X,Y ) = −g(X)

h(X)
Y,

(26)
g(X) = (1 − a)r + (1 + a)X,

and h(X) was defined in Eq. (23). Now Eq. (25) becomes∫ ∞

−∞
L̂(1)ρ(1)(X,Y )dY

= −∂X

[
(1 + a)g(X)

h(X)
f (X) + g2(X)

2h(X)
∂Xf

]
. (27)

The details of computing the integral on the right-hand side of
Eq. (25) are given in Eqs. (C24)–(C26).

Adding up the two terms, Eqs. (23) and (27), in the right-
hand side of Eq. (22), we finally arrive at an effective one-
dimensional Fokker-Planck equation,

∂tf (X,t) = 2a(1 − a)

N

∂

∂X

{
1 − (X/r)2

[1 + a + (X/r)(1 − a)]2 f

}

+ 2ar

N

∂2

∂X2

[
1 − (X/r)2

1 + a + (X/r)(1 − a)
f

]
. (28)

This equation describes an effective Markov process along the
CL [14]. It involves slow drift and diffusion, both X dependent.
Noticeable is the same scaling behavior ∼1/N of the drift and
diffusion coefficients. Not only the diffusion but the drift as
well are induced by the shot noise. The drift introduces a bias in
favor of the slow strain, for which a < 1. For a = 1, when the
two strains are identical, the drift term vanishes, and one is left
with an X-dependent diffusion coefficient that is symmetric
with respect to X. In this particular case Eq. (28) coincides
with (the diffusion approximation of) the Moran model, a
minimalist model of random genetic variations in a haploid
population, see, e.g., Ref. [21]. As expected, the drift and
diffusion coefficients both vanish at the absorbing boundaries
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FIG. 4. (Color online) The noise-induced drift (the ratchet ef-
fect), favoring the slow strain, is caused by an interplay of the shot
noise and the curvature of the deterministic phase trajectories, see
the text. Shown are segments of the CL (the dotted line) and of the
deterministic phase trajectory (6) at a < 1 (the solid line), passing
through the point x0,y0 on the CL.

X = ±r , signaling extinction of one strain and fixation of the
other.

The physical mechanism of the noise-induced drift becomes
clear if we consider the following schematic model. Let at
some instant of time the system is at a point x0,y0 on the
CL. Then the system is “kicked,” in a small time interval dt ,
by the shot noise to a new point x1 = x0 + ρ0 cos φ, y1 =
y0 + ρ0 sin φ, where ρ0 > 0 and φ are independent random
variables. Crucially, we assume the kicks to be isotropic:
φ is uniformly distributed on the interval 0 � φ < 2π . The
distribution of ρ is less important, and it should have a proper
variance ∼1/N . Following the kick, the system returns to the
CL along the deterministic trajectory passing through x1,y1.
Lin et al. [14] employed a qualitatively similar schematic
model for calculating the effective drift and diffusion coef-
ficients in a quasineutral competition model mathematically
identical to the SI1I2S model, and their results are identical
to those following from our Eq. (28). Here we only use this
model to elucidate the origin of the drift and its sign, see
Fig. 4. Because of the curvature of the deterministic phase
trajectories (6), it is more likely that the system will return
to a point on the CL that is to the left of the original point
(that is closer to the fixation point of the slow strain) than to
the right, see Fig. 4. It is this “geometric ratchet” that, when
combined with the isotropic shot noise, introduces a systematic
drift favoring the slower competitor. The drift coefficient is
proportional in this picture to the effective variance of the
shot noise, that is, to 1/N . Importantly, the geometric ratchet
mechanism is independent of the specific competition model.
When a = 1, the phase trajectories (6) become straight lines.
In this case the “geometric ratchet” effect is absent and drift
coefficient vanishes.

Now we return to Eq. (28). It is convenient to rescale the
coordinate along the CL by introducing ξ = X/r , such that
ξ ∈ [−1,1]. When ξ = −1, I1 = 0, and when ξ = 1, I2 = 0.
After an additional rescaling of time, τ = t/(Nr), we can

rewrite Eq. (28) in a universal form, independent of r ,

∂f (ξ,τ )

∂τ
= − ∂

∂ξ
[v(ξ )f (ξ,τ )] + 1

2

∂2

∂ξ 2
[D(ξ )f (ξ,τ )] ,

(29)

where the effective (and rescaled) drift and diffusion coeffi-
cients are

v(ξ ) = − 2a(1 − a)(1 − ξ 2)

[1 + a + (1 − a)ξ ]2
(30)

and

D(ξ ) = 4a(1 − ξ 2)

1 + a + (1 − a)ξ
, (31)

respectively. The effective initial condition for Eq. (29) is

f (ξ,0) = δ(ξ − ξ0), (32)

where ξ0 is determined by x0 = m0/N and y0 = n0/N , the
(rescaled) initial numbers of infected with strains 1 and 2.
Namely, to determine ξ0 we should find the intersection point
of the phase trajectory [see Eq. (11)],

y

y0
=

(
x

x0

)a

, (33)

and the CL x + y = r and transform to the coordinate ξ .
We shall analyze the effective one-dimensional problem in
the next section. Here its worth emphasizing that, once the
effective problem is solved and f (X,t) found, our method
gives an explicit description of the dynamics of the probability
distribution of the subpopulations in the vicinity of the CL.
In the leading order in 1/

√
N , this description is given by

Eq. (21).

