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Spectral density of the noncentral correlated Wishart ensembles
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(Received 19 June 2014; published 30 October 2014)

Wishart ensembles of random matrix theory have been useful in modeling positive definite matrices encountered
in classical and quantum chaotic systems. We consider nonzero means for the entries of the constituting matrix
A which defines the correlated Wishart matrix as W = AA†, and refer to the ensemble of such Wishart matrices
as the noncentral correlated Wishart ensemble (nc-CWE). We derive the Pastur self-consistent equation which
describes the spectral density of nc-CWE at large matrix dimension.
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I. INTRODUCTION

Random matrix theory (RMT) has been applied in a
vast domain of science [1–10] and it is now in frontiers of
modern research on complex systems. The Wishart model
for the correlation matrices [11] is probably the origin of
RMT. In recent research this model has received much
attention, with various generalizations in trend, to model the
symmetric positive definite matrices encountered in classical
or quantum chaotic systems. For instance the Wishart model
which incorporates actual correlations [12–20] provides an
improved paradigm to understand the correlations in the
financial market [21–24], and also in practical statistical
signal processing applications such as synthetic aperture
radar, extra-solar planet detection, and multi-antenna wireless
communications [25]. The ensemble of such Wishart matrices
is known as the correlated Wishart ensemble (CWE). Also
the fixed-trace generalization of Wishart matrices to model
density matrices in quantum entanglement problems [26], or
power-map-deformed Wishart matrices [27,28] in the context
of short time series analysis of multivariate systems, have been
useful.

In a general sense the Wishart model may be defined as
W = AA† whereA is of dimension N × T . The matrix entries
Ajν , for 1 � j � N and 1 � ν � T , are Gaussian variables
with mean μjν , variance σ 2, and correlations, ξjk , between the
j th and kth rows of A. In a usual setup, where μjν = 0 and ξ

is diagonal with 1, this model defines the Wishart or Laguerre
ensemble (WE) where a lot is known in terms of Laguerre
polynomials for the eigenvalue statistics [29,30]. The WE has
been extensively used in diverse fields, particularly in QCD
where it is referred to as the chiral ensemble [31].

If the off-diagonal terms of ξ are not 0 then the model
defines the CWE. Using Dyson’s classification of invariant
ensembles [1,32], the three invariant CWE can be defined as the
correlated Wishart orthogonal ensemble (CWOE), correlated
Wishart unitary ensemble (CWUE), and correlated Wishart
symplectic ensemble (CWSE). In this paper we consider rather
a simple generalization for all three invariant CWEs, using
μjν �= 0. This generalization defines the noncentral correlated
Wishart ensembles (nc-CWEs) [33]. While CWEs are natural
for correlation matrices [34], nc-CWEs are important in
several other applications. For instance, noncentral Wishart
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ensembles (nc-WEs) have been used in QCD calculations at
finite temperature and/or chemical potential [35–37] where
exact results are known in much detail but for the unitary
case. Recently, nc-CWEs have been used in the context of
density matrices in Ref. [38] with a remark that the zero-mean
condition is a priori not valid for the density matrices.
Besides, nc-WEs have been revisited in the context of signal
processing [39] and also in mathematical statistics [40–42]. It
is also important to mention that the noncentral generalization
of Gaussian and other ensembles [43–48] has also been useful
in several other contexts; see Refs. [48,49] and the references
therein.

For CWEs, the spectral density is known in terms of
a Pastur self-consistent equation [12–14,16,18,50] which is
valid for large N and T with finite ratio N/T = κ . For ξ = 1N ,
where 1N is the N × N identity matrix in our notation, this
Pastur equation yields the famous Marčenko-Pastur law for
the spectral density of WEs. For finite N and T , the CWE
poses a serious difficulty, yet the exact result is known for
the spectral density [15,19,20] and the two-point spectral
correlation is known asymptotically [18] for large matrices.
The Pastur equation, however, has never been investigated
for nc-CWE and our focus in this paper is to obtain the
Pastur equation for nc-CWEs. We use the binary correlation
method [2,18,46,51,52] to obtain our analytic results and in-
vestigate some important features such as the effect of nonzero
means and cross correlations on the ensemble-averaged bulk
density and on the ensemble-averaged mean positions of the
eigenvalues separated from the bulk.

