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We explore the relaxation dynamics of quantum many-body systems that undergo purely dissipative dynamics
through non-classical jump operators that can establish quantum coherence. Our goal is to shed light on the
differences in the relaxation dynamics that arise in comparison to systems evolving via classical rate equations.
In particular, we focus on a scenario where both quantum and classical dissipative evolution lead to a stationary
state with the same values of diagonal or “classical” observables. As a basis for illustrating our ideas we use spin
systems whose dynamics becomes correlated and complex due to dynamical constraints, inspired by kinetically
constrained models (KCMs) of classical glasses. We show that in the quantum case the relaxation can be orders
of magnitude slower than the classical one due to the presence of quantum coherences. Aspects of these idealized
quantum KCMs become manifest in a strongly interacting Rydberg gas under electromagnetically induced
transparency (EIT) conditions in an appropriate limit. Beyond revealing a link between this Rydberg gas and the
rather abstract dissipative KCMs of quantum glassy systems, our study sheds light on the limitations of the use

of classical rate equations for capturing the non-equilibrium behavior of this many-body system.
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I. INTRODUCTION

The study of many-body quantum systems that undergo
purely dissipative dynamics but at the same time feature
quantum coherences and superpositions is an emerging theme
that has attracted much interest in the past few years [1-5]. The
catalyst was the realization that an appropriately engineered
dissipative dynamics with non-classical jump operators repre-
sents a route towards the preparation of specific many-body
states and non-equilibrium quantum phases with potential to
be a resource for quantum computation [6].

In this paper, we aim to study the role that quantum
coherences and superpositions play in the relaxation of these
dissipative many-body quantum systems. In particular, we
will study systems with purely dissipative and Markovian
dynamics generated by a Lindblad master equation formed
by non-classical jump operators whose action can bring the
system into quantum superpositions. The stationary state of
these systems will be given by a pure state annihilated by all
jump operators, an absorbing or “dark” state which in general
will display quantum coherences. Moreover, these systems will
be constructed such that in the stationary state the diagonal of
the density matrix coincides with the equilibrium probability
distribution of a completely classical rate equation. Our aim
will be to contrast the relaxation given by this dissipative, yet
quantum, dynamics with the one obtained via classical rate
equations.

In order to tackle this task we will focus on a class of
quantum spin systems inspired by kinetically constrained
models of glasses (KCMs) [7-9]. These are classical stochastic
models with trivial static equilibrium properties but complex
collective dynamics due to the imposed kinetic constraints.
Here we construct the purely dissipative quantum counterparts
of these systems by ensuring that the values of diagonal
observables (e.g., the density of excitations or the density-
density correlations) in the stationary state coincide with
the classical ones. In classical KCMs all the complexities
are found in the dynamics and not in their stationary state
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[9]. The quantum dissipative KCMs we consider share this
property, and are therefore a good test bed to study the
differences and similarities in the relaxation between classical
and purely dissipative quantum dynamics. A significant finding
is that even when the relaxation timescales of the diagonal
observables are similar, the coherences in the quantum system
can take orders of magnitude longer to relax. The models we
construct can be regarded as an instance of quantum glasses,
that is, interacting quantum systems whose real time relaxation
is due to fluctuations of both thermal and quantum origin
[10-14]. Quantum glassiness is a timely topic also due to its
relevance to thermalization in quantum systems [15,16] and to
many-body localization [17-19].

Finally, we show that aspects of these quantum KCMs,
and therefore aspects of quantum glassiness more generally,
become manifest in an ensemble of excited (Rydberg) atoms
[20] under electromagnetically induced transparency (EIT)
conditions. Our intention for drawing this connection is
two-fold: Firstly, it demonstrates that the rather idealized
features of quantum KCMs such as kinetic constraints and
a purely dissipative, yet quantum, dynamics are actually
present in a system currently studied by many experimental
groups [21-26]. Secondly, this discussion sheds light on the
limitations of the description of the dynamics of the EIT
Rydberg gas in terms of classical rate equations, currently
employed by numerous authors [27-32].

