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Single-particle stochastic heat engine
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We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating
a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at
different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative
differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit
strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the
mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature
difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle
time and other system parameters. This is supported by our analytical results carried out in the quasistatic
regime. Our system works more reliably as an engine for large cycle times. By studying various model systems,
we observe that the operational characteristics are model dependent. Our results clearly rule out any universal
relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation
relations for heat engines in time periodic steady state.
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I. INTRODUCTION

Thermodynamic heat engines convert heat into useful work.
They work cyclically between two thermal reservoirs kept at
different temperatures Tl and Th (Th > Tl). The second law
of thermodynamics restricts their efficiency to the Carnot
limit [1] ηC = 1 − Tl

Th
. However, this efficiency can only be

achieved in the quasistatic limit where transitions between
thermodynamic states occur infinitesimally slowly and hence
the power output vanishes. Curzon and Ahlborn (CA) [2]
showed that for finite time endoreversible heat engines,

efficiency at maximum power is given by ηCA = 1 −
√

Tl

Th
.

As yet, there is no consensus on this result [3–7].
With the advances in nanotechnology, a few-micrometer-

sized Stirling heat engine has been experimentally realized [8].
This microscopic heat engine operates in conditions where
typical changes in their energies are of the order of the thermal
energy per degree of freedom [9]. An appropriate theoretical
framework to deal with these systems has been developed
during the past decades within the context of stochastic ther-
modynamics [10–14]. This formalism of stochastic energetics
provides a method to calculate work, heat, and entropy even
for a single particle along a microscopic trajectory. One
can obtain average quantities after averaging over respective
ensembles. The averaged thermodynamic quantities, work,
and entropy obey the second law. Using this formulation,
various single-particle heat engines have been studied in the
literature [4,15–18]. Fluctuation relations for heat engines
(FRHE) [19–21] operating in a time periodic steady state
(TPSS) have recently been obtained [20]. FRHE are in the form
of equality and Carnot’s inequality for efficiency ηc follows as
a direct consequence of this theorem.
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In this work, we have studied in detail a simple model for
a stochastic heat engine described by a Langevin equation.
Both underdamped and overdamped regimes are explored
and qualitative differences are pointed out. We emphasize on
fluctuations of thermodynamic variables including the engine
efficiency. We show that fluctuations dominate the mean values
even in the quasistatic regime. Therefore, in such situations one
needs to study the full probability distribution of the physical
variable for the proper analysis of the system.

In Sec. II, we describe the model of our system and the
protocol. In Sec. III, we obtain analytical results for relevant
average thermodynamic quantities in the quasistatic regime
for the underdamped case. In Sec. IV, an engine with finite
time cycle in the inertial regime is studied numerically, in
detail. The system driven by time asymmetric cycles and
various other model systems is also explored. We have verified
FRHE in this section. Sections V and VI are devoted to
the analytical and numerical studies of the system in the
overdamped limit. Finally, we conclude in Sec. VII. Each
section is self-contained.

II. MODEL

The single-particle stochastic heat engine consists of a
Brownian particle having position x and velocity v at time
t , confined in a one dimensional harmonic trap. The stiffness
of the trap k(t) varies periodically in time as shown in Fig. 1.
For the underdamped case, the equation of motion for the
particle is given by [22,23]

mv̇ = −γ v − k(t)x +
√

γ T ξ (t). (1)

In the overdamped limit, the equation reduces to

γ ẋ = −k(t)x +
√

γ T ξ (t). (2)

In our further analysis, we set the mass of the particle m,
the Boltzmann constant kB , and the frictional coefficient γ

to be unity. T is the temperature of the thermal bath. All
physical parameters are made dimensionless. The noise is
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FIG. 1. (Color online) Stochastic heat engine in a harmonic
potential: the time dependence of our periodically driven stiffness
constant (protocol) k(t) for the full cycle (0 � t � τ ).

Gaussian with zero mean 〈ξ (t)〉 = 0 and is delta correlated
〈ξ (t1)ξ (t2)〉 = 2δ(t1 − t2). The internal energies of the particle
in the underdamped and the overdamped limits are given by
u(x,v) = 1

2k(t)x2 + 1
2mv2 and u(x) = 1

2k(t)x2, respectively.
Operation of the system consists of four steps: two

isotherms and two adiabatics. In the first step, the system un-
dergoes an isothermal expansion, during which it is connected
to a hot bath at temperature Th and the stiffness constant is
varied linearly with time as

k(t) = a

(
1 − t

τ

)
= k1(t) (3)

for 0 < t < τ/2. Here, τ is the period of the cycle and a is
the initial value of the stiffness constant. In the second step,
the potential undergoes an instantaneous expansion (adiabatic)
by decreasing the stiffness constant from a/2 to a/4. As
the process is instantaneous, the distribution before and after
expansion will not change and heat absorption will be zero.
In the third step, the system is connected to a cold bath with
lower temperature Tl and isothermal compression of the trap
is carried out by changing the stiffness as

k(t) = a
t

2τ
= k2(t) (4)

for τ/2 < t < τ . In the last step, we carry out instantaneous
adiabatic compression by varying the stiffness constant from
a/2 to a and simultaneously connecting the system to the hot
bath. This cycle is then repeated. The time dependence of the
protocol is given in Fig. 1 and a schematic representation of
the system within a cycle at its various stages is depicted in
Fig. 2.