The paper is organized as follows. In the next section,
Sec. II, we shall describe the model and fix our notations.
In Sec. III we shall derive the loop equation. A similar loop
equation has also been obtained in Ref. [52] in the context
of nonsymmetric correlation matrices. In Sec. IV we shall
rederive the Pastur equation by solving the loop equation for
the CWE case and discuss analytic results for the separated
eigenvalues. In the first part of Sec. V we shall specialize
in the Pastur equation for nc-WEs and in the second part
we shall derive the result for the ensemble-averaged mean
position of the separated eigenvalues and compare this result
with that for the CWE. In the final part of Sec. V we shall
analyze our result for a nontrivial case. Similarly, in Sec. VI
we shall generalize the method of Secs. IV and V and derive
the Pastur equation for the nc-CWE in the first part. Next, we
shall discuss the separated eigenvalues and the bulk density.
Finally, we summarize our work with discussions in Sec. VII.
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II. PRELIMINARIES

The model we are interested in is defined as

W = AA†/T , (1)

where A is N × T and

A = ξ 1/2A + B, (2)

so that, A = B and W = v2
1ξ + BB†/T . Here ξ is the N × N

real symmetric positive definite fixed (nonrandom) matrix
which defines the correlation between the rows of A, B is the
N × T fixed matrix which represents the ensemble average
matrix A, and the overbar represents the ensemble averaging.
Matrix A is the random matrix where the matrix entries Ajk

are statistically independent real Gaussian variables with mean
0 and variance v2

1. These choices define the nc-CWOE where
the subscript in v2

1 represents the value of the Dyson index
β. Similarly for nc-CWUE, β = 2 and we consider A =
A(1) + iA(2) where A(1) and A(2) are statistically equivalent
but independent Gaussian matrices described with mean 0
and variance v2

2. Finally for the nc-CWSE, A is composed of
four statistically equivalent but independent Gaussian matrices
described by mean 0 variance v2

4 and written in terms of a two-
dimensional identity matrix 12 and a two-dimensional matrix
representative of quaternion units τγ where γ = 1, . . . ,3.A† is
the transpose, Hermitian conjugate and dual of A, respectively
for β = 1, 2, and 4. The joint probability density (jpd) of the
matrix elements of A is given by the Gaussian probability
measure,

P(A) ∝ exp

[
−Tr

AA†

2v2
β

]
. (3)

Since variance supplies the scale for the statistics, we fix
the scale as v2

β = σ 2β−1 [53]. Without loss of generality we
consider T � N .

We use the binary correlation method to obtain the
ensemble-averaged spectral density, ρW(λ). In this method it is
convenient to deal with the Stieltjes transform or the resolvent
or the Green’s function of the density. The resolvent, gW(z),
is defined as

gW(z) = 〈 (z1N − W)−1 〉N, (4)

where z = λ ± iε with ε > 0 and the angular brackets rep-
resent the spectral averaging. For example, 〈H〉K = K−1 tr H
where the matrix H is K × K . Then ρW(λ) can be determined
uniquely via the relation

ρW(λ) = lim
ε→0

∓
π

Im gW(z). (5)

In order to calculate gW(z) we may use the moment expansion,
since for large z

gW(z) =
∞∑

n=0

mn

zn+1
. (6)

Here mn is the nth moment, of ρW(λ), defined as

mn =
∫

dλ λnρW(λ) = 〈Wn〉N . (7)

In principle, the problem is solved once we obtain a
closed form of gW(z). As in Ref. [18], we could have started
the moment expansion to obtain gW(z). However, due to
the additional matrix B the expansion results in nontrivial
combinations of ξ 1/2A and B. Further complications will
arise in the ensemble averaging of this series with respect
to the jpd given in (3). We simplify the problem regarding the
ensemble averaging first by using the trick of linearization [54].
Following Ref. [54], we define

X = 1√
T

[(
0 A
A† 0

)
+

(
0 B
B† 0

)]
, (8)

where we used A instead of ξ 1/2A for notational convenience.
In the QCD language the above form of the matrix is nothing
but the Dirac operator in the chiral basis [31]. In our calculation
we also use (N + T ) × (N + T ) matrices, defined as

Ã =
(

0 A
A† 0

)
, B̃ =

(
0 B
B† 0

)
. (9)

