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Phenomenological picture of fluctuations in branching random walks
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We propose a picture of the fluctuations in branching random walks, which leads to predictions for the
distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret
the 1/

√
t correction to the average position of the rightmost particle of a branching random walk for large times

t � 1, computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this
process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully
compare to numerical simulations of a particular model of a branching random walk.
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I. INTRODUCTION

The goal of this work is to better understand the distribution
of the particles generated by a branching random-walk process
after some large evolution time. Our initial motivation for
addressing this problem comes from particle physics [1] (for
a review, see [2]). In the context of the scattering of hadrons
at large energies, high-occupation quantum fluctuations domi-
nate some of the scattering cross sections currently measured,
for example, at the LHC. These quantum fluctuations can be
thought of as being built up, as the hadrons are accelerated,
by the successive branchings first of their constituent quarks
into quark-gluon pairs, and then of the gluons into pairs of
gluons, with some diffusion in their momenta. The dynamics
of these gluons is actually exactly the kind of branching
diffusion process that we are going to address in this work.
Therefore, results that do not depend on the detailed properties
of the particular branching random walk considered may be
transposed to particle physics, and give quantitative insight
into hadronic scattering cross sections.

Of course, the applications of branching random walks
are much wider than particle physics. Branching random
walks may, for example, generate Cayley trees, which would
represent the configuration space of directed polymers in
random media [3].

Although our discussion will be very general, for definite-
ness we shall consider a simple model for a branching random
walk (BRW) in continuous time t and one-dimensional space
x, defined by two elementary processes: Each particle diffuses
independently of the others with diffusion constant 1, and may
split into two particles at rate 1, in such a way that the mean
particle density 〈n(t,x)〉 obeys the equation

∂t 〈n(t,x)〉 = ∂2
x 〈n(t,x)〉 + 〈n(t,x)〉. (1)

A particular realization of this BRW is represented in Fig. 1.
Several properties of BRW are known. In particular, in any

given realization of the stochastic process, for large enough
times, the forward part of the distribution of the particles
looks like an exponential e−x (scaled by an appropriate

*Author to whom all correspondence should be addressed:
stephane.munier@polytechnique.edu

time-dependent constant, also depending on the particular real-
ization considered) up to fluctuations effectively concentrated
at its low-density tip. We shall call this exponential part the
“front.”

Then, one can also establish rigorously [4,5] that the
probability Q(t,x) that all particles sit at a position smaller
than x obeys a nonlinear partial differential equation that reads

∂tQ(t,x) = ∂2
xQ(t,x) − Q(t,x) + Q2(t,x). (2)

This is a version of the Fisher-Kolmogorov-Petrovsky-
Piscounov (FKPP) equation [6,7]. (For an extensive review,
see Ref. [8], and for more applications of the FKPP equation,
see, e.g., Ref. [9]). If the BRW starts at time t = 0 with a
single particle located at x = 0, then the initial condition is
Q(t = 0,x) = θ (x).

With such an initial condition, the solution of the FKPP
equation tends to a so-called “traveling wave.” The position
of a FKPP traveling wave, which is related to the average
position of the rightmost particle in the BRW, is known in the
large-time limit:

[FKPP front position] = 2t − 3

2
ln t + const + CX√

t
+ · · ·

with CX = −3
√

π, (3)

where the last term was found by Ebert and Van Saarloos
[10]. (The additive constant depends on the way one defines
the position of the front. It is uninteresting for our purpose.)
Note that the Ebert–Van Saarloos term is a decreasing but
positive contribution to the front velocity. Equation (3) may
easily be extended to different branching diffusion models by
appropriately replacing some numerical constants (see below,
Sec. V).

More generally, if N (t) is the number of particles at time t ,
and {xi(t)} is the set of their positions in a given realization,
then

Gt (x) ≡
〈

N(t)∏
i=1

f [x − xi(t)]

〉
(4)

for any given function f satisfies the same FKPP equation as
Q, the initial condition being the function f (x) itself in the
case of a BRW starting with one single particle at the origin.
If f is a monotonous function of x such that f (x) −→

x→−∞ 0
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FIG. 1. (a) One realization of the continuous BRW up to time t = 8. To guide the eye, we also plot the theoretical (truncated) mean
position of the boundaries of the BRW, namely ±X̄t = ±2t ∓ 3

2 ln t (dashed lines). (b) Distribution of the particles at times t = 2, 6, and 8
for this particular realization in bins of size 1 (log10 scale on the vertical axis). We see the bulk building up a smoother (more “deterministic”)
distribution as time elapses, while the low-density tails remain noisy. Also, for this realization, the distribution is skewed toward negative values
of x, due to an accidentally large drift in the initial stages, whose memory is kept throughout the evolution.

and f (x) −→
x→+∞ 1, and if f reaches 1 fast enough, namely 1 −

f (x) ∼
x→+∞ e−γ x with γ > 1, then the traveling wave solution

holds and the front position is still given by Eq. (3). Another
interesting particular case is the “critical case” when f is such
that γ = 1 exactly. Then,

[ FKPP front position]critical=2t−1

2
ln t + const + CY√

t
+ · · · ,

(5)

where CY is a constant that we shall determine later on (see
Sec. IV).

There also exists a theorem established by Lalley and
Sellke [11] that gives the asymptotic (large time) shape of
the distribution of the position of the rightmost particle in a
frame whose origin is at position ln Z, where Z is some random
variable that depends on the realization and may be thought of
as a characterization of the position of the bulk of the particles
in the BRW. (Its precise definition will be given later on.) More
recently [12–14], the distribution of the distances between the
foremost particles was derived with the help of the solution to
the FKPP equation with some peculiar initial condition.

In this paper, we propose a phenomenological picture of
the fluctuations in BRW, and we derive within this picture
some statistical properties of a random variable similar to ln Z.
(Appendix B also lists some properties of ln Z itself.)