The described protocol differs from those used in earlier
studies. In the experimental setup [8], two adiabatic steps
are absent. Work optimized protocol is used by Schmiedl
and Seifert [4] whereas the protocol based on the concept
of shortcut to adiabaticity is used by Tu [16]. However, their
emphasis is on the possible correlation between efficiency at
maximum power and CA bound. Our main motivation, namely,
to study the fluctuation of physical quantities, is different from
earlier studies as mentioned in the Introduction.

Tl

Th

1

2

3

4

FIG. 2. (Color online) Schematic representation for a cyclic pro-
cess of stochastic heat engine operating between two reservoirs kept
at temperatures Th and Tl . The cycle consists of two isothermal steps
and two adiabatic steps according to the time varying protocol k(t).
The blue line denotes a one dimensional potential V (x,t) and the
filled region denotes the corresponding steady state distribution.

III. UNDERDAMPED QUASISTATIC LIMIT

In this section, we analytically calculate the average ther-
modynamic quantities of our model system in the quasistatic
limit. In this limit, the duration of the protocol is much larger
than all the relevant time scales, including the relaxation time.
Hence, as protocol is changed, the system immediately adjusts
to the equilibrium state corresponding to the value of protocol
at that instant. First, we calculate the average work done on the
particle in all the four steps of a cycle and the heat absorbed by
it in the first isothermal step. Finally, we calculate efficiency
in the quasistatic limit.

In the first isothermal process, average work done on the
particle is the same as the free energy change (�Fh) before
and after the expansion, i.e.,

W1 = �Fh = Th

2
ln

k1(τ/2)

k1(τ )
= Th

2
ln

1

2
. (5)

At t = τ/2, the system is in equilibrium with the bath
at Th with stiffness constant a/2. The second step being
instantaneous, no heat will be dissipated and the phase space
distribution remains unaltered. Correspondingly, the average
work done on the particle is equal to the change in its internal
energy:

W2 = N1

∫ ∞

−∞
dx dv

(
a

4
− a

2

)
x2

2
e
− ax2

4Th
− v2

2Th = −Th

4
, (6)

where N1 = 1
2πTh

√
a
2 is the normalization constant. Similarly,

in the third step (i.e., isothermal compression step) the average
work done on the particle in the quasistatic limit is

W3 = �Fl = Tl

2
ln

k2(τ )

k2(τ/2)
= Tl

2
ln 2. (7)

042146-2



SINGLE-PARTICLE STOCHASTIC HEAT ENGINE PHYSICAL REVIEW E 90, 042146 (2014)

The average work done in the last step (i.e., second adiabatic
step) is given as

W4 = N2

∫ ∞

−∞
dx dv

(
a − a

2

)
x2

2
e
− ax2

4Tl
− v2

2Tl = Tl

2
, (8)

with N2 = 1
2πTl

√
a
2 . Hence, the average total work done in the

full cycle of the heat engine in the quasistatic process is

Wtot = W1 + W2 + W3 + W4

= Th

2
ln

1

2
− Th

4
+ Tl

2
ln 2 + Tl

2
. (9)

To obtain the heat absorption in the first step (i.e., isothermal
expansion), we calculate the average change of internal energy
and use the first law. During this process, the particle stays in
contact with hot bath at temperature Th. However, it is to be
noted that at time t = 0−, the system was in contact with
low temperature bath at Tl , whereas at t = 0+ the system is
in contact with hot bath at Th. Thus, the system has to relax
into new equilibrium after a sudden change in temperature.
The time taken for this relaxation process is assumed to be
negligible compared to the cycle time τ . This relaxation leads
to an additional heat flow which accounts for the change in the
internal energy during the relaxation process. One can readily
obtain the internal energy at t = 0+ as 3Tl/2 while after the
relaxation it is Th. Hence, the average internal energy change
in the first step is

�U1 = Th − 3Tl

2
. (10)

Now, using the first law, the average heat absorption from
the hot bath for the first step is

−Q1 = �U1 − W1 = Th − 3Tl

2
− Th

2
ln

1

2
. (11)

Hence, efficiency of the engine for the underdamped case in
the quasistatic limit is given by

η̄q = −Wtot

−Q1
= −

Th

2 ln 1
2 − Th

4 + Tl

2 ln 2 + Tl

2

Th − 3Tl

2 − Th

2 ln 1
2

= −Th ln 1
2 − Th

2 + Tl ln 2 + Tl

2Th − 3Tl − Th ln 1
2

. (12)

Here, we would like to emphasize that η̄ is defined ignoring
fluctuations and the subscript q denotes the quasistatic limit.
We will show later that fluctuations play an important role
even in the quasistatic regime. Work done during the cycle
w and heat absorbed during the first step q1 are fluctuating
quantities. Stochastic efficiency is defined as η = w

q1
[18] and

hence its average 〈η〉 = 〈 w
q1

〉 is not the same as η̄ = 〈w〉
〈q1〉 which

is given in Eq. (12) for the quasistatic limit. This will be
discussed in detail in subsequent sections. In our notation,
the thermodynamic quantities are denoted by capital letters
only for the quasistatic limit, whereas small letters are used to
denote those quantities for finite time cycles.