Notice that the eigenvalues of X2 coincide with those ofWwith
a twofold degeneracy for each. Next we define the resolvent,
gX(u), for the spectral density ρX(y) of X as

gX(u) = 〈(U − X)−1〉N+T , where U = u1N+T , (10)

and u = y ± iε. In what follows, we calculate gW(z) from
gX(u) using the relation between them as given below. For the
first, and so on, moments of ρX are related with the moments
of ρW via

zgW(z) − 1 = N + T

2N
[u(z)gX(u(z)) − 1], (11)

where u2 = z.
We will calculate the ensemble average of a matrix-valued

Green’s function

G(X)
L (u) = L (U − X)−1 , (12)

where

G(X) =
(

G11 G12

G21 G22

)
. (13)

In the right-hand-side (rhs) of the above equation, Gjj ’s are the
square blocks, of dimensions N × N and T × T respectively
for j = 1 and 2, and G12 and G21 are rectangular blocks,
respectively of dimensions N × T and T × N . We use L as
an (N + T ) × (N + T ) arbitrary fixed matrix. For L = 1N+T ,
G(X)

L gives G(X) and on the spectral averaging the latter yields

gX(u), as 〈G(X)(u)〉N+T = gX(u). Finally, we define the ratio

κ = N/T . (14)

III. LOOP EQUATION

We notice that the large-u expansion of G(X)
L (u) has

nontrivial combinations of Ã and B̃. Since B̃ is a fixed matrix,
we may use

K = (U − B̃)−1, (15)

and expand G(X)
L (u) the for small K (or equivalently for large

u). It is worth mentioning that this trick has been used in the
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context of noncentral Gaussian ensembles in Ref. [46]. Then
the large-u expansion of Eq. (12) can be written as

G(X)
L (u) = LK

∞∑
n=0

(
ÃK

)n
. (16)

Since the Ajk’s are centered, at 0, on the ensemble average,
the odd-n terms of the above expansion are identically 0. Thus
the ensemble-averaged series reduces to

G(X)
L (u) = LK + LKÃG(X)ÃG(X). (17)

In order to perform the ensemble averaging for the remaining
terms we use the jpd (3) with A = ξ 1/2A and derive the
following exact identities, valid for arbitrary fixed  and �:

1

T
AA†� = σ 2〈〉T ξ�, (18)

1

T
A†A� = σ 2〈ξ〉T �, (19)

AA� = (2 − β)σ 2

β
�̃, (20)

where ̃ = t , for β = 1 where t is the transpose of ,
̃ =  for β = 2, and ̃ = −τ2

tτ2 for β = 4 [18]. As the
identities suggest, we consider only the terms resulting from
the binary associations of A with A† and avoid terms resulting
from the binary associations of A with A. With the help of
these identities we calculate only the leading order terms of
the series in Eq. (17). We find

G(X)
L = LK + LK�G(X), (21)

where the equality is valid only in the leading order and

� = σ 2

(
ξ 〈G22〉T 0

0 κ〈ξG11〉N1T

)
. (22)

In the derivation of Eqs. (21) and (22) we have avoided binary
associations across the traces as those also result terms of
O(N−1). Substituting now L → L(1N − K�)−1 in Eq. (21),
and then using Eq. (15), we finally get

G(X)
L (u) = L(U − B̃ − �)−1. (23)

In order to calculate the inverse of the matrix in the rhs of
Eq. (23), we use the Schur decomposition. For instance, using
M = U − B̃ − �, we may write

M−1 =
(

a b
c d

)−1

=
(

S−1 −Sbd−1

−d−1cS−1 (d − ca−1b)−1

)
,

(24)

where S = a − bd−1c and

a = u1N − σ 2ξg22, b = − 1√
T

B,

(25)
c = − 1√

T
B†, d = (u − σ 2κ g11;ξ )1T .

We have used here more general spectral averaged quantities,
defined as

gjj ;L = 〈LGjj 〉K, (26)

with L as an arbitrary fixed matrix and K is N and T , respec-
tively, for j = 1 and 2. For example, the spectral-averaged
quantity g22 is obtained by using L = 1T in definition (26),
for the corresponding upper diagonal-block matrix in the rhs
of Eq. (22). Similarly, for the lower diagonal-block matrix we
have used L = ξ ; g11;ξ = 〈ξG11〉N .