C. SI1I2R model with population turnover:
A case of three dimensions

The SI1I2R model with population turnover is more
involved, as it is fully three dimensional. An application
of our perturbation method here leads again to an effective
one-dimensional Fokker-Planck equation along the CL. We
start with the master equation as follows:

Ṗm,n,s(t) = R
N

(m − 1)(s + 1)Pm−1,n,s+1(t) − R
N

msPm,n,s(t)

+ a
R
N

(n − 1)(s + 1)Pm,n−1,s+1(t)

− a
R
N

nsPm,n,s(t) + (m + 1)Pm+1,n,s(t)

−mPm,n,s(t) + a(n + 1)Pm,n+1,s(t) − anPm,n,s(t)

+μNPm,n,s−1(t) − μNPm,n,s(t)

+μ(s + 1)Pm,n,s+1(t) − μsPm,n,s(t) (34)

that describes the time evolution of probability Pm,n,s(t) to
observe m individuals infected with strain 1, n individuals
infected with strain 2, and s susceptible individuals. Time
t has been rescaled by 1/κ1. We perform the van Kampen
system size expansion and switch to the new coordinates: X

along the CL and Y and Z perpendicular to the CL. As in the

042149-7



KOGAN, KHASIN, MEERSON, SCHNEIDER, AND MYERS PHYSICAL REVIEW E 90, 042149 (2014)

SI1I2S model, we rescale the perpendicular coordinates by
√

N

as follows:

X = −ax + y,

Y =
√

N (x + ay − r) , (35)

Z =
√

N

(
z − 1

R

)
.

The CL is determined by Eqs. (10); as one can check, x = (r −
aX)/(1 + a2) and y = (X + ar)/(1 + a2) on the CL. After
some algebra, the resulting three-dimensional Fokker-Planck
equation can again be presented in the form of Eq. (16), with
operators L̂(n), n = 0,1,2, presented in Appendix B 2. Now
we make the perturbation ansatz (C2) and define the slow time
τ = t/N . Putting all this together and collecting orders of ε,
we arrive at the same three operator equations (18)–(20) as
before.

The solution of Eq. (18) is a bivariate Gaussian distribution,

ρ(0)(X,Y,Z) = Nf (X,τ ) eA(X)Y 2+B(X)YZ+C(X)Z2
, (36)

where N is the normalization factor with respect to Y and
Z variables. In contrast to the two-dimensional case, the
coefficients A, B, and C are generally X dependent. Using
the ansatz (36), we find

A(X) = �(X)B(X), (37)

B(X) = −[4�2(X)c0(X) + 2�(X)d0(X) + μ]−1, (38)

C(X) = −c0(X)B(X)

2μ2R − R
2

, (39)

�(X) = 1

2

[
1

μR − d0(X)

c0(X)

]
, (40)

and the expressions for c0(X) and d0(X) are given in Ap-
pendix B 2. Diagonalizing the quadratic form in Y and Z in
the exponential in Eq. (36), we obtain the following expression
in terms of the principal coordinates χ and ζ :

ρ(0)(X,Y,Z) = Nf (X,τ ) e�+(X)χ2+�−(X)ζ 2
, (41)

where

�±(X) = 1
2 [(A + C) ±

√
(A − C)2 + B2] (42)

are negative real numbers. In terms of �±, the normalization
factor of the bi-Gaussian distribution is

N = π−1
√

�+(X)�−(X). (43)

The principal directions are given by

V± = 1

n±

(
1

2(�±−A)
B

)
, (44)

where n± is a normalization factor. It is worth mentioning
that the principal directions of the bi-Gaussian distribution do
not coincide with the attracting eignevectors of the CL in the
deterministic theory, see Appendix A.

In a full analogy with Eq. (22) for the SI1I2S model, the
evolution of the slow variable distribution is now given by

∂τf (X,τ ) =
∫ ∞

−∞
L̂(1)ρ(1)dYdZ +

∫ ∞

−∞
L̂(2)ρ(0)dYdZ.

(45)

Here and in the following∫ ∞

−∞
. . . dYdZ

denotes integration over both Y and Z from −∞ to ∞.
Calculation of the second term on the right-hand side of
Eq. (45) reduces to the calculation of the zeroth and second
moments of the bi-Gaussian distribution (41) as follows:∫ ∞

−∞
L̂(2)ρ(0)dYdZ

= ∂X

{
aR(1 − a)

1 + a2
〈YZ〉f + a∂X

[
2ar + (1 − a2)X

1 + a2
f

]}
,

(46)

where

〈YZ〉 = q

2(1 + q2)

(
1

|�+| − 1

|�−|
)

, and

q(X) = 2[�+(X) − A(X)]

B(X)
. (47)

Calculation of the first term in Eq. (45) boils down to finding
the function F (X,Y,Z), such that∫

L̂(1)ρ(1) dY dZ = −∂X

∫
F (X,Y,Z)L̂(1)ρ(0) dY dZ,

(48)
similarly to what was done for the SI1I2S model and following
the general procedure outlined in Appendix C. The solution
(see Appendix C 2) is as follows:

F (X,Y,Z) = − �(X)

Rd0(X)
Y,

(49)
�(X) = Ra [(1 − a)r − (1 + a)X]

1 + a2
,

and d0(X) is given in Eq. (B6). In its turn, Eq. (48) leads to∫ ∞

−∞
L̂(1)ρ(1)dYdZ

= −∂X

{[
2aG(X)

1 + a2
∂Xf − Rap(X)

1 + a2
∂X (〈YZ〉f )

+ 4a2 − R(1 − a − a2 + a3)〈YZ〉
1 + a2

f

]
ap(X)

(1 + a2)d0(X)

}
,

(50)

where

G(X) = 2aX − (1 − a2)r, (51)

p(X) = (1 − a)r − (1 + a)X, (52)

and 〈YZ〉 is given by Eq. (47) above.
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Finally, we rescale the coordinate along the CL,

ξ = 1 − 2a

r

X + ar

1 + a2
= − G(X)

(1 + a2)r
, (53)

such that ξ ∈ [−1,1]. When ξ = −1, we have I1 = 0, and
when ξ = 1, we have I2 = 0, as in the SI1I2S model. Inserting
Eqs. (46) and (50) into Eq. (45), making simplifications, and
expressing the resulting equation in the variable ξ and a newly
rescaled time τ = t/(Nr) in the standard Fokker-Planck form,
we again arrive at Eq. (29) with the effective (and rescaled)
drift and diffusion coefficients

v(ξ ) = −2a(1 − a)(1 − ξ 2)[1 + (1 − a2)ξ + a(a + 4)]

[1 + a + (1 − a)ξ ]3

(54)

and

D(ξ ) = 8a2(1 − ξ 2)

[1 + a + (1 − a)ξ ]2
, (55)

respectively. The effective initial condition for Eq. (29) is
again Eq. (32), where ξ0 is fully determined by x0 = m/N

and y0 = n/N : the rescaled initial numbers of infected with
strains 1 and 2. To determine ξ0 we should find x and y from
Eq. (33) and the CL equation x + ay = r and then transform
to the coordinate ξ . Because of the degeneracy, intrinsic to
the quasineutral competition, ξ0 is independent of the initial
number of susceptibles z0.