According to our convention, negative work done on the
system implies extraction of work, while negative heat means
that heat enters into the system. It is important to note from
Eq. (11) that in the quasistatic limit heat flows from the bath

to the system provided

2Th − 3Tl − Th ln
1

2
� 0 ⇒ Tl

Th

� 2 + ln 2

3
= 0.898, (13)

and similarly from Eq. (9) work can be extracted from the
system if

Th ln
1

2
− Th

2
+ Tl ln 2 + Tl � 0 ⇒ Tl

Th

� 0.5 + ln 2

1 + ln 2
= 0.705. (14)

Therefore, in the quasistatic regime our model system operates
in three different modes of operation depending on the ratio of
the temperatures of the thermal baths. First, when 0 < Tl

Th
�

0.705 is maintained, work can be extracted and heat is absorbed
from hot bath and it acts as an engine. Second, when 0.705 �
Tl

Th
� 0.898 is set, heat is absorbed from the bath but we cannot

extract work. And, finally, when we have Tl

Th
� 0.898 neither

heat is absorbed nor the work is extracted. In this case, work
done on the system heats up the hot bath. Therefore, there is
a particular regime in parameter space where the system acts
as an engine. This is in contrast to the Carnot engine which
works for arbitrary temperature difference between two baths.
The above mentioned condition is only valid in the quasistatic
limit. For finite time cycle the operational condition for heat
engine depends on cycle time apart from Th and Tl , which will
be shown in our simulation. Our exact expression of Wtot and
Q1 is in complete agreement with our numerical results in the
quasistatic limit. Thus, these analytical calculations act as a
check for our numerical simulation.

IV. FINITE CYCLE TIME ENGINE IN INERTIAL REGIME

For finite cycle time we study our system numerically.
When the Langevin system is driven periodically it is known
that after initial transients, the system will settle down to a
TPSS. The joint probability distribution Pss(x,v,t) of position
and velocity of the particle is periodic in time, i.e., Pss(x,v,t) =
Pss(x,v,t + τ ).

For numerical simulations, we evolve our system with
a time periodic protocol (as shown in Fig. 1). We have
used Heun’s method for integrating the basic Langevin
equation [24] with time step dt = 0.0002. We make sure that
the system is in the TPSS by going beyond the initial transient
regime. We then consider at least 105 cycles of operations
and physical quantities are averaged over all these cycles. For
rest of the paper, we keep m, a, γ fixed at m = 1.0, a = 5.0,
γ = 1.0.

We now make use of the concepts of stochastic energet-
ics [10–14] to calculate work, heat, and internal energy for a
given trajectory. The thermodynamic work done on the particle
during the first part of the cycle, in each computational step
dt , is given by

dw1(ti) = ∂u1(ti)

∂k1(ti)
k̇1(ti)dt (15)

with u1(ti) = 1
2k1(ti)x2(ti) + 1

2v2(ti) and ti = idt . Now, w1 =∑N
i=0 dw1(ti) where N = τ

2dt
. The internal energy is a

thermodynamic state function and hence its change during
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FIG. 3. (Color online) Phase diagram for different Th and τ but
for fixed Tl = 0.1.

the isothermal process is given by du1 = 1
2k1(τ/2)x2(τ/2) +

1
2v2(τ/2) − 1

2k1(0)x2(0) − 1
2v2(0). The heat absorption by the

bath is q1 = w1 − du1 using the first law of thermodynamics.
The second step which is adiabatic is instantaneous and hence
the particle does not get any chance to evolve. Thus, work
done is only an instantaneous change in internal energy, i.e.,
w2 = 1

2 [k2(τ/2) − k1(τ/2)]x2(τ/2). Similarly, for step three,
work done is given by

dw3(ti) = ∂u2(ti)

∂k2(ti)
k̇2(ti)dt (16)

and w3 = ∑2N
i=N dw3(ti); internal energy change du2 =

1
2k2(τ )x2(τ ) + 1

2v2(τ ) − 1
2k2(τ/2)x2(τ/2) − 1

2v2(τ/2); and
heat delivered to the cold bath is q2 = w3 − du2. For
the last adiabatic process, work done on the particle is
w4 = 1

2 [k1(0) − k2(τ )]x2(τ ). The total work done on the
system in a cycle is w = w1 + w2 + w3 + w4. It should be
noted that each wi (i = 1,2,3,4) is a fluctuating quantity and
their values depend on a particular phase space trajectory.

In Fig. 3, we have shown the phase diagram of the operation
of our system. Here, we have varied Th and cycle time τ

keeping Tl fixed at 0.1. There are three distinct regimes.
The system acts as an engine when 〈w〉 < 0 and 〈q1〉 < 0.
The angular brackets 〈. . .〉 indicate average over several
realizations. In the other two regimes the system ceases to work
as a heat engine altogether (〈w〉 > 0). For 〈w〉 > 0 we have
two distinct domains with 〈q1〉 < 0 and 〈q1〉 > 0. The latter
implies work is done on the system which heats up the hot bath.
In the large cycle time limit numerical results are consistent
with our analytical predictions made in the last section. We
reemphasize that the system works as a heat engine provided
there is a minimal difference between Th and Tl which depends
on cycle time τ and other physical parameters. From the phase
diagram it is apparent that, as we decrease τ for fixed Th, there
exists a lower bound below which the system does not perform
as an engine, as it only consumes work.