Next, we use L = 1N+T in Eq. (23) and compute gX(u)
using Eq. (10). We get

gX(u) = 〈(g111N ⊕ g221T )〉N+T , (27)

where ⊕ stands for the direct sum and

g11 =
〈

1

u1N − σ 2ξ g22 − ζ

(u−σ 2κg11;ξ )

〉
N

, (28)

g22 =
〈

1

(u − σ 2κg11;ξ )1T − 1
T

B† (u − σ 2ξ g22)−1B

〉
T

.

(29)

In the above equation we have introduced a positive definite
matrix ζ = BB†/T . As mentioned above, we calculate gW(z)
from gX(u) using Eq. (27) for the latter and then use
relation (11) to obtain the former.

IV. PASTUR EQUATION FOR CWE

For our model, Bjk = 0 defines the CWE. The Pastur
equation of the CWE has been derived by several authors [12–
14,16,18] using different techniques. As mentioned before, for
large N and T with finite ratio κ , the spectral density is known
in terms of a Pastur self-consistent equation. Below we give
an alternative method to obtain the Pastur density for the CWE
by solving the loop equation (28) and (29).

We first note that in this case Eqs. (28) and (29) reduce to

g11(u) = 〈(u1N − σ 2ξ g22)−1〉,
(30)

g22(u) = (u − σ 2κg11;ξ )−1,

where

g11;ξ (u) = 〈ξ (u1N − σ 2ξ g22)−1〉 = ug11(u) − 1

σ 2g22(u)
. (31)

We may also write g22 as

ug22(u) = 1 + σ 2κg11;ξ (u)g22(u). (32)

Using the second equality of Eq. (31) in the above equation,
we get

g22 = κ ug11 + 1 − κ

u
. (33)

This is a very useful equation because not only does it establish
a linear relation between g11 and g22, that we need to solve the
loop equation, but also when inserted in Eqs. (11) and (27) it
leads to another useful identity, viz.

zgW(z) = u(z)g11(u(z)). (34)

It will be shown ahead that the above two relations (33)
and (34) are also valid for nc-WEs and nc-CWEs. Finally,
we use these two relations in Eq. (30), with u2 = z, and obtain
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the Pastur equation for the CWE:

gW(z) = 〈{z1N − σ 2[1 − κ + zκgW(z)]ξ}−1〉N . (35)

As noted in Ref. [18], this result is independent of the Dyson
index β because of the scaling v2

β = σ 2/β. The same holds
true for the Pastur equations of nc-WEs and nc-CWEs.

Notice that Eq. (35) depends on the spectrum of ξ . For a
nontrivial spectrum of ξ , the analytic solution is complicated.
Thus, this equation has to be solved numerically. To this
end an efficient numerical algorithm has been discussed in
Ref. [18] where various cases of ξ have been worked out.
However, analytically we can solve the Pastur equation when
it is quadratic. For instance, consider ξjk = δjk . For this choice
the Pastur equation (35) yields the resolvent

gW(z) = z − σ 2(1 − κ) −
√

[z − σ 2(1 − κ)]2 − 4zκσ 2

2κzσ 2
,

(36)

where we have considered the negative sign for the square
root, so that gW(z) behaves as z−1 for large z. Next, the inverse
transform of this resolvent gives the famous Marčenko-Pastur
density [12]:

ρMP(λ) =
√

(λ+ − λ)(λ − λ−)

2πκσ 2λ
, (37)

where λ± = σ 2(
√

κ ± 1)2.
It has been shown in Ref. [18] that Eq. (35) can also be

solved for the equal-cross-correlation matrix model, viz. ξjk =
δjk + (1 − δjk) μ2

0. Notice that in this case ξ is diagonal plus
a rank-1 matrix. Thus for Nμ2

0 >
√

κ the spectral density we
find is composed of a bulk and a separated eigenvalue:

ρW(λ) = ρ0(λ) + N−1δ(λ − λN ). (38)

The bulk density, ρ0(λ), is described by the Marčenko-Pastur
law with a rescaled variance σ 2(1 − μ2

0). The ensemble-
averaged mean position of the separated eigenvalues, λ, is
given by

λN = σ 2

[
(N − 1)μ2

0 + 1
][

(N − κ)μ2
0 + κ

]
Nμ2

0

� σ 2

(
Nμ2

0 + 1
)(

Nμ2
0 + κ

)
Nμ2

0

. (39)