II. GENERAL SETUP

Consider a classical stochastic system described by the
master equation

9| P(1)) = W|P(1)), (1)
where the vector |P(r)) = ), P(C;1)|C) represents the prob-
ability distribution at time 7, and {|C)} is an orthonormal

configuration basis. For a continuous time Markov chain the
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classical master operator reads

W= WeclC)(Cl =) RelC)(Cl. @

C'#C C

where We_ ¢ is the transition rate from C to C’, and R, =
> o Weoc the escape rate from the configuration C. Let us
assume that the dynamics obeys detailed balance with respect
to the equilibrium probability peq(C), i.e., the transition rates
satisfy, peq(C)We—c' = peq(C')Wer—c. This condition allows
to transform the stochastic operator W into a Hermitian one H
through a similarity transformation,

H=-P 'WP with P= Z,/peq(C)w) .
C

Note that the ground state |g.s.) of H (with eigenvalue 0)
is directly related to the equilibrium probability as |g.s.) =
ZC v peq(c)|c>'

Our aim is now to define a quantum model undergoing
purely dissipative quantum dynamics generated by a quantum
master equation of the Lindblad form [33],

1
dp = duplf — U1 up). 3)
y

such that the dynamics converges to a stationary state pgg.
where the expectation value of any classical operator O
(diagonal in the classical basis of configurations) is the same
as in the classical equilibrium distribution

(0) =Tr{Ope] =) _ peg(©)O(C). )
C

This can be achieved by defining the following operators
associated to the classical transitions between any pair of
configurations u = (C,C’):

Ju =W Weme (Cl = vV Werce (D, (&)

where |) can in principle be any normalized state. One can
show that the Hermitian form of the master operator can be
written as

1
— T
H=2) Il
i

Moreover, J,|g.s.) =0 for all u, that is, the state |g.s.) is
a dark state for all operators J,. Thus, by considering the
operators J,, of Eq. (5) as quantum jump operators in Eq. (3)
the quantum dynamics converges to a pure stationary state
Dss. = |g.s.)(g.s.|, where indeed the expectation values of
classical operators correspond to the classical equilibrium ones
as required in Eq. (4). The key question is what difference, if
any, there is between the quantum dynamics defined by Egs. (3)
and (5) and the classical one generated by Eqgs. (1) and (2).

III. QUANTUM VS. CLASSICAL DISSIPATIVE
DYNAMICS IN KCMS

To gain a general understanding of this question we consider
a particular set of quantum spin models based on classical
KCMs [9]. The models we consider are defined in terms of
N binary variables on the sites of a lattice such that |0;) or
|1x) corresponds to the k-th spin in the down or up state,
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respectively. The classical models can also be written in terms
of amaster equation as Eq. (3) but with a pair of jump operators
for each site k = 1... N that act on a diagonal density matrix
and connect a classical configuration with another one that
differs by the flip of the k-th spin,

Jiy = Vi frolt and iy = VA=) froy . (6)

Here, A is the bare rate of jumps, « € [0,1] is the average
site occupation in equilibrium, and oki are the spin-1/2 ladder
operators. The operator f; represents a kinetic constraint on
site k, that is, a function of diagonal operators n; = crj*aj*
V j # k, which conditions the dynamics of site k depending
on the state of its neighbors.

In contrast, in the quantum model there is a single jump
operator per site, which establishes superpositions between

|0¢) and [1;):
Je = VAU Bi) (Bil fr @)
where
|Bi) = Vi |0) — VT —|1y).

It is important to note that the construction of the quantum
problem allows more freedom than the classical case: The
relaxation is not only controlled by the constraint function
fx, but also by an additional arbitrary set of unitaries Uy
(discussed in detail later). However, similarly to the classical
case, the stationary state of the dynamics generated by Eq. (3)
is, independently of the choices for U, and f;, the same pure
state of the direct product form

pss. = ) 156 (Sil,
k

where
1K) = V1 —«|0k) 4+ k| 1i),

so that (Si|Bx) = 0. Furthermore, the quantum problem is
constructed such that the expectation values of all diagonal
operators in the |0, 1) basis (such as the density of excitations
or the density-density correlations) in the stationary state ps .
coincide with those at equilibrium in the classical one.