We shall analyze the effective one-dimensional problem in
the next section. As in the SI1I2S, once the one-dimensional
problem is solved, the method gives an explicit description of
the dynamics of the probability distribution of the subpopula-
tions in the vicinity of the CL. In the leading order in 1/

√
N

this description is provided by Eq. (36).

IV. EFFECTIVE DYNAMICS ALONG THE CL

We now employ the effective one-dimensional evolution
equations that we derived to study the quasineutral compe-
tition. Several examples of the ξ dependence of the drift
coefficient v(ξ ) for the SI1I2R model are shown in Fig. 5.
For very small a (that is, a very large difference among the
strains in terms of the rates) v(ξ ) becomes strongly localized
at ξ = −1, and the minimum value vmin(ξ ) approaches a finite
value vmin = −4/(3

√
3) = −0.7698 . . . .

The plot of v(ξ ) for the SI1I2S model is quite similar, so we
do not show it here. The asymptotic minimum value of v(ξ )
as a → 0 is equal to −1/2 in this case.

A. Fixation probabilities

Fixation of strain 2 (strain 1) occurs when the effective one-
dimensional Markov process, described by Eq. (29), reaches
the boundary ξ = −1 (ξ = 1, respectively). The probability
π−1(ξ0) that strain 2 fixates, given the initial condition on the
CL, corresponds to the exit at ξ = −1 and obeys the ordinary
differential equation

v(ξ0)π ′
−1(ξ0) + 1

2D(ξ0)π ′′
−1(ξ0) = 0, (56)

see, e.g., Ref. [17]. In this section the primes stand for
the derivatives with respect to the argument. The boundary

FIG. 5. (Color online) Effective drift coefficient along the coex-
istence line, v(ξ ) from Eq. (54), for the SI1I2R model with a = 0.02
(solid line), a = 0.2 (dashed line), and a = 0.7 (dotted line). As a →
0, v(ξ ) becomes strongly localized at ξ = −1, whereas the minimum
value vmin(ξ ) approaches vmin = −4/(3

√
3) = −0.7698 . . .. The drift

vanishes at a = 1.

conditions are π−1(−1) = 1 and π−1(1) = 0. The solution to
this problem is

π−1(ξ0) =
∫ 1
ξ0

ν(x) dx∫ 1
−1 ν(x) dx

, (57)

where

ν(x) = e
−2

∫ x

0
v(y)
D(y) dy

. (58)

For the SI1I2S model, the solution is

π−1(ξ0) = (1 − ξ0)[(1 − a)ξ0 + a + 3]

4(a + 1)
, (59)

in agreement with Refs. [10,14]. For the SI1I2R model we
obtain

π−1(ξ0) = 2e
1
a − e

1+a2+(1−a2)ξ0
2a [1 + a2 + (1 − a2)ξ0]

2(e
1
a − a2ea)

. (60)

Figure 6 compares, for a set of parameters, π−1(ξ0) predicted
by Eqs. (59) and (60) with π−1(ξ0) obtained by (i) solving
the master equation numerically (for the SI1I2S model) and by
(ii) averaging over 105 realizations of Monte Carlo simulations
(for the SI1I2R model). The initial conditions, in both cases,
were chosen to lie on the CL. For N = 250 a very good
agreement is observed.

The fixation probability of strain 1 is

π+1(ξ0) = 1 − π−1(ξ0) . (61)

When the two strains are identical, a = 1, we recover the
expected results,

π−1(ξ0) = 1
2 (1 − ξ0), π+1(ξ0) = 1

2 (1 + ξ0), (62)

for both models. In this case π−1(0) = π+1(0) = 1/2, and the
strains are equally competitive.

B. Mean time to fixation

The mean time to fixation (MTF) T (ξ0) obeys the equation

v(ξ0)T ′(ξ0) + 1
2D(ξ0)T ′′(ξ0) = −1 (63)
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FIG. 6. (Color online) Fixation probability of the (slower)
strain 2 vs the initial condition ξ0 on the coexistence line for a = 0.25,
R = 4, and N = 250. The solid curves were calculated from Eq. (59)
for the SI1I2S model and from Eq. (60) for the SI1I2R model (in the
latter case we set μ = 2). The dots were obtained in the former case
by numerically solving the master equation, Eq. (12), and in the latter
case by averaging over 105 realizations of Monte Carlo simulations.
The curves being convex upward implies a competitive advantage of
the slow strain for random initial conditions on the CL.

with the boundary conditions T (−1) = T (1) = 0, see, e.g.,
Ref. [17]. Reintroducing time t as it appears in Eq. (4) or
Eq. (9), we can write the solution to this problem as

T (ξ0) = rN

∫ ξ0

−1
ν(x) [Q0 − Q(x)] dx,

Q(x) =
∫ x

0

2 dy

ν(y)D(y)
, (64)

Q0 =
∫ 1
−1 ν(x)Q(x) dx∫ 1

−1 ν(x) dx
.