A simple generalization of the equal-cross-correlation matrix
is a block diagonal matrix where each block is an equal-
cross-correlation matrix. This matrix can also be seen as a
diagonal plus a finite-rank matrix. In this case the above result
can be easily generalized for other separated eigenvalues.
However, it has been shown in Ref. [18] that even for a
more complicated spectrum of ξ , the analytic result for the
kth separated eigenvalue λk can be written as

λk = σ 2λ
(ξ )
k

(
1 − κ + κ λ

(ξ )
k

〈
Qk

(
λ

(ξ )
k 1N − ξ

)−1〉
N

)
, (40)

where λ
(ξ )
k is the kth eigenvalue of ξ and Qk = 1N − |k〉 〈k| is

the projection operator to the kth eigenstate |k〉 of ξ .

V. PASTUR EQUATION FOR NC-WE

Analytically, nc-WEs are perhaps the simplest case next
to WEs. nc-WEs have already been addressed in Refs. [35–
37,42,48] where many important results have been derived
using different methods. Since the Pastur equation has never
been given explicitly, below we derive the Pastur equation for
the nc-WE.

We begin with using ξ = 1N , in Eqs. (28) and (29), which
results in

g11 =
〈

1

(u − σ 2g22)1N − ζ

u−σ 2κg11

〉
N

, (41)

g22 =
〈

1

(u − σ 2κg11)1T − η

u−σ 2g22

〉
T

, (42)

where in the second equality we have used B†B/T = η. Notice
that except for the zeros, ζ and η both have the same spectrum.
As mentioned above, Eqs. (33) and (34) also hold here. To
show this we first write

g22 = 1

T

N∑
j=1

[
u − σ 2g22

(u1N − σ 2κg11)(u − σ 2g22) − λ
(ζ )
j

]

+ (1 − κ)

(u1N − σ 2κg11)
. (43)

Next, we use Eq. (41) in the above equality and obtain the
relation (33), which consequently implies the relation (34).
Finally, we use these relations, (33) and (34), with u2 = z, to
simplify the loop equation (41) into a self-consistent equation
for gW(z). This method yields the Pastur equation for the
nc-WE:

gW(z) =
〈

1

{z − σ 2[1 − κ + zκgW(z)]}1N − ζ

1−σ 2κ gW(z)

〉
N

.

(44)

If we set now ζ = 0, then we retrieve the resolvent of the
Marčenko-Pastur density as given in Eq. (36). Otherwise, if
we set σ 2 = 0 then it will give the resolvent corresponding to
the spectrum of ζ . Like the Pastur equation for the CWE, here
as well, Eq. (44) depends on the spectrum of ζ and thus has
to be solved numerically when ζ has a nontrivial spectrum.
Below we consider a rank-1 matrix B which is closely related
with the equal-cross-correlation matrix model of the CWE.
However, unlike the CWE in this case the bulk density is not
rescaled with variance but remains the same as for the WE.
Using the techniques of Refs. [18,46] we start with this simple
choice to calculate the ensemble-averaged mean position of the
separated eigenvalues and generalize this result for the bulk
density being different from the Marčenko-Pastur density.

A. Separation of eigenvalues

We begin with a simple choice for B, viz.

Bjk = μ. (45)

042144-4



SPECTRAL DENSITY OF THE NONCENTRAL CORRELATED . . . PHYSICAL REVIEW E 90, 042144 (2014)

Then the only nonzero eigenvalue of ζ is λ
(ζ )
N = Nμ2. In this

case, from Eq. (44) we get

gW(z) = g(0)(z) + N−1

z − σ 2[1 − κ + zκgW(z)] − λ
(ζ )
N

1 − σ 2κ gW(z)

.

(46)

Here we have used

g(0)(z) =
〈
QN

[
z1N − σ 2[1 − κ + zκgW(z)]1N

− ζ

1 − σ 2κ gW(z)

]−1〉
N

, (47)

where Q(ζ )
k = 1N − |k〉〈k| and |k〉〈k| is the projection operator

for the eigenstate |k〉 corresponding to the eigenvalue λ
(ζ )
k .