In Fig. 4, we have plotted 〈w〉, 〈q1〉, and 〈q2〉 with respect
to cycle time τ . We have fixed Th = 0.5 and Tl = 0.1 for all
subsequent figures. Starting from zero, 〈w〉 initially increases
and reaches a peak value. Then, it starts decreasing and finally
saturates to a negative value (−0.214), which is close to our
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 0  10  20  30  40  50  60  70

〈 w
 〉 

, 〈 
q 1

 〉 
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τ
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〈 q1 〉
〈 q2 〉

FIG. 4. (Color online) Variation of 〈w〉, 〈q1〉, and 〈q2〉 with cycle
time τ .

theoretical result [from Eq. (9)]. The work can be extracted
in the region where it becomes negative. As we increase
cycle time, 〈q1〉 changes dramatically. It has a positive region
sandwiched between two negative regions. When 〈q1〉 > 0,
heat is released to the hot bath while work is done on the
particle. In the quasistatic limit, it saturates at the theoretical
value −0.523 [from Eq. (11)]. In contrast to 〈q1〉, 〈q2〉 is always
positive, i.e., heat is always released to the cold bath. Internal
energy being a state function, 〈�u〉 is zero over a cycle in
TPSS and hence 〈w〉 = 〈q1〉 + 〈q2〉. Using the saturation value
of 〈w〉 and 〈q1〉 we immediately get 〈q2〉 to be equal to 0.310
which is close to our numerical result.

We now study the nature of stochastic efficiency η and
engine power p = −w

τ
as a function of cycle time. The engine

is in TPSS where probability distributions of system variables
are periodic in time. However, for a given realization of a
cycle, state of the system (position and velocity) does not come
back to its initial state. Thus, for each cycle thermodynamic
quantities will depend on the particular microscopic trajectory
and, hence, w, q1, q2, η, and p are all fluctuating quantities
from cycle to cycle. The average efficiency is defined as 〈η〉 =
〈 w

q1
〉. Due to fluctuation in w and q1, it is to be noted that 〈η〉 =

〈 w
q1

〉 �= 〈w〉
〈q1〉 = η̄. Fluctuation theorems [19–21] put stringent

conditions on 〈w〉
〈q1〉 which is bounded by the Carnot efficiency,

i.e., 〈w〉
〈q1〉 � 1 − Tl

Th
. However, no such bound exists for 〈η〉 [21].

The first law for any microscopic realization of cycle can
be written as

w = �u + q1 + q2. (17)

The change in the internal energy �u is unbounded. It is zero
only on the average. Similarly, q1, q2, and w take values in the
range (−∞,∞) but are constrained by first law. Hence, it is
not surprising that η can take values between −∞ to ∞.

In Fig. 5, we have plotted efficiencies 〈η〉 and η̄ as a
function of cycle time. Initially for small τ , our system does
not work as an engine. Due to large dissipation, work cannot
be extracted (〈w〉 � 0). In this regime, efficiency is negative.
On further increasing τ , efficiency becomes positive and it
monotonically increases. For large τ , 〈η〉 and η̄ saturate. The
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FIG. 5. (Color online) Variation of 〈η〉 and η̄ with cycle time τ .
The dotted blue straight line denotes the quasistatic limit for η̄.

saturation value for η̄ is 0.41 which can be obtained analytically
in the quasistatic regime. In general, 〈η〉 �= η̄. We find both 〈η〉
and η̄ are less than the Carnot efficiency ηc = 0.8.

In Fig. 6, average power 〈p〉 is plotted as a function of
τ . There is a negative region for low-cycle time. Beyond
the critical value of τ � 3.0, power becomes positive and
exhibits a peak and finally tends to zero in the large-τ limit.
The efficiencies 〈η〉 and η̄ at maximum power are given by
0.16 and 0.25, respectively. Both of these values are less than
ηCA = 0.554.

As mentioned earlier, physical quantities q1, w, and η are
strongly fluctuating variables. To study these fluctuations, we
focus on probability distribution of these quantities P (q1),
P (w), and P (η). In Figs. 7–9 we have plotted them for
three different time periods. For τ = 0.7, distributions of w

and q1 are sharply peaked around zero with 〈w〉 = 0.005,
〈q1〉 = −0.065. As we increase the cycle time, P (w) and P (q1)
become broad, asymmetric, and shift towards the negative
side. For large negative values of arguments, the distributions
exhibit long tail. For large positive values of w and q1, the
distribution falls off exponentially or faster [25]. The trajectory
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FIG. 6. (Color online) Variation of average power 〈p〉 with cycle
time τ .
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FIG. 7. (Color online) Distribution of w for different cycle times
(τ = 0.7, 7.0, 70.0).

responsible for positive values is atypical and sometimes
referred to as transient second law violating trajectories
[26–28]. Strong fluctuations in heat and work persist even in
the quasistatic limit (τ = 70). These fluctuations in work are
mainly attributed to two adiabatic processes, while fluctuations
of q1 result from the relaxation process when the system, in
contact with low temperature bath, is brought in direct contact
with high temperature reservoir.