(We remind the reader that the definition of r in the two models
differs by a factor μ.) The integrals in Eq. (64) can be evaluated
analytically for both models. We discuss some analytic
properties of the mean time to fixation in Appendix D. Figure 7
compares, for a set of parameters, these analytic results with
numerical results obtained by (i) a numerical solution of the
master equation (for the SI1I2S model) and (ii) by averaging
over 105 realizations of Monte Carlo simulations (for the
SI1I2R model). The initial conditions, in both cases, lie on
the CL. As one can see, for N = 250 a very good agreement
is observed.

FIG. 7. (Color online) The rescaled mean time to fixation
T/(rN ) vs the initial condition ξ0 on the coexistence line for a = 0.25,
R = 4, N = 250 (and μ = 2 for the SI1I2R model). The dots were
obtained by numerically solving the master equation, Eq. (12), for the
SI1I2S model and by averaging over 105 realizations of Monte Carlo
simulations of the SI1I2R model.

V. COMPETITIVE ADVANTAGE AND
INITIAL CONDITIONS

One measure of strain competitiveness is π±1(0): the
fixation probabilities at ξ0 = 0. We plot these functions for
both models in Fig. 8. One has π−1(0) > 1/2 and π+1(0) <

1/2, that is, the slow strain has an advantage [10,13,14]. This
effect is especially pronounced in the SI1I2R model.

Alternatively, we may find the point ξ ∗
0 on the CL where

π±1(ξ ∗
0 ) = 1/2, so the fast and slow strains have equal

probabilities to fixate from that initial condition on the CL.
For the SI1I2S model, Eq. (59) yields

ξ ∗
0 = a + 1 −

√
2(a2 + 1)

a − 1
. (65)

Interestingly, ξ ∗
0 reaches a limit distinct from 1, ξ ∗

0 → √
2 − 1,

as a → 0. The SI1I2R model behaves differently at a → 0.
Here Eq. (60) yields ξ ∗

0 � 1 − 2a ln 2 at a � 1, so ξ ∗
0 → 1

as a → 0. Using the relations x = r(1 + ξ )/2 and y = r(1 −
ξ )/(2a) on the CL of the SI1I2R model, we see that x∗/r → 1
and y∗/r → ln 2 as a → 0. Therefore ξ ∗

0 goes to 1 as a goes
to zero because the slope and the length of the CL grow. Here,
as a → 0, the slow strain fixates for an ever-growing fraction
of initial conditions along the CL, see Fig. 9. Notice also that
ξ0 � (3/4)(1 − a) as a approaches 1.

These two closely related measures of competitiveness
assume initial conditions drawn from the uniform distribution
along the CL. To deal with an arbitrary initial condition off the
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FIG. 8. (Color online) Extinction probability of each of the two
strains in the middle of the coexistence line, π−1(ξ0 = 0) (red) and
π+1(ξ0 = 0) (blue) vs a as a measure of the competitive advantage of
the slow strain for initial conditions on the CL, for both models. For
a < 1, π−1(ξ0 = 0) > 1/2.

CL, we define the separating curve

ysep = M∗(a)xa (66)

that passes through the point (x∗,y∗) on the CL, see Fig. 2.
All initial conditions with x and y above this curve reach
the part of the CL where the subsequent stochastic dynamics
is more likely to lead to the survival of the slow strain. All
initial conditions that lie below this curve lead to a more likely
survival of the fast strain.

Among all possible initial conditions, the more relevant
one corresponds to spread of disease when a few infectives
of both strains are introduced into a susceptible population.
(For our theory to be valid we still assume that the initial
number of infected is much larger than 1.) Here the initial
conditions are located in the vicinity of the origin in Fig. 1,
and the competitive advantage of the strains is determined
by the subsequent distribution of the states on the CL
following the deterministic evolution. Assuming a uniform
initial distribution of the strains, most of them will be found
under the separating curve (66). As a result, the deterministic
evolution brings most of such initial conditions to a point
on the CL corresponding to a higher fixation probability

FIG. 9. (Color online) Neutral position along the coexistence line
ξ ∗

0 vs a as a measure of competitive advantage of the slow strain with
respect to initial conditions on the CL for both models.

of the fast strain. This is a consequence of the (generic)
shape of deterministic curves (6). The fast strain, although
in a disadvantage for uniformly distributed initial conditions,
becomes advantageous for the more relevant ones.

To come up with a quantitative measure of competitive
advantage of the fast strain in this scenario, we consider a
square of size L of initial conditions on the xy plane, as shown
in Fig. 10. We can define the competitiveness of the fast strain
as the fraction F of the area of this square under the separating
curve ysep(x). Note that F → 1 as L → 0, so the fast strain
is always advantageous when the initial number of infected
with two strains is sufficiently small. To compute the critical
size Lcr of the square, or the corresponding critical size of the
infected group ncr = NLcr, such that F = 1/2, we first notice
that Lcr will be greater than the point of intersection of ysep(x)
with the line y = x that happens at L = (M∗)1/(1−a).

For larger L we obtain

F = Area below ysep(x)

L2
= M∗La−1

a + 1
. (67)

Setting F = 1/2 we find

Lcr = ncr

N
=

(
2M∗

a + 1

) 1
1−a

. (68)
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FIG. 10. (Color online) Competitive advantage of the fast strain
in the case when a few infectives of both strains are introduced into
a susceptible population. Shown are the CL (solid), the separating
curve ysep(x), see Eq. (66) (dashed), and two different squares of
initial conditions. For L = Lcr, half of the square is below ysep. For
L < Lcr the fast strain is advantageous, as illustrated by the dashed
area of the smaller square compared to the empty area of that square.