Solving Eq. (46), while ignoring the second term, we retrieve
the Marčenko-Pastur result (36) for the bulk density; it is
understood that the bulk density is normalized to 1 − 1/N .
However, in the the above equation we do not drop the
term containing ζ and treat this term as for general ζ . The
ensemble-averaged mean position of the separated eigenvalues
can be identified from the pole in the second term of Eq. (46) as

λN = σ 2[1 − κ + λNκg(0)(λN )] + λ
(ζ )
N

1 − σ 2κ g(0)(λN )
, (48)

where we have used g(0) instead of g and ignored the O(N−1)
term. Using this in Eq. (47) we obtain

g(0)(λN ) = N

1 + σ 2κN

, (49)

where

N = 〈
QN

(
λ

(ζ )
N 1N − ζ

)−1〉
N
. (50)

Next, using Eq. (49) in Eq. (48), we obtain λN . Following
Ref. [18] we can also generalize this result for the kth
separated eigenvalue, λk , as

λk = (1 + σ 2κk)[σ 2(1 − κ) + λ
(ζ )
k (1 + σ 2κk)]. (51)

The above result is of course different from that for the
CWE. However, for the rank-1 matrix B this result gives

λN = (Nμ2 + σ 2)(Nμ2 + σ 2κ)

Nμ2
, (52)

which is valid only if Nμ2 >
√

κσ 2 otherwise the separated
eigenvalue will be absorbed in the Marčenko-Pastur bulk den-
sity. Interestingly, it also coincides with (39) for μ = μ0 and
σ 2 = 1. In Ref. [38], this correspondence has been exploited
without any analytical treatment for the nc-WE. There are
the parameters chosen as μ = √

r/N and σ = (1 − r)/
√

N in
the nc-WUE case and μ0 = √

r and σ = 1/
√

N in the CWUE
case. Indeed, for these parameters the two results (39) and (52)
coincide in the leading order.

B. Bulk density

It is important to point out that Eq. (44) describes only the
bulk density and not the density of the separated eigenvalues.
It has been proven for CWUE that the density of the separated
eigenvalues is described by a Gaussian distribution [17]
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FIG. 1. (Color online) Spectral density of the nc-WOE where
Bjν = δjνμ

√
j , N = 1024, T = 2N , σ 2 = 1, and μ = 0, 1, 3, and

10. Solid lines in this figure represent the theory obtained from
the numerical solution of Eq. (44) and open circles represent the
histogram data obtained from the Monte Carlo simulation of C.
Dashed line represents the Marčenko-Pastur density, i.e., the μ = 0
case. In the inset (a) we show the density for μ = 10 and in (b) we
show the density for λ � 1 for the same μ.

and numerically the same has been found for the nc-WUE
case [38]. To obtain the bulk density for a nontrivial spectrum
of ζ , Eq. (44) has to be solved numerically. We thus use
Newton’s method, similar to the method described in Ref. [18],
to solve Eq. (44). We consider

f
(
g(n)
W (z)

) − g(n)
W (z) = 0, (53)

at given z where f (g(n)
W (z)) is the rhs of Eq. (44) for g(n)

W (z),
and n represents the iteration number starting from 0 with an

initial guess g(0)
W (z).

To illustrate the result (44) we use Bjν = δjνμ
√

j , for
0 � j � N and σ 2 = 1. In Fig. 1 we compare the numerical
solution of our theory for N = 1024 with the Monte Carlo
simulations for N = 1024 and T = 2N . In the main figure,
we show results for μ = 1 and 3, and for μ = 0 we plot only
the Marčenko-Pastur density. As can be seen from this figure,
the density tends to attain a uniform shape as μ is increased.
This is closely predicted by the theory. In two insets, (a) and
(b), we show the result for μ = 10. As shown in (a), our theory
gives a reasonable account for the histogram data throughout
the support for the density. In (b) we notice oscillations, for
λ < 1, which is almost consistent with the theory.

VI. PASTUR-EQUATION FOR NC-CWE

Having specialized in CWE and nc-WE cases we now
consider ξ �= 1N and ζ �= 0 in Eqs. (28) and (29). We first
note that Eq. (29) can be written as

g22 = 1 − κ

u − σ 2κg11;ξ
+ κ〈[(u − σ 2κg11;ξ )1N

− ζ (u − σ 2ξg22)−1]−1〉N . (54)
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Using this and Eq. (28) one finds the relation (33) and
consequently the relation (34). Next, exploiting relations (33)
and (34) with u2 = z in Eq. (28) we obtain a coupled-Pastur
equation:

gW;L(z) =
〈
L

1

z1N − α1(z,gW(z)) ξ − α2(gW;ξ (z))ζ

〉
N

,

(55)

where L is an arbitrary N × N matrix and

α1(z,gW(z)) = σ 2[1 − κ + κzgW(z)],
(56)

α2(gW;ξ (z)) = [1 − σ 2κgW;ξ (z)]−1.