In Sec. II, we shall introduce our phenomenological picture
for branching random walks. Section III is devoted to deriving
the quantitative predictions of this model for a particular ran-
dom variable that can characterize the early-time fluctuations
of the branching random walk. The computation of a few
free constant parameters requires us to solve deterministic

equations: This is explained in Sec. IV. Numerical checks are
in order since our analytical results are based on conjectures:
This is done in Sec. V. In light of our phenomenological model,
we shall then come back to the discussion of the Ebert–Van
Saarloos result on the 1/

√
t correction to the position of FKPP

fronts (Sec. VI). Conclusions are given in Sec. VII.

II. PHENOMENOLOGICAL DESCRIPTION OF
BRANCHING RANDOM WALKS

A. Picture

The picture of the fluctuations in branching random walks
(BRWs) that we have in mind is the following. There are
essentially three types of fluctuations that may affect the
position of the front or of the foremost particle.

(i) First, there are fluctuations occurring at very early times
(t ∼ 1), when the system consists in a few particles. They have
a large (of order 1) and lasting impact on the position of the
front or of the rightmost particle. The main effect is given by the
random waiting time of the first particle before it splits into two
particles, during which it diffuses, but the subsequent waiting
times of the latter two particles also contribute, etc., until the
system contains a large enough number of particles that makes
it partly “deterministic.” We do not believe that there is a
simple way to compute the effect of these fluctuations, since
there is no large parameter in the problem that would allow for
sensible approximations.

(ii) Once the system contains many particles, which
happens, say, at time t ′0 � 1, it enters a “mean-field” regime: In
a first approximation, its particle density obeys a deterministic
evolution with a moving absorptive boundary at a position that
we shall call X̄t (and symmetrically at −X̄t ), set in such a way
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that the particle density is 1 at some fixed distance of order 1
to the left or to the right of this boundary, respectively. These
boundaries simulate the discreteness of the particles. This is
the Brunet-Derrida cutoff [15], and it was shown to correctly
represent the leading effect of the noise on the position of the
front in the context of the stochastic FKPP equation.

From now on, we shall focus on the right boundary. (The
right and the left halves of the BRW essentially decouple once
the system has grown large enough.) The large-time expression
of the shape of the particle density near the right boundary
reads, in such a model,

ψX̄t
(x,t) = [α(x − X̄t ) + β] exp

(
X̄t − x − (X̄t − x)2

4t

)

× θ (X̄t − x) (6)

in the region 1 � X̄t − x �
√

t , where

X̄t = 2t − 3

2
ln t + CX̄√

t
(7)

is, up to an uninteresting nonuniversal additive constant, the
position of the tip of the front, namely of the right boundary.
The Heaviside step function θ enforces the fact that the
particle density is 0 to the right of X̄t . CX̄, α < 0, and β

are constants undetermined at this stage. ψ is essentially a
decreasing exponential supplemented with a Gaussian and a
linear prefactor. The t dependence enters explicitly as the width
of the Gaussian, and implicitly through the position X̄t of the
absorptive boundary. (There are corrections to the shape of the
front at order 1/

√
t , namely to the function ψX̄ itself, but it

turns out that we do not need to take them into account in our
model, except for the determination of one overall numerical
constant: We will come back to the derivation of Eq. (6) and
of its corrections in Sec. IV.)

The fluctuations on top of this essentially deterministic
front we have just described must take place in the tip region,
where the particle density is low. We shall assume that a single
fluctuation effectively gives the dominant correction to the
deterministic evolution, and that the distribution p(δ) of the
position δ of this fluctuation with respect to the tip of the front
is exponential:

p(δ) = C1e
−δ. (8)

We have found (see below) that these fluctuations bring a
contribution of order 1/

√
t to the average position both of the

front and of the rightmost particle in the BRW.
(iii) Finally, there are tip fluctuations occurring at very late

times, say between t − t̄0 and t , where t̄0 is of order 1. They
are also distributed as e−δ . They obviously add noise to the
position of the tip of the front, but they do not have an effect
on the bulk of the particle distribution since they do not have
time to develop their own front at time t .

This picture is parallel to the phenomenological model for
front fluctuations proposed in Ref. [16] in the context of the
stochastic FKPP problem.

B. Variables

To arrive at quantitative predictions for the behavior of the
BRW, we need to introduce random variables that characterize
the realizations. We shall discuss the following ones:

(i) Xt , the position of the rightmost particle.
(ii) Yt = √

t
∑

i e
xi (t)−2t , where the sum goes over all the

particles in the system.
(iii) Zt = ∑

i [2t − xi(t)] exi (t)−2t .
Throughout, we shall denote by 〈A〉 the statistical average

(over realizations) of a given variable A in the full stochastic
model, and by Ā the value of this variable in a mean-field
approximation of the same model with a discreteness cutoff at
the tip. [These notations have already been used in Eq. (1) and
Eqs. (6) and (7), respectively.] Discrete sums over the particles
will often be replaced by integrals wherever the particle density
is large enough.

Let us briefly comment on the random variables we have
just introduced.

(i) As already mentioned, 〈Xt 〉 is related to the solution
of the FKPP equation with the step function as an initial
condition.

(ii) The average 〈ln Yt 〉 tends to a constant at large t . In
addition, in any given event, the random variable ln Yt itself
tends to a constant, which has some distribution (which we do
not know how to compute) that may be used to characterize
the early-time fluctuations. Note that an appropriate generating
function of the moments of

Ỹt ≡
∑

i

exi (t) = Yt × e2t

√
t

(9)

also obeys the FKPP equation, but with the “critical” initial
condition discussed in the Introduction. We will come back
to the latter fact in Sec. IV. Also, in the context of directed
polymers in random media, Ỹt is the partition function and
〈ln Ỹt 〉 is the free energy averaged over the disorder [3].

(iii) Zt is the variable used by Lalley and Sellke in the
theorem alluded to in the Introduction. However, we are not
going to focus on this variable in the body of this paper,
since we found it has many drawbacks for our purpose. First,
a practical drawback: Although Zt tends almost surely to a
positive constant when t → +∞ [11], it takes negative values
at finite times, with finite probability; ln Zt is then undefined in
these particular realizations. Second, a theoretical drawback:
It turns out that the finite-time corrections to the moments of
ln Zt are very sensitive to the initial fluctuations, the ones that
are not computable analytically. We shall nevertheless quote a
few results on the distribution of ln Zt in the Appendix B.