For n < ncr the fast strain is advantageous. Expression (68) is
generic, but the value of M∗ is model dependent. For the SI1I2S
model, we can use Eqs. (11) and (65) and the relations x =
r(1 + ξ )/2 and y = r(1 − ξ )/2 on the CL to obtain M∗(a).
Inserting it into Eq. (68), we finally obtain

ncr

N
= r

1 − a

[
2a(2 − √

2a2 + 2)

(a + 1)(
√

2a2 + 2 − 2a)a

] 1
1−a

. (69)

This expression varies monotonically in a narrow range
between 2 − √

2 = 0.58578 . . . at a = 0 and 1/2 as a → 1.
In the SI1I2R case we use the asymptotics ξ ∗

0 � 1 − 2a ln 2
for small a and ξ ∗

0 � (3/4)(1 − a) for a close to 1. From
this we find that ncr/(Nr) varies between 2 ln 2 = 1.38629 . . .

at a = 0 and 1/2 as a → 1. As we see, for both models the
critical size of the introduced infected group for the slow strain
to outcompete the fast one is comparable to the total population
size. For much smaller infected groups, 1 � n � ncr, the fast
strain is much more competitive. In this regime, the probability
of fixation of the fast strain behaves like

F � 1 − (n/N )1/a, (70)

which very rapidly approaches 1 as n/N becomes small.
We briefly mention another type of initial condition. The

system may initially have only one strain, so it is positioned at
the end of the CL. Then a mutation or a one-time importation
occurs that introduces a minority strain and causes a small
deviation of the system into the interior of the xy plane.
The subsequent stochastic dynamics will most likely bring the
system back to the original end of the CL. There is a small but
finite probability, however, that the system will wander along
the CL and switch to the minority strain. This probability
scales as n/N , where n is the number of individuals with a
new strain.

Finally, to compute the survival probability of the fast strain
for an arbitrary initial condition (x0,y0), one needs to solve
numerically for ξ0 from

SI1I2S:
y0

xa
0

= r1−a(1 − ξ0)

21−a(1 + ξ0)a
, (71)

SI1I2R:
y0

xa
0

= r1−a(1 − ξ0)

21−aa(1 + ξ0)a
, (72)

and substitute this value into expression π+1(ξ0) = 1 −
π−1(ξ0) from Eqs. (59) or (60).

VI. DISCUSSION

It is well known by now that shot noise can cause qualitative,
and sometimes dramatic, changes in the system’s behavior
compared with predictions of a deterministic theory. In the
two-strain variants of the SIS and SIR models that we have
considered, the competition for resources is neutral if the
noise is neglected. When it is taken into account, it determines
the outcome of the competition: extinction of one strain and
fixation of the other. Because of the noise, one of the strains
turns out to have an advantage in fixation, depending on the
type of initial conditions. The slow strain has a competitive
advantage for uniformly distributed initial conditions. It is
the fast strain, however, that is more likely to win in the
practically important situation when a few infectives of both
strains are introduced into a susceptible population. In fact, the
fast strain remains advantageous for relatively large numbers
of infectives of both strains that scales as the population
size. These results are generic and expected to be valid
for many additional models of quasineutral competition in
epidemiology, population biology, and population genetics.

At a technical level, we obtained these and other results
by developing a novel perturbation method that employs the
smallness of the parameter 1/N and reduces, in a systematic
way, a multidimensional master equation to an effective one-
dimensional Fokker-Planck equation along the coexistence
line (CL) of the quasineutral model. The method also describes
the whole multidimensional probability distribution of the
system in the vicinity of the CL. We note that the method
is similar in spirit to the Born-Oppenheimer approximation of
quantum mechanics [22]. We expect it to be applicable to a
whole class of quasineutral competition models in different
fields of science.

From a broader perspective, quasineutral competition is
an instance of a general scenario where a weak shot noise
has a large accumulated effect on nonlinear systems when
it acts in directions with zero eigenvalues. The noise causes
diffusion and (positive or negative) drift in these directions.
A classic example of this scenario is phase diffusion [23,24]
and phase drift [24] of noisy limit cycles. Another example
is the Lotka-Volterra predator-prey model, where shot noise
causes slow diffusion and drift across neutral cycles of
the deterministic theory, and ultimately causes extinction or
proliferation of the species [25]. A spatially explicit example
is the shot-noise-induced velocity fluctuations of population
invasion fronts which include both diffusion [26,27] and
a systematic drift [27] of the front position compared to
predictions from deterministic theory.
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A future work can explore quasineutral competition in
spatial systems, as envisioned in Ref. [28].
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APPENDIX A: LINEAR STABILITY OF THE CL
OF THE SI1I2R MODEL

In the variables (Z,Y ′,Z′), see Eq. (35), the deterministic
equations have the following form:

Ẋ = aR
(a2 + 1)

[(a + 1)XZ′ + (a − 1)Y ′Z′ + r(a − 1)Z′],

Ẏ ′ = R
(a2 + 1)

[a(a − 1)XZ′ + (1 + a3)Y ′Z′ + r(1 + a3)Z′],

Ż′ = −Y ′ − μRZ′ − RY ′Z′. (A1)

We can linearize these equations around any point (X,0,0).
The resulting linear stability matrix is⎛

⎝0 0 MXZ′

0 0 MYZ′

0 −1 −μR

⎞
⎠ ,

where

MXZ′ = aR
1 + a2

[(a − 1)r + (a + 1)X] ,

MYZ′ = R
1 + a2

[(a3 + 1)r + a(a − 1)X].

One of the three eigenvectors is obviously (1,0,0), with the
eigenvalue 0. The other two eigenvalues obey

λ± = −μR
2

±
√(

μR
2

)2

− 4MYZ′ . (A2)

As MYZ′ > 0, each of these λ± always has a negative real
part. The imaginary part may or may not be zero depending
on the parameters and on the coordinate X along the CL. In
general, the eigenvalues λ± are unrelated to inverse widths of
the bi-Gaussian �± given by Eq. (42).