As a first elementary comparison we can consider an
unconstrained single spin (f = 1). Its classical dynamics is
determined by Eq. (3) with the two jump operators J; =
VArkot and J, = ~/A(1 —k)o~. In this case, the relaxation
of the density of excitations (n(¢)) is exponential with a single
timescale given by 7, = A~'. The quantum model has a single
jump operator of the form (7), J = VAU|B)(B|. For the
purpose of illustration we choose the free unitary U to be a spin
rotation around the y-axis, i.e., U = exp(ifo”) with the angle
0 < 6 < . The solution of the master equation reveals now
two relaxation timescales for the density of excitations, 74 =
227! and r(; = (sin6)"2A~'. The emergence of the second
0-dependent timescale, which is due to U and hence absent
in the classical case, can be understood by unravelling the
dynamics in terms of quantum jump trajectories with respect
to the jump operators J [34,35]. Here, each trajectory is
obtained by a “no-jump” non-Hermitian time-evolution of the
system via Hesr = —i J1J /2 interspersed with quantum jumps.
While the evolution between jumps is U -independent and thus
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FIG. 1. (Color online) Relaxation of both classical and quantum
dissipative East models for «/(1 — k) = 1072 and a system size
of N =10 spins (time in units of A~'). The upper panel shows
the average excitation density, (n(¢)). The lower panel shows the
evolution of the coherences, represented by (o*(¢)), in the quantum
case. Inset: time-evolution of (n;) fork = 1... N inasingle trajectory
for 6 = /2.

0-independent, each quantum jump may take the system closer
or further away from the stationary state |S) depending on the
angle 6. In particular, when 6 = 7 /2 the time rc/l coincides
with 7. The limit of & = 0 is the opposite extreme. Here,
the jump operators are Hermitian and the completely mixed
state (proportional to the identity) becomes a further stationary
state together with the pure one. The system then relaxes into
a combination of the pure state and the completely mixed state
that depends on the initial conditions.

We now turn to the actual constrained many-body models
[36]. We will consider here two models determined by the
kinetic constraints: f,fa“ = ny+1, which allows transitions at
site k only if site k 4+ 1 has a projection on the spin state |1)
(in analogy with the classical East model [8,9,37]), and f* =
Rg+1 + Ng—1 — Bg+1nk—1, Which allows transitions at site k if
and only if at least one of the sites at k £ 1 has a projection on
[1) (in analogy with the classical Fredrickson-Andersen (FA)
model [7,9]).

We first focus on the East model. When « is small
the system’s relaxation encounters a conflict between the
probability cost of flipping spins up, and the need for excited
sites to facilitate neighboring ones through the constraint f;Z".
In the classical model this gives rise to hierarchical dynamics
[9,37], which manifests for example in metastable plateaus
in the relaxation of the density, see Fig. 1. For the quantum
counterpart, Egs. (3) and (7), the dynamics depends on the
angle 6 that defines the unitaries Uy = exp(i 90,;V ), which for
simplicity we consider again to be local spin rotations. We
use quantum jump Monte Carlo simulations to study the time
evolution of the system numerically starting from a state of
maximum density, see Fig. 1.

One can distinguish several regimes in the quantum relax-
ation of the average density of excited sites. For short times
one has effectively unconstrained dynamics, as the density of
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FIG. 2. Waiting time distributions #,,; as a function of time in the
dissipative quantum East model for N = 10 and « /(1 — k) = 1072
(all times in units of A~'). (a) When @ = 7/2, the plateaus in the
excitation density give rise to the appearance of several peaks in the
waiting time distributions. (b) When 8 = /20, every jump brings the
system away from equilibrium making the occurrence of a subsequent
jump more likely.

excitations is high and thus the constraints still do not play
a role. When 6 = n/2, both the “no jump” dynamics due
to Heg and the action of the non-classical jump operators
help the system to reach a configuration where the excitations
are isolated (see inset to Fig. 1). Further relaxation needs
excitations to effectively propagate, to meet and coalesce with
others. This slow propagation leads to the different plateaus,
in analogy with the classical East model [9,38]. In contrast,
when 6 2 0 every jump brings the system away from the
stationary state, making another jump likely to occur. This
different behavior between 6 = 7 /2 and 6 = 0 becomes clear
in the distributions of waiting times between jumps, see Fig. 2.