In some intuitive sense, ln Yt and ln Zt characterize the
position of the “front” of a particular realization of the
evolution at time t .

The variables ln Yt and ln Zt keep the memory of the initial
fluctuations. Therefore, we shall not attempt to compute the
distribution of the fluctuations in ln Y accumulated over the
whole history of the BRW, but instead the fluctuations of this
variable between two large times t0 and t , in order to have a
quantity that is independent of the very early times at which
there is no mean-field regime.

III. STATISTICS OF f ≡ ln Yt − ln Yt0 IN THE
PHENOMENOLOGICAL PICTURE

Here, starting from the phenomenological model defined
in Sec. II, we shall deduce results on the distribution p(f )
of the variable f ≡ ln Yt − ln Yt0 (and on its moments) for
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t,t0,t − t0 � 1, up to one single constant for the moments
of order larger than 2, and up to an additional constant
for the first moment. Throughout, we shall aim at the
accuracy O(1/

√
t0,1/

√
t,1/

√
t − t0) for p(f ) and neglect

higher powers of these expansion variables.

A. Effect of a fluctuation on ln Y

We first compute Ȳt , namely the variable Yt in the mean-
field approximation with the cutoff in the tail. Using the
definition of the variable Yt in Sec. II B and using Eqs. (6)
and (7), we find

Ȳt = √
t

∫ +∞

−∞
dx ψX̄t

(x,t)ex−2t = −2α

(
1 + CȲ√

t

)
, (10)

at first order in 1/
√

t . CȲ is a constant literally equal to
CX̄ − β

√
π

2α
in this calculation, but there would also be other

contributions to CȲ that we cannot get from the large-t
asymptotic shape of the front exhibited in Eq. (6). We shall
postpone the full calculation of CȲ to Sec. IV.

It turns out that the term of order 1/
√

t in Eq. (10)
generates O(1/t) contributions to the distributions and to the
moments that we shall address. Hence it is enough for our
purpose to keep no more than the constant term, namely we
write

Ȳt 
 −2α. (11)

We perform a more complete calculation in Appendix A,
keeping the subleading terms, in order to demonstrate that
this a priori approximation is indeed accurate enough.

Let us consider a fluctuation occurring at time t1 � 1 at
a distance δ from the tip of the deterministic front. From
Eq. (7), at time t > t1 such that t − t1 � 1, this fluctuation
has developed its own front whose tip sits at position

X̄δ,t = X̄t1 + δ + X̄t−t1 = X̄t + δ − 3

2
ln

t1(t − t1)

t
. (12)

There would of course be terms proportional to 1/
√

t1, 1/
√

t ,
and 1/

√
t − t1 also here, but again we anticipate that they

would eventually lead to corrections of higher order to the
quantities of interest. We refer the reader to Appendix A for
the details.

The shape of the front generated by this fluctuation will
eventually have the form C × ψX̄δ,t

(x,t − t1), where C is a
constant that we cannot determine since it is related to some
“average” shape of the fluctuation. With this extra fluctuation,
Yt has the following expression:

Yt = √
t

∫ +∞

−∞
dx ψX̄t

(x,t)ex−2t

+C
√

t

∫ +∞

−∞
dx ψX̄δ,t

(x,t − t1)ex−2t . (13)

The first term is just Ȳt : We replace it by Eq. (11). The second
term is integrated in the same way as the first one, using the
expression (12) for X̄δ,t . We find

Yt = −2α

(
1 + C

eδ

t
3/2
1

√
t

t − t1

)
. (14)

Thus the forward shift in ln Yt induced at time t by such a
fluctuation occurring at time t1 reads

δ ln Yt = ln Yt − ln Ȳt = ln

(
1 + C

eδ

t
3/2
1

√
t

t − t1

)
. (15)

Note that in the asymptotic limit of interest, at first glance,
the nontrivial term in this expression seems to be of order
1/t

3/2
1 , thus, if t1 ∼ t0, it is smaller than our accuracy goal.

However, it is enhanced by the eδ factor, which turns out to be
large.

B. Probability distribution and moments

We may convert the conjectured probability of a forward
fluctuation of size δ [Eq. (8)] into the probability distribution
of the difference of ln Y between two times t0 and t > t0 by
simple changes of variables. We first discuss the variable

δf ≡ δ ln Yt − δ ln Yt0 . (16)

The fundamental observation is that a fluctuation may essen-
tially have two opposite effects on δf ≡ δ ln Yt − δ ln Yt0 . If
it occurs after time t0, then it gives a positive contribution. If
instead it occurs before t0, it generates a negative δf . Now we
observe that the difference between δf and f reads ln Ȳt /Ȳt0 ,
which is of order 1/

√
t,1/

√
t0, and thus we may trade δf for

f (see Appendix A for more details).
Let us first address the case in which the fluctuation occurs

between t0 and t . Using Eq. (15) together with the distribution
(8), the probability that the size of the shift in δf induced by a
fluctuation at time t1 is less than some F reads

P (f < F ; t1) = C1

(
1 − C

t
3/2
1

√
t

t − t1

e−F

1 − e−F

)
. (17)

We shall always assume that F is finite, and the order-
ing t,t1,t − t1 � 1. The probability distribution of f then
reads

p(f ; t1) = ∂P (f < F ; t1)

∂F

∣∣∣∣
F=f

= CC1

t
3/2
1

√
t

t − t1

e−f

(1 − e−f )2
.