The eigenvectors, corresponding to λ±, are the following:

v = 1

ν

⎛
⎜⎝

MXZ′
MYZ′

1
λ

MYZ′

⎞
⎟⎠ , (A3)

where the normalization factor ν is chosen so the projection
of v onto the (Y ′,Z′) plane is normalized,

ν =
√

1 +
(

λ

MYZ′

)2

. (A4)

The transformation from these eigencoordinates (s,p,m) (for
“slow,” “plus,” and “minus,” respectively) to the orthogonal
coordinates (X,Y ′,Z′) is accomplished via⎛

⎝X

Y ′

Z′

⎞
⎠ =

⎛
⎜⎝

1 MXZ′
ν+MY ′Z′

MXZ′
ν−MY ′Z′

0 1
ν+

1
ν−

0 λ+
ν+MY ′Z′

λ−
ν−MY ′Z′

⎞
⎟⎠

⎛
⎝ s

p

m

⎞
⎠ , (A5)

where + and − label the corresponding eigenvalue. If the
eigenvalues are complex, the attracting manifold of the CL
is spanned by the real and imaginary parts of the (complex-
conjugate pair of) eigenvectors. In that case one should replace
the “+” and “−” subscripts by Re and Im, respectively. The
eigenvectors V± do not coincide with the (normalized to unity)
Y ′Z′ component of the eigenvectors vpm from Eq. (A3).

APPENDIX B: OPERATORS

Here we present the explicit forms of the operators L̂(n),
n = 0,1,2 that appear in our calculations.

1. Operators in the SI1I2S model

L̂(0)ρ = h(X)

2

[
∂2ρ

∂Y 2
+ R ∂

∂Y
(Yρ)

]
, (B1)

L̂(1)ρ = (1 + a)R
2

∂

∂Y
(Y 2ρ) + RY

2

∂

∂X
[g(X)ρ]

+ ∂2

∂X∂Y
[g(X)ρ] + 1

2

∂2

∂Y 2
[YH (X)ρ] , (B2)

L̂(2)ρ = (1 − a)RY 2

2

∂ρ

∂X
+ 1

2

∂2

∂X2
[h(X)ρ] + ∂

∂Y

{. . . } ,

(B3)

H (X) = (1 + a)

(
1 − Rr

2

)
− RX

2
(1 − a) , (B4)

where h(X) and g(X) are defined in Eqs. (23) and (26),
respectively. The nonspecified term in Eq. (B3) does not
contribute to the integral in Eq. (22), since it is a total
derivative. For the same reason only the second term in
Eq. (B2) contributes.

2. Operators in the SI1I2R model

L̂(0)ρ = Rd0(X)Z∂Y ρ + ∂Z[(μRZ + Y )ρ] + c0(X)∂2
Y ρ

+μ∂2
Zρ + d0(X)∂2

YZρ, (B5)

where

c0(X) = 1

1 + a2
[(1 + a4)r + a(a2 − 1)X],

(B6)
d0(X) = − 1

1 + a2
[(1 + a3)r + a(a − 1)X].
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In this operator only Y and Z are independent variables, while
X is “frozen.” Due to introduction of the small parameter
ε upon rescaling the transverse variables, only the linearized
terms of the full deterministic equations in variables (X,Y ′,Z′)

contribute to the drift terms in L̂(0). By the same token,
only a subset of the diffusion coefficients of the full Fokker-
Planck operator in variables (X,Y ′,Z′) is present in L̂(0).
Further,

L̂(1)ρ = Ra

1 + a2
∂X{[(1 − a)r − (1 + a)X]Zρ} − R1 + a3

1 + a2
∂Y (YZρ) + R∂Z(YZρ)

+ 1

1 + a2
∂2
Y

{[
RXZ

2
a(a2 − 1) + R rZ

2
(a4 + 1) + (1 + a4)Y

]
ρ

}
+ 1

2
∂2
Z[(RμZ + Y )ρ]

+ 2a

1 + a2
∂2
XY {[2aX + r(a2 − 1)]ρ} + 1

1 + a2
∂2
XZ({a[r(1 − a) − (1 + a)X] − (1 + a3)Y }ρ)

+ R
1 + a2

∂2
YZ{[a(1 − a)XZ − rZ(1 + a3)]ρ}, (B7)

L̂(2)ρ = Ra(1 − a)

1 + a2
∂X(YZρ) + a

1 + a2
∂2
X{[2ar + (1 − a2)X]ρ} + R

2

1 + a4

1 + a2
∂2
Y (YZρ) + R

2
∂2
Z(YZρ)

+ 1

1 + a2
∂2
XY ({Ra[2aX − (1 − a2)r]Z + (1 + a2)Y }ρ) + a

1 + a2
∂2
XZ({(1 − a)Y + R[(1 − a)r − (1 + a)X]Z}ρ)

−R1 + a3

1 + a2
∂2
YZ(YZρ). (B8)

Once again, most terms are total derivatives with respect to
integration in Y and Z variables in Eq. (45). Only the first
term in Eq. (B7) and only the first two terms in Eq. (B8) will
contribute, giving rise to Eq. (49) and Eq. (46), respectively.

APPENDIX C: A GENERAL FRAMEWORK FOR THE
DERIVATION OF THE 1D FOKKER-PLANCK EQUATION

1. General formulation

Our starting point in this appendix is the equation

∂tρ(X,Y,t) = (L̂(0) + εL̂(1) + ε2L̂(2))ρ(X,Y,t),

ε = 1/
√

N � 1. (C1)

This equation generalizes the Fokker-Planck equation,
Eq. (16), to include a whole class of quasineutral competition
models, where X stands for the slow variable (along the CL)
and Y stands for the set of all fast variables (perpendicular to
the CL), unless they are identified explicitly as Yi .