For τ = 0.7, 〈η〉 is negative (−0.26). The distribution P (η)
is asymmetric and there is a broad shoulder on the negative
side. As we increase τ , distribution shifts towards the positive
side. It is not surprising to see the finite weight for values η < 0
and η > 1 [21]. As we increase the cycle time, the standard
deviation of η (ση) becomes smaller. However, it remains
larger compared to mean values. For example, 〈η〉 = 0.161 and
corresponding ση = 1.32 at τ = 7.0 and 〈η〉 = 0.406 whereas
ση = 1.11 for τ = 70.0. We would like to emphasize that the
mean is dominated by fluctuations even in the quasistatic
regime. Any physical quantity with relative variance larger
than one is referred to as non-self-averaging quantity. For such
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FIG. 8. (Color online) Distribution of q1 for different cycle times.
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FIG. 9. (Color online) Distribution of η for different cycle times.

cases, the mean ceases to be a good physical variable and one
has to resort to the analysis for full probability distribution.
This is one of our main results. Non-self-averaging quantities
arise mainly in physics of quenched disordered systems.

Note that η becomes positive if both w and q1 are positive
or both of them are negative. η becomes negative when w and
q1 have opposite signs. In order to have a better understanding
of our system, we have plotted the joint distributions of w and
q1 for different τ in Fig. 10. For a given cycle, the system
acts as an engine when both w and q1 are negative, i.e, in
the third quadrant of the plot. Using our numerical results, we
have calculated the ratio of the total number of realizations
falling in the third quadrant to the total number of realizations.
These fractions for τ = 0.7, 7.0, and 70.0 are calculated to
be 0.226, 0.583, and 0.858, respectively. It is clear from this
that for large cycle times, the reliability of the system working
as an engine increases. Although we observe that even in the
quasistatic regime there are realizations for which the system
does not act as an engine. This is due to strong fluctuations in
work and heat as discussed earlier.

In TPSS, the joint probability density Pss(x,v,t) is peri-
odic in time: Pss(x,v,t + τ ) = Pss(x,v,t). For simplicity, we
write Pss(x,v,t) = e−φ(x,v,t). From the definition of stochastic
entropy [29–31] of the system Ssys, the change in the system

entropy for a trajectory over a cycle is given by �Ssys = �φ =
φ(x2,v2,τ ) − φ(x1,v1,0) where (x1,v1) and (x2,v2) are the
initial and final phase space points for a particular realization
of the cycle. To calculate �φ we evaluate Pss(x,v,0) at the
initial point of the cycle, which also coincide at the end point
t = τ . In Fig. 11, we have plotted joint phase space distribution
at TPSS for three different values of τ = 0.7, 7.0, and 70.0.
We see that for τ = 0.7 and 7.0, phase space distributions are
not symmetric and there exists a strong correlation between
x and v which was ignored in the earlier literature [16].
Only in the large-τ limit the distribution becomes symmetric
[see Fig. 11(c)]. The cross correlation between position and
velocity disappears and the distribution Pss(x,v) becomes
an uncorrelated Gaussian in the quasistatic limit. Due to
correlation, the width of the distribution becomes larger as
we decrease cycle time τ .

Recently, FRHE in TPSS has been derived [20]. It ex-
tends the total entropy production fluctuation theorem of
Seifert [29,30,32] applied to heat engine. The total entropy
production �Stot over a cycle is a stochastic variable and in
our present case is given by

�Stot = �φ + q1

Th

+ q2

Tl

. (18)

Using the first law [Eq. (17)],

�Stot = �φ + q1

Th

+ w − q1 − �u

Tl

. (19)

The second law, which is valid on average, can be stated as
〈�Stot〉 � 0. In TPSS, 〈�u〉 = 〈�φ〉 = 0, which implies η̄ =
〈w〉
〈q1〉 � 1 − Tl

Th
= ηc. Thus, the second law puts the constraint

on efficiency which is defined as 〈w〉
〈q1〉 . It should be noted that

this constraint is valid for any finite time cycle in TPSS, unlike
the Carnot which is valid for macroscopic engines in the
quasistatic regime. However, it does not put any constraint
on the average efficiency (〈 w

q1
〉). The fluctuation theorem for

heat engine replaces the inequality relation of the second law
by the equality relation, namely [20],

〈e−�Stot〉 = 〈
e
−(�φ+ q1

Th
+ w−q1−�u

Tl
)〉 = 1. (20)

Equation (20) is FRHE in TPSS. By calculating all the relevant
stochastic variables w, q1, �φ, �u over all trajectories for
finite τ we have verified Eq. (20) in the TPSS. We have
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FIG. 10. (Color online) Joint distribution of w and q1 for different τ . In (a) τ = 0.7, in (b) τ = 7.0, and in (c) τ = 70.
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FIG. 11. (Color online) Initial phase space distribution at different cycle times τ . In (a) τ = 0.7, in (b) τ = 7.0, in (c) τ = 70. The
asymmetric position of the red broken line along the major axis of the elliptical Gaussian distribution for lower values of τ (=0.7 and 7.0)
indicates nonzero 〈xv〉. This correlation becomes zero for larger τ (= 70), where the position of the major axis also becomes symmetric.

obtained the value to be 0.96 for τ = 7.0, which is well within
our numerical accuracy. We would like to emphasize that,
in Eq. (20), four stochastic variables appear in the exponent.
Small changes in these values affect the exponential function
by a large amount. Given this fact, our observed value of
〈e−�Stot〉 is quite satisfactory.