(18)

The rate of the fluctuations is assumed constant in time, thus
the distribution of f results from a simple integration over t1
from t0 to t with uniform measure. It reads

p(f ) = 2CC1

√
1

t0
− 1

t

e−f

(1 − e−f )2
for f > 0. (19)

Exactly in the same way, we may compute the probability
distribution of f when the fluctuation occurs at a time smaller
than t0. In this case, the effect on f of a fluctuation of size δ

reads

f = ln
1 + C eδ

t
3/2
1

√
t

t−t1

1 + C eδ

t
3/2
1

√
t0

t0−t1

. (20)
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Using the same method, we find

p(f ) = 2CC1

√
1

t0
− 1

t

ef

(1 − ef )2

×
(

1 −
√

1 − ef

1 + ef

)
for f < 0. (21)

The integral over t1 which has to be performed to arrive at
these expressions is dominated by values of t1 of the order of
t0. This helps to understand a posteriori why we were allowed
to drop terms of order 1/

√
t and 1/

√
t1 in Eqs. (10) and (12),

respectively, although we were aiming at such accuracy for
p(f ).

The probability distribution given in Eqs. (19) and (21)
cannot be normalized, and the first moment 〈f 〉 is also
divergent. We shall compute the latter separately in the next
section.

An analytic continuation of the generating function for the
moments of f can be obtained from Eqs. (19) and (21) by a
direct calculation. We get

〈eνf 〉 = 2CC1

√
1

t0
− 1

t

{
− νψ(−ν) + νψ(ν)

+√
π

[
�
(

1
2 + ν

2

)
�
(

ν
2

) + �
(
1 + ν

2

)
�
(

1
2 + ν

2

)]}, (22)

keeping in mind that this formula can be used only for moments
of second order or higher.

The analytical structure of Eq. (22) is particularly simple.
There are poles on the positive real ν axis, fully contained in
the first term −νψ(−ν): They correspond to positive values of
f . All the other poles, contained in the remaining terms, are
located on the real negative axis and correspond to negative
values of f .

A comment is in order on the conjectured probability
distribution (8) of the tip fluctuations that we used in the above
derivation. Actually, we omitted a time-dependent Gaussian
factor of the form e−δ2/(4t1), which would cut off the exponential
distribution of δ at a distance 2

√
t1 ahead of the tip of the

front, and thus modify the distribution of f for large positive
f . However, numerically, we do not find evidence for such a
modification: It seems that Eq. (19) has a more general validity.
We do not have a good explanation for this surprising fact in
the context of our phenomenological model for fluctuations.
But it turns out that a different calculation of the positive
f fluctuations outlined in Appendix C does not have such
limitations.

C. Correction to the first moment of f due to the fluctuations

Since it is not possible to use Eq. (22) to get the first
moment of f , we shall arrive at its expression through a
direct calculation. We must take into account the expansion
(keeping terms at least as large as 1/

√
t , 1/

√
t0, 1/

√
t − t0)

of the density of particles in the deterministic limit with
a discreteness cutoff, and, in addition, the effect of the
fluctuations which intermittently speed up the evolution. We
have already guessed that there is an O(1/

√
t) contribution to

the deterministic evolution [see Eq. (10)], but a full calculation

will eventually be needed. Here, we shall simply denote by CȲ

its coefficient.
The average of f = ln Yt − ln Yt0 over realizations has

thus a mean-field contribution, and a contribution from the
fluctuations which in turn can be decomposed in positive
and negative contributions μ+

1 and μ−
1 , respectively. We shall

evaluate the latter in this section.
We write

μ1 = 〈
ln Yt − ln Yt0

〉 = CȲ

(
1√
t

− 1√
t0

)
+ μ+

1 − μ−
1 . (23)

Using Eqs. (8) and (15), we get the expression

μ+
1 =

∫ t

t ′0

dt1

∫ +∞

0
dδ C1e

−δ ln

(
1 + C

eδ

t
3/2
1

√
t

t − t1

)
(24)

for the positive part of the contribution at t of the fluctuations,
and

μ−
1 =

∫ t0

t ′0

dt1

∫ +∞

0
dδ C1e

−δ ln

(
1+C

eδ

t
3/2
1

√
t0

t0 − t1

)
(25)

subtracts the effect at t0 of the fluctuations occurring at t1 < t0.
We have introduced a time t ′0 of order 1 as a lower bound in
these integrals in order to make these expressions finite. The
physical meaning of this cutoff is clear: Before t ′0, there is no
mean-field regime because the whole system consists in a few
particles only.

Let us start with the computation of μ+
1 . It is useful to

perform the change of variables

λ = t1

t
, uδ = e−δ t3/2

C
λ3/2

√
1 − λ, (26)

which leads to the following expression of μ+
1 :

μ+
1 = CC1√

t

∫ 1

t ′0
t

dλ

λ3/2

1√
1 − λ

∫ u0(λ)

0
duδ ln

(
1 + 1

uδ

)
, (27)

where u0(λ) = t3/2

C
λ3/2

√
1 − λ. u0 is large compared to 1,

except when 1 − λ is of order 1/t3. But the contribution of
the region [1 − 1/t3,1] in the λ integration is smaller than
∼ 1/t3/2, and hence negligible. So we may always assume
u0 � 1.

The integral over uδ is performed analytically, and the large-
u0 limit may eventually be taken:∫ u0

0
duδ ln

(
1 + 1

uδ

)
= (1 + u0) ln(1 + u0)

−u0 ln u0 ∼
u0�1

ln u0. (28)

The remainder reads

μ+
1 = CC1√

t

[
ln

(
t3/2

C

)
I0 + I1

]
, (29)

where

I0 =
∫ 1

t ′0/t

dλ λ−3/2(1 − λ)−1/2,

(30)

I1 =
∫ 1

t ′0/t

dλ λ−3/2(1 − λ)−1/2 ln(λ3/2
√

1 − λ).
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I0 and I1 can be performed with the help of the change of
variable λ = sin2 θ :

I0 = 2
∫ π

2

arcsin
√

t ′0
t

dθ

sin2 θ
= 2 cot

(
arcsin

√
t ′0
t

)
= 2

√
t

t ′0
− 1,

(31)

while for I1, a further integration by parts is needed to get rid of
the log. We eventually arrive at the following exact expression
for (29):

μ+
1 = 2CC1

{√
1

t ′0
− 1

t

[
ln

(
t
′3/2
0

C

√
1 − t ′0

t

)
+ 3

]

− 4√
t

arccos

√
t ′0
t

}
. (32)

The term μ−
1 is the same as the term μ+

1 except for the
replacement t → t0.