The key aspect in the dynamics of the quantum version of
the East model is in the relaxation of the coherences, repre-
sented in the lower panel of Fig. 1 by (6*(1)) = 1/N Y _,(o}).
For any angle 6 this observable takes approximately three
orders of magnitude longer to relax than the density of excita-
tions. The reason for this mismatch between the two timescales
can be understood by looking into single trajectories (e.g.,
inset of Fig. 1). Here, we observe that the strongly constrained
propagation-coalescence relaxation of the density leaves the
system eventually in a very inhomogeneous configuration with
an isolated excitation, where the density profile is roughly
...kklkk .... While the overall value of the density of
excitations coincides at this point with the stationary one,
the last isolated excitation must be distributed or delocalized
through the lattice in order to yield the “correct” stationary
value for the coherences. Due to the highly constrained nature
of the dynamics this takes orders of magnitude longer.

In other quantum models with less restrictive constraints,
such as the quantum counterpart of the FA model, diagonal
and off-diagonal observables are able to relax simultaneously
(see Fig. 3). The reason is that due to the bidirectional nature
of the constraints £ isolated excitations become delocalized
during the relaxation (see inset of Fig. 3). In contrast with the
East model, this leads quickly to an uniform density profile
(i.e., each spin is in the same state, as established by ps.)
which in turn means that also the coherences have reached
their stationary value.
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FIG. 3. (Color online) Relaxation of both classical and quantum
dissipative FA models for k /(1 — k) = 1072 and a system size of N =
10 spins (time in units of A~!). The upper panel shows the average
excitation density, (n(¢)). The lower panel shows the evolution of
the coherences, represented by (o*(¢)), in the quantum case. Inset:
time-evolution of (n;) for k = 1... N in a single trajectory for 6 =
/2.

IV. CONNECTION TO A STRONGLY INTERACTING
RYDBERG GAS

In order to lift the abstract and seemingly artificial character
of the current discussion we will now establish a link to a
quantum-optical system, showing that features of the quantum
KCMs indeed emerge here rather naturally. Specifically, we
consider a gas of interacting Rydberg atoms under EIT
conditions, which is currently in the focus of numerous
theoretical [27-32] and experimental [21-26] investigations.
We show below that the dynamics of this many-body system
can indeed be described by a quantum master equation (3) with
non-classical jump operators which, in some limit, reduce to
those of a quantum KCM very similar to Eq. (7).

The specific setting we have in mind consists of atoms
trapped in a one-dimensional lattice, which are laser driven
under EIT conditions as shown in Fig. 4(a), i.e., resonantly
excited from the ground |g) to the Rydberg state |r) via
an intermediate state |p) with decay rate y. When two
neighboring atoms are simultaneously in |r), they interact
with interaction strength V. These dynamics are governed by
the quantum master equation

ap = Lop+ Lip+ L2p
with

Lop = =iV Y [1r)(rel @ Iries1) ries |, ],
k

1
Lp=v), (|gk><l7k|:0|l7k><gk| - E{Im(pkl,p}),
k

Lop = =i Y [=Qelpi) rel + Rplge) (prl + Hec.opl
k
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FIG. 4. (Color online) (a) Interacting atoms in a EIT configu-
ration. Neighboring atoms in the Rydberg state, |r), interact with
strength V. Strong decay, y, of the intermediate level, | p), effectively
gives rise to purely dissipative quantum dynamics. (b) Relaxation
of the expectation value of the excitation density of the classical
excluded volume model (red, dashed lines) and the quantum Rydberg
lattice gas (black, solid lines) forx = €2,/ 2. = 0.1,1,and 10 (system
size N = 8). (c) Relaxation of the expectation value of the coherences,
represented by (o (¢)), for the same three values of the parameter x.

with . and €2, being the Rabi frequencies of the lasers that
couple |p) to |r) and |g) to | p), respectively.

An effective master equation of the form (3) can be derived
in the limits of V — oo [29,39] and large but finite decay
rate y. By adiabatically eliminating the intermediate state
| p) one obtains an effective perturbative dynamics (following
the procedure of Refs. [40,41]). This reduces the problem
to an ensemble of two-level systems that undergo a purely
dissipative master equation (3) with scaled time t — #(4Q2)/y
and non-classical jump operators

I = xpy = pr1og prsts (8)

where we have defined x = 2,/ Q., pr = |g«){g| and o}
|gk)(rk|. In the limit x < 1, the jump operators yield J,f ¥
VA |0k ) { Bk | pk—1 Px+1, thatis, in this limit the interacting many-
body system realises an instance of the previously discussed
quantum KCMs with constraint function fy = pi—ipi+1,
where k /(1 — k) = x2.