For the same parameter value τ = 7.0, in Fig. 12 we have
plotted the probability distribution P (�u) as a function of
�u. In Fig. 13, we have plotted the probability distribution of
change of system entropy P (�φ) and total entropy P (�Stot)
as a function of their arguments. It is clear that as u and φ

are state functions, P (�u) and P (�φ) are symmetric with
zero mean. However, the distribution P (�Stot) is asymmetric
with a long tail for positive large �Stot. There is also a finite
weight towards negative �Stot. This contribution arises due
to the transient second law violating periodic cycles [26,28].
However, 〈�Stot〉 remains positive as demanded by the second
law.

Until now we concentrated on symmetric cycle, i.e., equal
contact times of the system with hot and cold baths. Naturally,
the question arises as to what will happen if the cycle is time
asymmetric. To the best of our knowledge, this question has not
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FIG. 12. (Color online) Distribution of the internal energy

change in one cycle for underdamped steady state for τ = 7.0.

been addressed in earlier literature. If the contact time of one
bath is different from that of the other, it can affect work output,
heat dissipation to each bath, power, and efficiency. However,
in the quasistatic limit, there should not be any effect of this
asymmetry. This is clear from Fig. 14 that the average work,
for three different asymmetric cycles, asymptotically approach
each other in the quasistatic limit. In the nonquasistatic limit,
work extracted by the engine for asymmetric cycles is small
compared to the symmetric cycle. From Fig. 15 it is seen
that 〈η〉 is lower for asymmetrical cycles. The inset shows
even in quasistatic limit 〈η〉 �= η̄ for τh : τl = 3 : 1. We have
verified separately that asymmetry also decreases the power.
Thus, asymmetry in the cycle degrades the performance
characteristics of the engine.

We now briefly compare the nature of power and efficiency
of our system when the confining potential is different. We
have taken the confining potential 1

2k(t)xn with n = 2,4,6.
For n = 4,6, the confining potentials are referred to as hard
potentials. The equilibrium distributions for hard potentials
are no longer Gaussian and hence in the quasistatic limit, the
average work, heat dissipation, etc., will be different from
those for the harmonic potential.
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FIG. 13. (Color online) Distribution of system entropy change
and total entropy production in one cycle for underdamped steady
state for τ = 7.0
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FIG. 14. (Color online) Variation of 〈w〉 vs τ for symmetric as
well as asymmetrical cycles. Here, τh and τl are contact times of the
particle with hot and cold baths, respectively. Thus, τ = τh + τl = 7.0
for our case.

In Figs. 16 and 17, we have plotted 〈η〉 and 〈p〉 as a function
of cycle time for different potentials. Average efficiency 〈η〉
for large τ decreases as potential becomes harder and thereby
degrading the performance. 〈η〉 saturates at the higher value of
τ (not shown in the figure). From Fig. 17 we observe that the
harder the potential the smaller will be the critical time τ above
which the system acts as an engine. For large cycle time, the
power decreases as the potential becomes harder. However,
we see clearly that there are three values of efficiencies 〈η〉
and η̄ at maximum power 0.16, 0.10, 0.08 and 0.25, 0.16, 0.13
for n = 2,4,6, respectively. It is apparent that the efficiency
at maximum power is model dependent and decreases as
the potential becomes harder. Even the saturation value is
different and it is lower for harder potential. Clearly, these two
figures indicate that operational characteristics of our system
are model dependent. Thus, we do not expect any universal
relation involving only the average efficiency at maximum
power and temperatures of the reservoirs.
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FIG. 15. (Color online) Variation of 〈η〉 vs τ for symmetric as
well as asymmetrical cycles. Inset: comparison of 〈η〉 with η̄ for
τh : τl = 3 : 1.
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FIG. 16. (Color online) Variation of 〈η〉 with τ for different types
of potentials.

So far, we have studied our system in detail in the
underdamped regime which is a general case. From now on,
we restrict to the overdamped regime and highlight some
qualitative differences.