Since we are neglecting terms of relative order t0/t , t ′0/t0,
and higher, we may expand the expressions for μ+

1 and μ−
1 .

The difference μ+
1 − μ−

1 then reads

μ+
1 − μ−

1 = 4πCC1

(
1√
t0

− 1√
t

)
. (33)

Equation (23) eventually leads to the following expression
for μ1:

μ1 = (4πCC1 − CȲ )

(
1√
t0

− 1√
t

)
. (34)

We note a very important property of this result: It does
not depend on t ′0. If it did, then we would lose predictivity
because t ′0 is the arbitrary time after which we declare that
the fluctuations are small enough for our calculation to apply.
(This would not be true at the next order in 1/

√
t , 1/

√
t0.)

IV. DETERMINISTIC CALCULATIONS

In this section, we first review the Ebert–Van Saarloos
method [10] to compute the order 1/

√
t correction to the

mean position of the rightmost particle in the BRW 〈Xt 〉.
We extend the method to the position of the right boundary
in the deterministic model with discreteness cutoffs X̄t , and
eventually adapt it to 〈ln Yt 〉.

The calculations presented here will enable us to determine
the remaining unknown constants, namely CX̄ [see Eq. (7)],
CȲ [Eq. (10)], and CC1. The latter two constants appear in
particular in Eqs. (19), (21), (22), and (34).

A. Ebert–Van Saarloos calculation and its extension

The original calculation of Ebert and Van Saarloos aimed
at finding properties of the solutions to the FKPP equation,

∂tφ(t,x) = ∂2
xφ(t,x) + φ(t,x) − φ2(t,x) (35)

for φ � 1, with a steep enough initial condition, e.g.,
φ(t = 0,x) = θ (−x). This equation is actually the same as
Eq. (2), with the correspondence φ(t,x) = 1 − Q(t,x). The
nonlinearity can essentially be viewed as a moving absorptive
boundary on a linear partial differential equation, the position

of the boundary being set in such a way that φ has a maximum
at a fixed height.

To determine the value of the constants CX̄ and CȲ , we need
to address a branching diffusion equation with a nonlinearity
that forces φ to go to zero over a distance of order 1 at the right
of the point at which φ(t,x) = 1, and which therefore acts as
a tip cutoff. In terms of a smooth equation, we may write, for
example,

∂tφ(t,x) = ∂2
xφ(t,x) + φ2(t,x)

1 + φ(t,x)
(36)

and study the properties of the solutions to this equation in the
region φ � 1.

In both cases, the equation can be linearized in the
respective domain of interest, and one gets

∂tφ(t,x) = ∂2
xφ(t,x) + φ(t,x). (37)

We shall assume that the nonlinear term is equivalent to a
right-moving absorptive boundary at the accuracy at which
we want to address the problem. (This assumption was better
motivated by Ebert and Van Saarloos in their discussion of
what they call the “interior expansion” [10]). In the first case,
we study the function φ to the right of the boundary; in the
second case, we study the function to the left.

1. Solution to the linearized equation with an appropriate
boundary condition

Near the boundary, at large times, the function φ reads

φ(t,x) ∼ (αξ + β)e−ξ , (38)

where ξ = x − (position of the cutoff) ∼ x − 2t + 3
2 ln t +

· · · and this is valid for 1 � ξ � √
t . According to Ebert–Van

Saarloos [10], the large-t corrections to this shape are of the
form 1/t (there is no term of order 1/

√
t). All these features

should not depend on whether we address Eq. (35) or Eq. (36)
above, except for the signs of α and ξ .

We write

φ(t,x) = e−ξ−zg(t,z), (39)

where z = ξ 2

4t
, and the following Ansätze are taken:

ξ = x − 2t + 3

2
ln t + 2c√

t
+ · · · ,

(40)
g(t,z) = √

t g− 1
2
(z) + g0(z) + · · · .

The variable ξ may be positive in the linear domain (this is the
case for the usual Ebert–Van Saarloos solution) or negative:
Therefore, we write ξ = ε

√
4t z, where ε = ±1. The Ansatz

for the front position contained in ξ already incorporates the
two known [5] dominant terms at large t , namely 2t − 3

2 ln t .
The − 2c√

t
term was new in Ref. [10].

Thanks to these Ansätze, the original equation splits into
a hierarchy of equations for the functions g. The first two
equations of this set read

zg′′
− 1

2

+ (
1
2 − z

)
g′

− 1
2

+ 1
2g− 1

2
= 0,

(41)
zg′′

0 + (
1
2 − z

)
g′

0 + g0 = cg− 1
2

− ε 3
2

√
z
(
g− 1

2
− g′

− 1
2

)
.

042143-6



PHENOMENOLOGICAL PICTURE OF FLUCTUATIONS IN . . . PHYSICAL REVIEW E 90, 042143 (2014)

The first equation of the hierarchy is the Kummer equation

z
d2w

dz2
+ (b − z)

dw

dz
− aw = 0 (42)

with w = g− 1
2
, a = − 1

2 and b = 1
2 . Two independent solutions

are, for example, the two Kummer functions (or 1F1 hyperge-
ometric functions)

M(a,b,z) and z1−bM(a − b + 1,2 − b,z), (43)

namely, in our case,

M
(− 1

2 , 1
2 ,z
)

and
√

z M
(
0, 3

2 ,z
)
. (44)

The latter is just the elementary function
√

z, while the former
diverges like −ez/(2z) for large z, and thus has to be discarded.
Hence the solution reads

g− 1
2

= 2α′√z (45)

where α′ is a constant, arbitrary at this stage.
As for the second equation in Eqs. (41), whose solution is

the function g0, it is an inhomogeneous Kummer differential
equation. A basis for the solutions of the homogeneous part is,
for example, the set of the two functions

M
(−1, 1

2 ,z
) = 1 − 2z and

√
z M

(− 1
2 , 3

2 ,z
)
. (46)

We need to find a particular solution of the full equation. We
define y ≡ √

z; the equation for g0 then reads

d2g0

dy2
− 2y

dg0

dy
+ 4g0 = 8α′

(
− 3

2
εy2 + cy + 3

4
ε

)
(47)

and we may look for solutions in terms of a series:

g0(y) =
+∞∑
k=0

aky
k. (48)

Inserting this expression into the differential equation (47),
we get the following relations between the coefficients of the
series:

ak+2 = 2(k − 2)

(k + 1)(k + 2)
ak for k � 3,

(49)

a2 = −2a0 + 3α′ε, a3 = −a1

3
+ 4α′c

3
, a4 = −α′ε.