Choices L = 1N and L = ξ yield respectively gW(z) and
gW;ξ (z) and thus complete the result. It is easy to see that
results (35) and (44) are immediate from the result (55),
respectively, for the choices L = 1N and ζ = 0, and L = 1N

and ξ = 1N .

A. Separation of eigenvalues

It is also important to note that in general Eq. (55) cannot be
simplified to the eigenvalues of ξ and ζ unless they commute
with each other. Therefore, unlike the Pastur equation, it is
difficult to extend the results (39) and (52) to the nc-CWE
case.

We consider ξjk = δjk + (1 − δjk)μ2
0 and Bjk = μδjk . In

this case we can write Eq. (55) as

gW(z) = g(0)
W (z) + 1

N

1

z − λN

. (57)

Here, since (N − 1) eigenvalues of ζ are identically zero, we
have

g(0)
W (z) =

〈
QN

1

z1N − α1(z,gW(z)) ξ

〉
N

, (58)

where Qk corresponds to the kth eigenstates of ξ and

λN = λ
(ξ )
N α1(λN,gW(λN )) + λ

(ζ )
N α2(gW;ξ (λN )). (59)

Next, we write

gW;ξ (z) = g(0)
W;ξ (z) + O(N−1),

(60)

g(0)
W;ξ (z) =

〈
QN ξ

1

z1N − α1(z,gW(z))ξ

〉
N

.

We notice a relation between α1(z,g(0)
W (z)) and

α2(z,g(0)
W;ξ (z)):

α1(z,g(0)
W (z)) = σ 2α2(g(0)

W;ξ (z)). (61)

To obtain the above result we write g(0)
W (z) in terms of g(0)

W;ξ (z)
and then use Eq. (56). This relation simplifies Eq. (59) as

λN = α2(g(0)
W;ξ (z))

[
σ 2λ

(ξ )
N + λ

(ζ )
N

]
. (62)

Further, using the above equation in Eq. (60), we find

g(0)
W;ξ (λN ) = [α2(gW;ξ (λN ))]−1�N, (63)

where

�N =
〈
QN ξ

1

σ 2
(
λ

(ξ )
N 1N − ξ

) + λ
(ζ )
N 1N

〉
N

. (64)

Substituting Eq. (63) in the definition of α2, we find

α2(gW;ξ (λN )) = 1 + σ 2κ�N. (65)

Finally, we use the above result in (62) and obtain

λN = (1 + σ 2κ�N )
(
σ 2λ

(ξ )
N + λ

(ζ )
N

)
. (66)

This result can be generalized to the block diagonal ξ and
ζ with dimensionally the same blocks where each block of
ξ is represented by an equal-cross-correlation matrix while
the corresponding ζ block is rank 1. For this setup one can
generalize results (64) and (66), replacing the subscript N by
k for the kth separated eigenvalue.

Solving the above equation for an equal-cross-correlation
matrix ξ and a rank-1 matrix ζ we obtain the ensemble
averaged mean position for the separated eigenvalue as

λN = (N�2 + σ 2)(N�2 + σ 2κ)

N�2
,�2 = μ2

0σ
2 + μ2, (67)

where the above result is valid for N�2 >
√

κ . This result is
an interesting generalization of the corresponding results for
the CWE and nc-WE. Here the bulk density is described by the
Marčenko-Pastur density with a rescaled variance σ 2(1 − μ2

0)
as in Eq. (38).

B. A nontrivial example

For nontrivial and noncommuting ξ and ζ , Eq. (55) has to
be solved numerically. Thus one has to extend the numerical
algorithm of Ref. [18] for two equations of two variables, viz.

f1
(
g(n)
W (z),g(n)

W;ξ (z)
) − g(n)

W (z) = 0,
(68)

f2
(
g(n)
W (z),g(n)

W;ξ (z)
) − g(n)

W;ξ (z) = 0,

where f1(g(n)
W (z),g(n)

W;ξ (z)) and f2(g(n)
W (z),g(n)

W;ξ (z)) are the rhs
of (55) respectively with L = 1N and L = ξ . Next, we start

with initial guesses g(0)
W (z) and g(0)

W;ξ (z) for a given z and
use Newton’s method to obtain the solution in the machine
precision.