V. OVERDAMPED QUASISTATIC CASE

In the overdamped limit, dynamics of the system follows
Langevin equation (2), where inertial effects are ignored. This
approximation is valid when the time steps of the observation
are much larger than m/γ . The internal energy of the system
is given only in terms of potential energy. For this case,
equilibrium distribution of a particle in a static harmonic

potential is given by Peq(x) = Ne
− kx2

2kB T from which one can
easily obtain the free energy. The analytical calculation for
average thermodynamic quantities in the quasistatic limit are
similar to the underdamped case. The total average work done
on the particle during the entire cycle is given by

Wtot = �Fh + W2 + �Fl + W4

= Th

2
ln

1

2
− Th

4
+ Tl

2
ln 2 + Tl

2
. (21)
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FIG. 17. (Color online) Variation of power 〈p〉 with τ for differ-
ent types of potentials.
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Interestingly, the expression for Wtot remains the same as for
the case of the inertial system discussed earlier and the system
extracts work provided Tl

Th
< 0.705. Using the same arguments

similar to the underdamped case and keeping in mind only
the fact that there is only one phase space variable, namely
position, the average internal energy change in the overdamped
limit in the first step can be expressed as

�U1 = Th

2
− Tl. (22)

Using the first law, the average heat absorption from the hot
bath during the first step is

−Q1 = �U1 − �Fh = Th

2
− Tl − Th

2
ln

1

2
. (23)

The expression for efficiency in the overdamped case is

η̄q = −Wtot

−Q1
= −

Th

2 ln 1
2 − Th

4 + Tl

2 ln 2 + Tl

2
Th

2 − Tl − Th

2 ln 1
2

, (24)

which is different from the earlier case. In the quasistatic limit,
from Eq. (23) heat flows from the bath to the system provided
Tl

Th
< 1+ln 2

2 = 0.846. This ratio Tl

Th
differs from that obtained

for the underdamped case. From Eqs. (21) and (23), the system
acts as an engine for the same condition ( Tl

Th
< 0.705) as for the

underdamped case. A finite temperature difference between
hot and cold baths is required so that the system can act as a
heat engine.

VI. FINITE CYCLE TIME ENGINE IN THE
OVERDAMPED REGIME

Analysis for finite time cycle is carried out by numerical
methods as discussed earlier. For a better understanding in
the overdamped regime, all the parameters have been kept
the same as in the underdamped case. In Fig. 18, we have
plotted the phase diagram for the overdamped case keeping Tl

fixed at 0.1. For large τ (quasistatic limit) we observe, from
the phase diagram, that the system operates as a heat engine
provided Th is greater than a critical value. This critical value
is close to the theoretical value of 0.142 obtained from the
bounds determined in the quasistatic calculation. The phase
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 1  10  100

T
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 q1 <0 ,   w >0

  q1 >0 ,   w >0

FIG. 18. (Color online) Phase diagram for different Th and τ but
for fixed Tl = 0.1.
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FIG. 19. (Color online) Variation of 〈w〉, 〈q1〉, and 〈q2〉 with cycle
time τ .

diagram shows a qualitative difference from the underdamped
phase diagram (Fig. 3). The system always acts as an engine
in the τ → 0 limit provided we are above a critical value of
Th, which is not the case for the underdamped engine. This
is clear from Fig. 19, where we have plotted average work
done on the system 〈w〉 and average heat released to each bath
with 〈q1〉 and 〈q2〉 as a function of τ . Note that the observed
anomalous part for 〈w〉 and 〈q1〉 in the underdamped case for
the small-τ regime is absent in this regime. The quantities
〈w〉, 〈q1〉, and 〈q2〉 show monotonic behavior and saturate at
large cycle time to their analytical limits −0.214, −0.324, and
0.110, respectively. Unlike the underdamped case here, 〈w〉
and 〈q1〉 are always negative.

In Fig. 20, we have plotted the average of efficiency 〈η〉 and
η̄ as a function of τ . Both the efficiencies increase monotoni-
cally from zero and saturate for large τ . The saturation value
of η̄ is close to the theoretically predicted value of 0.660.
The saturation value of 〈η〉 is found numerically to be 0.571
which is much less than the corresponding value of η̄. Both
these values are less than the Carnot value ηc = 0.8. It is clear
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FIG. 20. (Color online) Variation of 〈η〉 and η̄ with cycle time τ .
The dotted blue straight line denotes the quasistatic limit for η̄.
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FIG. 21. (Color online) Variation of 〈p〉 with cycle time τ .

that 〈η〉 �= η̄ due to the strong correlation between fluctuating
variables w and q1 for all τ .

From Fig. 21, we see that power exhibits a sharp peak at
τ = 0.8. Corresponding efficiencies 〈η〉 and η̄ at maximum
power are equal to 0.11 and 0.51 which are less than the CA
result (ηCA = 0.554).

To study the nature of fluctuations in the overdamped
regime, we have plotted the distributions P (w), P (q1), and
P (η) in Figs. 22–24, respectively. The qualitative nature
of the distributions of P (w) and P (q1) remain the same
for different values of τ as in the underdamped case. The
fluctuations are smaller compared to the underdamped case.
The distribution P (η) shows a double peak behavior for
τ = 0.7 with 〈η〉 = 0.086 and standard deviation ση = 1.688.
For τ = 7.0, 〈η〉 = 0.496 and ση = 1.287. For τ = 70, 〈η〉 =
0.571 and ση = 1.234. We observe that even in the quasistatic
regime, fluctuations of η dominate over the mean value. Thus,
η is a non-self-averaging quantity. We have also seen that the
fraction of the realizations for which the system acts as an
engine increases with cycle time τ . Numerical values for these
fractions are 0.488, 0.817, and 0.861, for τ = 0.7, 7.0, and
70.0, respectively. Hence, finite fraction of realization does
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FIG. 22. (Color online) Distribution of w for different cycle
times in the overdamped case.
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FIG. 23. (Color online) Distribution of q1 for different cycle
times in the overdamped case.

not act as an engine even in the quasistatic limit. Similar to
the underdamped case, the reliability of the system to act as
an engine increases with τ .