The free parameters are a0 and a1. We may choose them in
such a way that a2,3 = 0: We therefore set a0 = 3

2α′ε and
a1 = 4α′c. Then

a2n = −3

2

√
πα′ε

�(n − 1)

�(n + 1)�(n + 1/2)
for n � 2,

(50)
a2 = 0, and a2n+1 = 0 for n � 1,

where we used the duplication formula �(2n + 1) = 22n√
π
�(n +

1
2 )�(n + 1). Switching back to the variable z, the final
expression for the particular solution reads

g
sp
0 (z) = 3

2
α′ε + 4α′c

√
z − 3α′ε

2
F2(z),

(51)

where F2(z) = √
π

∞∑
n=2

�(n − 1)

�(n + 1/2)�(n + 1)
zn,

which, except for the sign factors ε, is the Ebert–Van Saarloos
result [10]. Following again Ref. [10], we write the solution
for g0 as

g0(z) = 3

2
α′ε + 4α′c

√
z − 3α′ε

2
F2(z) + k0(1 − 2z)

+ l0
√

z M

(
− 1

2
,
3

2
,z

)
, (52)

and inserting (52) together with (45) into (40) and (38), we
would get the expression of φ up to the constants α′,c,k0,l0. We
are now going to determine them from a matching procedure.

2. Matching conditions

We now match with the shape of the so-called “interior”
region at z � 1. This means that φ just obtained should
have the same small-z expansion as the limiting form of φ

in Eq. (38). Hence we need to impose

g− 1
2
(z) ∼

z�1
2α

√
z and g0(z) ∼

z�1
β + O(z). (53)

The first constraint is solved by setting α′ = α. As for the
second one, it means in particular that there should be no term
proportional to

√
z in g0(z). This requirement leads to the

equations

3αε

2
+ k0 = β , 4αc + l0 = 0. (54)

Now we must also check the behavior at z → +∞. We need
the expansion of the functions M and F2 for z → ∞. Let us
start with M . We shall use the integral representation

M(a,b,z)= �(b)

�(a)�(b − a)

∫ 1

0
du ezuua−1(1−u)b−a−1. (55)

We change the variable for u to 1 − u in the integral, and we
expand the (1 − u)a−1 factor near u = 0:

M(a,b,z) = �(b)

�(a)�(b − a)
ez

∫ 1

0
du e−zuub−a−1

×
+∞∑
k=0

�(1 − a + k)

�(1 − a)�(1 + k)
uk. (56)

We then notice that we may extend the integral to +∞ without
adding exponentially enhanced terms. Finally, we perform the
remaining integration over u. The result reads

M(a,b,z) = ezza−b �(b)

�(a)

+∞∑
k=0

× z−k

�(1 + k)

�(1 − a + k)�(b − a + k)

�(1 − a)�(b − a)
+ o(ez)

= ezza−b �(b)

�(a)
2F0(1 − a,b − a; 1/z) + o(ez).

(57)

Setting a = −1/2 and b = 3/2, we write

√
zM

(
− 1

2
,
3

2
,z

)
∼ −1

4
ezz−3/2

+∞∑
k=0

�
(

3
2 + k

)
�
(

3
2

) (1 + k)z−k

= −1

4
ezz−3/2

2F0

(
3

2
,2;

1

z

)
. (58)
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We now turn to F2. We write the following integral represen-
tation:

1

2
F2(z) = lim

η→0

[ ∫ 1

0
du ezuu−2+η

√
1 − u −

√
π

2

�(η − 1)

�
(
η + 1

2

)
−

√
π

2

�(η)

�
(
η + 3

2

)z]. (59)

This representation may be checked by expanding the expo-
nential in the integral and performing the integration over u.
For large z, the two rightmost terms do not play any role since
they are not exponentially enhanced. We may now treat the first
term exactly in the same way as in the case of the Kummer
function M . After taking the η → 0 limit, which is finite once
all nonexponentially enhanced terms have been discarded, we
get

F2 ∼ 2ezz−3/2
+∞∑
k=0

�

(
k + 3

2

)
(k + 1)z−k. (60)

Up to an overall constant, all terms are identical to the ones in
the expansion of the M function.

Requiring the cancellation of these exponentially enhanced
terms in the expression (52) for g0 leads to the equation

3

2
αε

√
π + l0

4
= 0. (61)

Using this equation and the second equation in (54), one
determines the value of c:

c = 3

2
ε
√

π. (62)

Hence this constant is positive for the Ebert–Van Saarloos
solution of the FKPP equation, but negative when one
computes the position of the tip of a front with a discreteness
cutoff.

3. Matched solution

All in all, we get

φ(t,x) = e−ξ−z

{
αξ + β + (3αε − 2β)z + 6αε

√
πz

×
[

1 − M

(
− 1

2
,
3

2
,z

)]
− 3αε

2
F2(z)

}
(63)

with

ξ = x − 2t + 3

2
ln t + 3ε

√
π

t
. (64)

The first two terms in φ, namely e−ξ−z(αξ + β), give back
Eq. (6). The next terms are finite-time corrections.