Being interested in the solution of Eq. (C1) that develops
on a slow time scale of O(ε−2) = O(N ), we make the ansatz

ρ(X,Y,t) = ρ(0)(X,Y,ε2t) + ερ(1)(X,Y,ε2t)

+ ε2ρ(2)(X,Y,ε2t) + . . . . (C2)

Plugging it into Eq. (C1) we obtain

L̂(0)ρ(0) = 0 (C3)

in the zeroth order of ε,

L̂(0)ρ(1) = −L̂(1)ρ(0) (C4)

in the first order of ε, and

L̂(0)ρ(2) = ∂τρ
(0) − L̂(1)ρ(1) − L̂(2)ρ(0) (C5)

in the second order of ε. Here τ = ε2t = t/N is the slow time.
We shall assume the following structure of the operator L̂(0):

L̂(0) =
∑
ij

�ij (X)∂Yi
Yj + �ij (X)∂2

YiYj
. (C6)

This form is a general consequence of the balance of powers
of ε in the derivation of Eq. (C1). It implies that the solution
to Eq. (C3) can be written as a Gaussian distribution near the
CL,

ρ(0)(X,Y,τ ) = f (X,τ )N (X) e− 1
2

∑
ij Cij (X)YiYj , (C7)

N (X)−1 =
∫

dYe− 1
2

∑
ij Cij (X)YiYj , (C8)

where f (X,τ ) is an arbitrary function. The function
ρ(0)(X,Y,τ ), with yet unknown f (X,τ ), is a sharp Gaussian
of width ∼N−1/2 with respect to Y ′. Computing the matrix
Cij (X) from Eq. (C3) reduces to the following linear algebraic
problem:

C−1� + �C−1 = 2�, (C9)

where matrices �ij and �ij are defined by (C6).
The slow temporal dynamics of ρ(0), i.e., the function

f (X,τ ) is described by Eq. (C5). Integrating the latter equation
over the fast variables we obtain∫ ∞

−∞
∂τρ

(0) dY = ∂τf =
∫ ∞

−∞
(L̂(1)ρ(1) + L̂(2)ρ(0)) dY.

(C10)

The integration of the second term on the right-hand side of
Eq. (C10) reduces to the computation of second moments
〈YiYj 〉 of the Gaussian distribution (C7).

As explained in the main text, a straightforward way to
evaluate the integral of the first term on the right-hand side of
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Eq. (C10) would be to first solve Eq. (C4) for ρ(1). However,
this can be hard to do in multidimensional problems. The
bypass that we now present enables one to avoid solving for
ρ(1) by exchanging it for ρ(0).

We assume the following structure of the operator L̂(1):

L̂(1) = ∂X

∑
i

�i(X)Yi + total derivatives with respect to Y.

(C11)

This property holds both for the SI1I2S model and for the
SI1I2R model with population turnover. In general, it can be
justified as follows. The ∂2/∂X2 derivative is absent in L̂(1)

since it comes from the diffusion term in the full Fokker-Planck
equation which scales as ε2 [see, for example, Eq. (13)]. The
exact form of the total derivatives with respect to Y terms does
not matter since they fall upon the integration in Eq. (C10).
The first term in Eq. (C11) comes from the drift terms of the
full Fokker-Planck equation; to be of order ε it must be linear
in Y .

Next, let us define L̂
(n)†
Y , n = 0,1,2, to be the linear

differential operators adjoint to L̂(n) with respect to integration
over the fast variables Y , i.e.,∫ ∞

−∞
f1(X,Y ) L̂(n)f2(X,Y )dY

=
∫ ∞

−∞
L̂

(n)†
Y f1(X,Y ) f2(X,Y )dY. (C12)

We emphasize that, by definition, the operator L̂
(n)†
Y in

Eq. (C12) acts on the fast variables Y of f1(X,Y ) and on
the slow variable X of f2(X,Y ). Therefore, the order in which
the functions f1 and f2 appear in the second line of Eq. (C12)
is important. It is also worth noticing that the operator L̂

(0)†
Y

involves differentiation only with respect to the fast variables
Y . Let us define the function F (X,Y ) as a forced solution of
the inhomogeneous linear partial differential equation

L̂
(0)†
Y F (X,Y ) =

∑
i

�i(X)Yi. (C13)

With these definitions we obtain∫ ∞

−∞
L̂(1)ρ(1)(X,Y )dY

∗= ∂X

∫ ∞

−∞

[
L̂

(0)†
Y F (X,Y )

]
ρ(1)(X,Y )dY

= ∂X

∫ ∞

−∞
F (X,Y )

[
L̂(0)ρ(1)(X,Y )

]
dY

∗∗= −∂X

∫ ∞

−∞
F (X,Y )[L̂(1)ρ(0)(X,Y )]dY

= −∂X

∫ ∞

−∞

[
L̂

(1)†
Y F (X,Y )

]
ρ(0)(X,Y )dY , (C14)

where the starred equality follows from Eqs. (C11), (C6),
and (C13), and the double-starred equality follows from
Eq. (C4). To remind the reader, L̂(1)†

Y in Eq. (C14) acts only on
the Y coordinates of F and only on the X coordinate of ρ(0).

Once Eq. (C13) for the function F (X,Y ) is solved, we
evaluate the integral in Eq. (C14) and complete the derivation

of the effective one-dimensional Fokker-Planck equation,
Eq. (C10). The great advantage of this formalism is that
Eq. (C13) for the function F (X,Y ) is generally much easier to
solve than Eq. (C4) for ρ(1). Indeed, it follows from Eqs. (C6)
and (C13) that

F (X,Y ) =
∑

i

ai(X)Yi, (C15)

∑
i

ai(X)�ij (X) = −�j (X), (C16)

where �ij is defined by (C6).
We see that the derivation of the 1D Fokker-Planck equation

for f (X,τ ) reduces to solving two linear algebraic problems,
Eq. (C9) and Eq. (C16).

2. Application to the SI1I2S and SI1I2R Models

We first present the adjoints of operators L(0). In the SI1I2S
model, the adjoint of L̂(0) is

L̂(0)† = h(X)

(
1

2

∂2

∂Y 2
− R

2
Y

∂

∂Y

)
. (C17)

In the SI1I2R model, the adjoint of L̂(0) is

L̂(0)† = −Rd0(X)Z∂Y − (μRZ + Y )∂Z + c0(X)∂2
Y

+μ∂2
Z + d0(X)∂2

YZ. (C18)

These operators are obtained by performing integrations by
parts where, because of the Gaussian term, the corresponding
functions and their derivatives vanish at the limits of the Y

integration. As the Gaussian is sharp at large N , the limits of
integration can be extended to ±∞.