Finally, we discuss the performance characteristics of our
system in the overdamped regime using an experimental
protocol [8]. The experimental protocol consists of only two
steps, in which the two adiabatic steps of Fig. 1 are absent.
In the quasistatic regime, the system acts as an engine for any
temperature difference and there is no bound on Th unlike our
four step protocol [8]. This suggests that the phase diagram
will depend on the nature of protocol as well as on system
parameters and is not unique. As discussed earlier, most of the
work fluctuations, especially in the quasistatic regime, arise
from two adiabatic steps. In the absence of these two steps,
we have observed in our simulation that in the quasistatic
regime, work distribution P (w) is sharply peaked like a
delta function at W = − 1

2 (Th − Tl) ln 2 (analytical result) [8].
However, fluctuations in q1 persist even in the quasistatic
regime as a result of the relaxation process that follows when

 0

 0.5

 1

 1.5

 2

 2.5

-3 -2 -1  0  1  2  3

P
(

)

 

=0.7
=7.0
=70

FIG. 24. (Color online) Distribution of η for different cycle times
in the overdamped case.
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the system, in contact with the cold bath, is brought in direct
contact with high temperature reservoir. The distribution of
stochastic efficiency P (η) exhibits a qualitative difference. It
has almost zero weight for η < 0 in the large-τ limit and shows
a broad double peak feature which is confined in the region
0 < η < 1. Beyond η > 1, a long tail is observed. For τ = 70
we have numerically calculated 〈η〉 = 0.579 and ση = 0.903.
Even for this protocol we notice that fluctuations dominate over
the mean value. The details of these results will be published
elsewhere [33].

VII. SUMMARY

We summarize our results in this section. We have carried
out an extensive analysis of a single-particle stochastic heat
engine by manipulating a Brownian particle in a harmonic
trap with a periodically time-dependent stiffness constant as
a protocol. The cycle consists of two isothermal steps and
two adiabatic steps similar to that of the Carnot engine. The
proposed model is studied taking into account both the inertial
and overdamped Langevin equations. Thermodynamic quan-
tities, defined over microscopic phase space trajectory of our
system, fluctuate from one cycle of operation to another. Their
magnitude depends on the trajectory of the particle during
the cycle. This is done by using the methods of stochastic
energetics. The average value of thermodynamic quantities and
their distribution functions have been calculated numerically in
TPSS. Analytical results of average thermodynamic quantities
have been obtained in the quasistatic regime. These results are
consistent with the corresponding numerical results. We have
reported several additional results which were not addressed
in earlier literature.

The full phase diagram for operation of a system is given
in both the inertial and high friction regimes. They differ from
each other qualitatively. In both cases, it is also shown that the
system acts as an engine provided the temperature difference
is greater than a critical value (unlike the Carnot engine). This
critical value depends on system parameters and is consistent
with analytical results in the quasistatic limit. Moreover, for
fixed bath temperatures and system parameters there should be
a critical cycle time above which the system acts as an engine.

The mean of the stochastic efficiency is dominated by its
fluctuations (〈η〉 < ση) even in the quasistatic regime, making
the efficiency a non-self-averaging quantity. For such cases,
the mean ceases to be a good physical variable and one has to
resort to the analysis for full probability distribution. This is
one of our main results. We have also shown that η̄ = 〈w〉

〈q1〉 �=
〈 w

q1
〉 = 〈η〉.
Our analysis of model dependence of finite cycle time

clearly rules out any simple universal relation (e.g., ηCA = 1 −√
Tl

Th
) between efficiency at maximum power and temperature

of the baths. Time asymmetric periodic protocol makes the
engine less efficient. Only in the quasistatic regime does time
asymmetry not play any role.

For given cycle time, there are several realizations which
do not work as a heat engine. These are referred to as transient
second law violating trajectories. The number of these realiza-
tions decreases as we increase τ . The fractions of realizations
following the second law with corresponding τ are reported in
earlier sections both in underdamped and overdamped regimes.
Thus, for large cycle time the reliability of the system working
as an engine increases. Persistence of these realizations even
in the quasistatic regime can be attributed to the fluctuation of
heat and work distributions. Fluctuations in work are mainly
attributed to two adiabatic processes connecting two isotherms,
while fluctuations of q1 result from the relaxation of the system,
when brought in direct contact with high temperature reservoir
from low temperature bath.

We have shown that in TPSS, Pss(x,v,t) exhibit strong
correlation between variables x and v in small cycle time
limit. However, it becomes uncorrelated as we approach the
quasistatic limit. For analytical simplicity, it had been gener-
ally assumed in earlier literature that there is no correlation
between x and v in Pss(x,v,t) (see, for example, [16]).

In the inertial regime, we have also verified the recently
proposed fluctuation theorems for heat engines in a TPSS.
Our results are amenable to experimental verifications.
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