Identifying ξ with x − 〈Xt 〉 and setting ε = +1, we recover
the value of

CX = −3
√

π (65)

already derived by Ebert and Van Saarloos [see Eq. (3)]. With
ξ = x − X̄t and ε = −1, we read off this formula the value of
the constant

CX̄ = 3
√

π. (66)

We can also deduce the value of CȲ by using the definition of
the variable Yt given in Sec. II B and the shape of the mean-field
particle distribution (63):

Ȳt = √
t

∫ +∞

−∞
dx φ(t,x)ex−2t , (67)

which, after replacement by the expression (63) and setting
ε = −1, becomes

Ȳt = e3
√

π/t

{
− 2α − 1√

t

∫ +∞

0

dz√
z
e−z

[
β(1 − 2z) − 3αz

− 6α
√

πz

{
1 − M

(
− 1

2
,
3

2
,z

)}
+ 3α

2
F2(z)

]}
. (68)

The term proportional to β is zero after the integration, and the
other terms give numerical constants. We finally find, at order
1/

√
t ,

ln Ȳt = ln(−2α) + CȲ√
t

with CȲ = 3

2

√
π. (69)

B. Solution of the deterministic FKPP equation with the critical
initial condition

Let us consider a generating function of the moments of the Ỹt

variable:

Gt (x) = 〈
e−Ỹt e

−x 〉 =
〈

N(t)∏
i=1

e−e−(x−xi (t))

〉
. (70)

Defining f (x) = e−e−x

, Gt (x) has exactly the form shown
in Eq. (4) and thus φ(t,x) ≡ 1 − Gt (x) solves the FKPP
equation (35), ∂tφ = ∂2

xφ + φ − φ2. If the initial condition
for the underlying branching random walk is a single particle
at position x = 0,

φ(t = 0,x) = 1 − e−e−x

, (71)

and then the position of the FKPP traveling wave is given
by Eq. (5). In this section, we shall address this case using
the Ebert–Van Saarloos method in order to obtain the 1/

√
t

correction to the latter and some analytic features of φ. Indeed,
from the expression of φ, we may in principle compute the
moments of ln Ỹt , using the identity

〈
Ỹ ν

t

〉 = − 1

�(1 − ν)

∫ +∞

−∞
dx eνx ∂φ(t,x)

∂x
. (72)

1. General solution of the linearized equation in a moving frame

Following Ebert–Van Saarloos, we define

ξ = x − 2t − χt and φ(t,x) = e−ξψ(t,ξ ). (73)

The linearized FKPP equation for ψ reads

∂tψ(t,ξ ) = ∂2
ξ ψ(t,ξ ) + χ̇t (∂ξ − 1)ψ(t,ξ ). (74)

Next, we take the Ansatz χt = − 1
2 ln t − 2c√

t
, and we introduce

the variable z = ξ 2

4t
. The function g(t,z) is ψ(t,ξ ) expressed

with the help of z, and we look for solutions in the form

g(t,z) = √
t g− 1

2
(z) + g0(z). (75)
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We are led to the following hierarchical set of equations
[compare to Eq. (41)]:

zg′′
− 1

2
(z) + (

z + 1
2

)
g′

− 1
2
(z) = 0,

zg′′
0 (z) + (

z + 1
2

)
g′

0(z) + 1
2g0(z) = c g− 1

2
(z) + 1

2

√
z g′

− 1
2

(z).

(76)

The solution reads

g− 1
2
(z) = b+a

√
π erf(

√
z),

g0(z) =
[
c1

√
π

2
e−z erfi(

√
z)+c2e

−z

]

+ 2c[b+a
√

π erf(
√

z)]+aze−z
2F2

(
1,1;

3

2
,2; z

)
,

(77)

where erf , erfi are the error functions defined by

erf(x) = 2√
π

∫ x

0
dt e−t2

, erfi(x) = −i erf(ix), (78)

and a,b,c1,c2 are integration constants to be determined. The
terms in the first square brackets in Eq. (77) correspond to the
general solution of the homogeneous equation for g0, while
the next two terms represent a particular solution of the full
equation, as can easily be checked.

2. Matching conditions

Because of the initial condition, the tail of the front at
ξ → ∞ has the exact shape

φ(t,x � 2t � 1) = e−(x−2t) (79)

at any time. In particular, there is no overall constant.
Comparing to Eqs. (73) and (75), this condition means that

g(t → ∞,z → ∞) = √
t + 2c + O(1/

√
t). (80)

Let us expand our solution (77) for g(t,z) for large t,z:

g(t → ∞,z → ∞)

= √
t[b + a

√
π + O(e−z)] + 2c(b + a

√
π)

+1

2
(c1 + a

√
π )

(
1√
z

+ 1

2z3/2
+ · · ·

)
+ O(e−z). (81)

The identification with the expected asymptotic form leads to
the conditions

b + a
√

π = 1, 2c(b + a
√

π ) = 2c. (82)

The second condition is trivial once the first one is satisfied.
We also impose that all terms that are not exponentially

suppressed cancel, which is realized by setting

c1 + a
√

π = 0. (83)

We turn to the limit z → 0. The condition (38) reads, in terms
of the g function,

g(t → ∞,z → 0) = α
√

tz + β, (84)

which, in particular, forbids constant terms and terms pro-
portional to

√
z. Since the small-z expansion of our solution

reads

g(t → ∞,z → 0) = √
t[b + 2a

√
z + O(z)] + 2cb + c2

+ (4ac + c1)
√

z + O(z), (85)

we see that b needs to be set to 0 and c = −c1/(4a).
Putting everything together, we find that all constraints are

solved by the choice

a = 1√
π

, b = 0, c =
√

π

4
, c1 = −1, c2 = β. (86)

Note that the coefficient α in Eq. (84) is determined to be
α = 2/

√
π , while in the noncritical case, it is a free parameter.

3. Matched solution

All in all, our solution reads

φ(t,x) = e−ξ

[√
t erf(

√
z) + e−z

{
β + z√

π
2F2

(
1,1;

3

2
,2; z

)

+
√

π

2
[ez erf(

√
z) − erfi(

√
z)]

}]
, (87)

with

ξ = x − 2t + 1

2
ln t +

√
π

2

1√
t
, z = ξ 2

4t
. (88)

The 1/
√

t term is identical to the one in the “pushed front”
calculation of Ref. [10] [see Appendix G, Eq. (G18) therein],
although the front solution chosen in that work is different [see
Eq. (G7)].