We now calculate the function F (X,Y ) described in the
previous subsection of this appendix. For the SI1I2S model we
have �(X) = (R/2)[(1 − a)r + (1 + a)X], and Eq. (C13) for
the function F (X,Y ) becomes

h(X)

2

(
∂2F

∂Y 2
− RY

∂F

∂Y

)
= Rg(X)

2
Y, (C19)

where h(X) and g(X) are defined in Eqs. (23) and (26),
respectively. The forced solution is readily found,

F (X,Y ) = −g(X)

h(X)
Y. (C20)

For the SI1I2R model Eq. (C13) for the function F (X,Y,Z)
becomes

L̂(0)†F (X,Y,Z) = �(X)Z, (C21)

�(X) = Ra[(1 − a)r − (1 + a)X]

1 + a2
, (C22)

where the operator L̂(0)† is given in Eq. (C18). The forced
solution is

F (X,Y,Z) = − �(X)

Rd0(X)
Y, (C23)

where d0(X) is given in Eq. (B6).
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The operator L̂
(1)†
Y appears in the last line in Eq. (C14). Starting with∫ ∞

−∞
F (X,Y )[L̂(1)ρ(0)(X,Y )]dY, (C24)

we use the explicit form of L̂(1) from Eq. (B2) and integrate by parts with respect to Y to arrive at

− (1 + a)R
2

∫ ∞

−∞

∂F

∂Y
Y 2ρ(0) dY +

∫ ∞

−∞

RFY

2

∂

∂X
[g(X)ρ(0)] dY −

∫ ∞

−∞

∂F

∂Y

∂

∂X
[g(X)ρ(0)] dY +

∫ ∞

−∞

1

2

∂2F

∂Y 2
YH (x)ρ(0) dY

≡
∫ ∞

−∞

[
L̂

(1)†
Y F

]
ρ(0) dY. (C25)

This should be compared with the last line of Eq. (C14). Using the solution for F given by Eq. (C20), we can simplify the
right-hand side of Eq. (C25) to

(1 + a)g(X)f (X)

h(X)
+ g2(X)

2h(X)

∂f

∂X
, (C26)

which appears in Eq. (27). The calculation for the SI1I2R model goes along the same lines: Integration by parts can be again
applied to Eq. (C24) to derive L̂

(1)†
Y . Upon substitution of the expression for F from Eq. (C23), one arrives at Eq. (50).

APPENDIX D: MEAN TIME TO FIXATION: ANALYTIC RESULTS

Evaluating the integrals in Eq. (64) and rescaling by rN (everywhere in this appendix), we obtain for the SI1I2S model as
follows:

T = (a−1)2
(
ξ 2

0 − 1
)− (a + 1)(ξ0−1)[(a−1)ξ0−a−3] ln(1−ξ0) + (a+1)(ξ0+1)[(a−1)ξ0−3a−1] ln(ξ0 + 1) + 4(a+1)2 ln 2

8a(a + 1)
.

(D1)

An example of the ξ0 dependence of T is shown in the upper panel of Fig. 7. For a = 1,

T (ξ0) = (ξ0 − 1) ln (1 − ξ0) − (ξ0 + 1) ln (ξ0 + 1) + 2 ln 2

2
(D2)

for both models, which is symmetric about ξ0 = 0. As expected, the MTF develops an asymmetry about ξ0 = 0 as a deviates
from 1. It also grows as a decreases below 1. As a → 0, the dependence on ξ0 and a becomes separable,

T (ξ0,a → 0) = 1

8a

[
ξ 2

0 + (
ξ 2

0 + 2ξ0 − 3
)

ln(1 − ξ0) − (1 + ξ0)2 ln(1 + ξ0) + 4 ln 2 − 1
]
. (D3)

It has a maximum at ξ0 = (e − 1)/(e + 1) = 0.4621 . . ..
For the SI1I2R model, the expression for T (ξ0) is very cumbersome. A relatively simple asymptotic is available for a → 0 as

follows:

T (ξ0,a → 0) � (ξ0 + 1)e− 1−ξ0
2a

[
Ei

( 1−ξ0

2a

) + ln a − γ + 1
] − 1 − ξ0 − 2 ln(1 − ξ0) + ln 4

2a
, (D4)

where Ei(x) is the exponential integral function and γ = 0.5772 . . . is the Euler’s constant. The maximum of T (ξ0,a → 0) is at
the point ξ0 = ξ0max that satisfies the equation

Ei

(
1 − ξ0

2a

)
+ ln a = γ − 1. (D5)

As a → 0, we can drop γ − 1 compared with ln a and use the large-argument asymptotic Ei(w � 1) = w−1 ew + · · · . This leads
to

1 − ξ0max = 2a ln ln
1

a
+ 2a ln ln ln

1

a
+ · · · . (D6)

The applicability criterion for Eq. (D6) is very stringent: ln ln(1/a) � 1. In the region of 1 − ξ0 � 2a, which includes the
maximum point, Eq. (D4) simplifies to

T (ξ0,a → 0) � (ξ0 + 1)e− 1−ξ0
2a ln a − 1 − ξ0 − 2 ln(1 − ξ0) + ln 4

2a
. (D7)
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In the region of 1 − ξ0 � 2a we obtain

T (ξ0,a → 0) �
(1 − ξ0) ln

(
2

1−ξ0

)
2a2

. (D8)

Interestingly, sufficiently far from the maximum point, T (ξ0,a → 0) for SI1I2R model shows separability similar to that for the
SI1I2S model. To the right of the maximum point this is evident from Eq. (D8). To the left of the maximum point the separability
emerges when one neglects the first term in the numerator of Eq. (D7). The separability breaks down in the region of maximum.
Finally, the maximum value of T can be roughly estimated as

Tmax(a → 0) ∼ 1

a
ln

1

a
. (D9)
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