To illustrate the result we solve Eq. (55) for ξjk = δjk +
(1 − δjk)μ(|j−k|)

0 , where Bjν = μ|j−ν| with μ = 0.5 and μ0 is
varied as μ0 = 0.1, 0.3, and 0.5. Also we choose σ 2 = 0.25
and N = 512 with T = 2N . The result is shown in Fig. 2
where open circles represent the histogram data obtained from
the Monte Carlo simulation of C and solid lines represent the
numerical solution of the theory (55) for N = 512. As shown
in the figure, the theory reasonably explains numerical results.
In this figure we also compare theory for μ = 0.5 for the
corresponding CWOE (μ = 0). As can be seen in this figure,
the nonzero mean not only changes the density profile but also
shifts nontrivially the spectrum.

VII. SUMMARY AND DISCUSSIONS

We have studied nc-CWE and obtained an exact result for
the spectral density at large matrix dimension. The derivation
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FIG. 2. (Color online) Spectral density for nc-CWOE where
ξjk = δjk + (1 − δjk)μ(|j−k|)

0 and Bjν = μ|j−ν| with μ = 0.5 and
σ 2 = 0.25. In this figure we have used N = 512 and T = 2N . In
the main figure we show the spectral density on semilog plot for
μ0 = 0.1, 0.3, and 0.5, respectively with black, orange, and brown
colors. Solids lines represent the theory (55) for nc-CWE and dashed
lines represent the corresponding μ = 0 cases. We use the same color
code for μ0 in the inset where we compare only theory for μ = 0 and
μ = 0.5 on the log-log scale.

is formalized in two steps, viz. first we obtain the loop equation
for X, which eigenvalues are closely related with those of W,
and second we derive the Pastur equation for W from the
loop equation. With this formalism we have derived Pastur
equations for CWE, nc-WE, and nc-CWE. For all three cases,
we have exploited a linear relation between the averaged
quantities ug11 and ug22. We notice that in the first two cases
the Pastur equation depends on the eigenvalues of positive
definite symmetric matrices, ξ or ζ = BB†/T . We have shown
that in general, unlike CWE and nc-WE, the spectral density

for nc-CWE does not depend simply on the spectra of ξ and
ζ , rather more intricately on the matrices.

From the Pastur equation, we have worked out the
ensemble-averaged mean position of the separated eigenvalues
for the nc-WE. For the CWE this has been worked out in
Refs. [17,18,42]. Following Ref. [18], we have derived the
result for a general ζ . In the nc-CWE case the Pastur equation
is more complicated. However, we have been able to work
out the ensemble-averaged mean position of the separated
eigenvalues for some special cases. As for CWE and nc-WE,
for more general cases of nc-CWE we have used Newton’s
method to solve the Pastur equation numerically. We have
supplemented our theoretical result with numerics for some
nontrivial examples.

Finally, it would be interesting to extend this generalization
for the Wishart model of nonsymmetric correlation matrices,
those as dealt with in Refs. [51,52]. Another important
extension of this work is related to short time series, meaning
the situation where the number of time series is larger than
the length of time series. This situation is often encountered
in the correlation analysis of multivariate complex systems.
In these examples, N � T resulting in a correlation matrix
which is singular with significantly many zero eigenvalues.
In Refs. [55,56] the power map method has been proposed
and used recently in Ref. [28] as a tool to get rid of this
degeneracy. This method results in a spectrum emerging from
the zero eigenvalues when the exponent is very close to 1. It has
been shown in Ref. [27] that the so emerging spectrum is very
sensitive to correlations. We believe that study of the emerging
spectra corresponding to the nc-CWE is very important in the
context of short time series.
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[7] P. Šeba, Phys. Rev. Lett. 91, 198104 (2003).
[8] M. S. Santhanam and P. K. Patra, Phys. Rev. E 64, 016102

(2001).
[9] S. Abe and N. Suzuki, arXiv:0909.3830v1.

[10] J. Aljadeff, R. Segev, M. J. Berry II, and T. O. Sharpee, PLOS
Comput. Biol. 9, e1003206 (2013).

[11] J. Wishart, Biometrika 20A, 32 (1928).
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