Beyond this conceptually interesting link, these results
allow us to comment on the appropriateness of current
theoretical efforts [27-32] that aim at capturing the dynamics
of EIT Rydberg gases with classical rate equations. Some
of them employ a description of the dynamics in terms of a
classical KCM with constraint function

Ryd
S = Pr—1Dk+1s

which corresponds to modeling the excited Rydberg atoms by
hard rods with an excluded volume [29]. A general problem
appears to be that in these model descriptions only the ratio
of the (classical) excitation and de-excitation rates, which
enter Egs. (6) through the parameter «, is given. This is not
problematic when one is interested only in stationary state
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properties, as, e.g., in Ref. [29]. However, in order to make a
meaningful comparison of the dynamics between the classical
excluded volume model and the effective dissipative quantum
evolution defined by the jump operators (8)—which is derived
from first principles—we need to find the appropriate absolute
timescales, which depend on the choice of the rate L. We do
this “matching of time scales” by considering a single spin. In
the classical case we find that its excitation density evolves as

x2

[Fc

(ne(1)) =

which has been calculated by using the jump operators (6) with
k = x2/(1 + x*). However, in the quantum case we obtain

1+x2 _t 2 e
e ! — e ' |,
1 —x2 1 —x2

which in the limit of x > 1 yields

x2
(ng(0) = 17— [1 +

2

(ng(0) ~ [1—e™].

X
1+ x?
Setting & = 1 makes the two expressions match for short times
and hence one might think of this as being an adequate absolute
timescale. This choice is used in all simulations shown in
Fig. 4(b) and 4(c).

As shown in Fig. 4(b), for certain parameters the stationary
value of classical observables (here the excitation density) is
indeed well reproduced by the classical hard objects model,
but not necessarily the dynamics towards it. For example, in
the limit x < 1 (x = 0.1 in the figure), J,fyd has the form
(7) and thus, as shown earlier, the diagonal observables in the
stationary state of the quantum system coincide with the ones
given by the classical excluded volume model. However, the
two dynamics are qualitatively different. For x = 10 both the
dynamics and the stationary expectation value of the excitation
density coincide. This is in agreement with the results in
Ref. [27], where it was shown that indeed in the limit x >> 1 the
classical excluded volume model yields a good approximation
to the many-body quantum dynamics. Away from the two
limits x < 1 and x > 1 the classical model reproduces neither
the stationary expectation values of the diagonal observables
nor the relaxation dynamics towards them. Finally, let us
investigate the time evolution of quantum observables. As
an example we choose to monitor the expectation value of
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the single atom coherence, o,. In Fig. 4(c) one can see that
(o) relaxes simultaneously with the diagonal observables as
in the FA model. It is important to note, however, that except
in the limit x >> 1 the stationary state values of the coherence
are not negligible, even being close to the possible maximal
value 1/2 for x = 1. This is a further feature that is intrinsically
impossible to capture by classical rate equations.

V. SUMMARY AND CONCLUSIONS

The aim of this paper was to shed light on the out-of-
equilibrium relaxation dynamics of many-body systems that
relax under a purely dissipative quantum dynamics. After
some general considerations we have introduced and analyzed
quantum versions of classical KCMs. Here we have found that
coherences under certain circumstances can exhibit relaxation
timescales that are orders of magnitude longer than those of
classical observables. The discussed quantum generalizations
of the KCMs are furthermore interesting because they can be
thought of model systems for quantum glasses. Finally, we
have established a link from the discussed seemingly abstract
KCMs to the currently much studied system of Rydberg
gases under EIT conditions. Here we have shown that they
implement (in some limit) rather naturally an instance of
a quantum KCM. This insight allowed us furthermore to
comment on the appropriateness of classical rate equation
models that are currently widely employed for studying the
dynamics and statics of this many-body system.

The discussion presented in this work touches very general
questions concerning the role of quantum effects in the
relaxation of (glassy) many-body systems [10,11,13]. It also
links to current experiments in the field of quantum optics
and recent efforts in the domain of dissipative quantum
state preparation, e.g., strongly correlated states of fermions
[42,43].
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