We can now deduce from this calculation the average value
μ1 of ln Yt − ln Yt0 by expanding the exact formula Eq. (72) in
powers of ν and keeping the coefficient of the term of order ν:

〈ln Ỹt 〉 = 〈ln Yt 〉 + 2t − 1

2
ln t

= −ψ(1) −
∫ +∞

−∞
dx x

∂

∂x
φ(t,x). (89)

We find

μ1 = 〈
ln Yt − ln Yt0

〉 = √
π

2

(
1√
t0

− 1√
t

)
. (90)

Identifying the latter equation in Eq. (34) and taking into
account the value of CȲ already computed in Eq. (69), we
finally obtain a determination of CC1:

CC1 = 1

2
√

π
. (91)

V. COMPLETE RESULTS AND NUMERICAL CHECKS

Since the results we have obtained rely in an essential way on
a model for fluctuations and hence on a set of conjectures, we
need to check them with the help of numerical simulations in
order to get confidence in the validity of our picture. In the
first part of this section, we shall list the formulas we have
obtained, but extending them to more general BRW models.
Then, we define a model that is convenient for numerical
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implementation in Sec. V B, and we test our results against
numerical simulations of this particular model in Secs. V C
and V D.

A. Parameter-free predictions for a general branching diffusion

We now extend our results to general branching diffusion
kernels. In the continuous case, we write the equation for the
average particle density as

∂t 〈n(t,x)〉 = χ (−∂x)〈n(t,x)〉, (92)

where χ (−∂x) is the operator that represents the branching
diffusion. The eigenfunctions are the exponential functions
e−γ x , and the corresponding eigenvalues are χ (γ ). In the
case discussed in the previous sections, χ (−∂x) = ∂2

x + 1
and χ (γ ) = γ 2 + 1. We introduce γ0, which solves χ ′(γ0) =
χ (γ0)/γ0. Then in the case studied so far, γ0 = 1 and χ (γ0) =
χ ′(γ0) = χ ′′(γ0) = 2.

We can also address the discrete time and space case, which
is useful in particular for numerical simulations. We write

〈n(t + �t,x)〉 − 〈n(t,x)〉
�t

= χ (−δx)〈n(t,x)〉, (93)

where now δx is some finite-difference operator, such as

δxf (x) = f (x + �x) − f (x)

�x
. (94)

In this case, t and x take their values on lattices of respective
spacing �t and �x. Again, the eigenfunctions of the kernel
are the exponential functions.

The generalization of our previous results to an arbitrary
BRW relies on the fact that at large times, the “wave
number” γ0 dominates and the kernel eigenvalue χ (γ ) may be
expanded to second order around γ0 [8]. We then essentially
use dimensional analysis to put in the appropriate process-
dependent factors. We list here the generalized expressions
without detailed justifications.

With the general kernel, the FKPP front position reads [see
Eq. (3)]

〈Xt 〉 = χ ′(γ0)t− 3

2γ0
ln t + const − 3

γ 2
0

√
2π

χ ′′(γ0)

1√
t

+ · · · .

(95)

The position of the tip of the front in the mean-field model
with a discreteness cutoff reads instead

X̄t = χ ′(γ0)t − 3

2γ0
ln t + const + 3

γ 2
0

√
2π

χ ′′(γ0)

1√
t

+ · · · .

(96)

This expression generalizes Eq. (7) with CX computed in
Sec. IV A [see Eq. (66)].

The relevant variable that characterizes the fluctuations of
the position of the bulk of the particles is 1

γ0
ln Yt . We have

computed its value in the deterministic model with a tip cutoff:

1

γ0
ln Ȳt = const + 3

2γ 2
0

√
2π

χ ′′(γ0)

1√
t
. (97)

This equation generalizes Eq. (69).

The stochasticity that we found tractable analytically is
related to the fluctuations of the difference of this variable at
two distinct large times t0 and t :

f = 1

γ0

(
ln Yt − ln Yt0

)
. (98)

Its first moment reads

μ1 = 〈f 〉 = 1

2γ 2
0

√
2π

χ ′′(γ0)

(
1√
t0

− 1√
t

)
. (99)

The probability distribution of the fluctuations reads

p(f )=

⎧⎪⎨
⎪⎩
√

2
πχ ′′(γ0)

√
1
t0

− 1
t

e−γ0f

(1−e−γ0f )2 if f > 0,√
2

πχ ′′(γ0)

√
1
t0

− 1
t

eγ0f

(1−eγ0f )2

[
1 −

√
1−eγ0f

1+eγ0f

]
if f < 0.

(100)

This formula is the generalized form of Eqs. (19) and (21). A
generating function of the moments of order larger than 2 can
be written as

〈eγ0νf 〉 = 1

γ0

√
2

πχ ′′(γ0)

√
1

t0
− 1

t

{
− νψ(−ν) + νψ(ν)

+√
π

[
�
(

1
2 + ν

2

)
�
(

ν
2

) + �
(
1 + ν

2

)
�
(

1
2 + ν

2

)]}. (101)

For example, expanding this generating function, we find that
the moments of order k � 2 read

μk = 1

γ k+1
0

√
2

πχ ′′(γ0)

√
1

t0
− 1

t
mk, (102)

where the mk’s are numerical constants. The first ones read

m2 = 7π2

12
− π ln 2 + ln2 2,

m3 = 3

2
ζ (3) + π3

8
− π2

4
ln 2 + 3π

2
ln2 2 + ln3 2,

m4 = 3(2 ln 2 − π )ζ (3) + 119π4

240
− π3

2
ln 2

− π2

2
ln2 2 − 2π ln3 2 + ln4 2, (103)

or in numbers, m2 = 4.060 13 . . . , m3 = 6.565 70 . . . , m4 =
26.9902 . . . .

B. Model suitable for a numerical implementation

For simplicity of the implementation, we considered a
discretized branching diffusion model. At each time step, a
particle on lattice site x (with lattice spacing �x = 1) has the
probability �t to give birth to another particle on the same
site, �t to move to the site x + 1, �t to move to the site
x − 1, and 1 − 3�t to stay unchanged at the same site. The
eigenfunctions of the corresponding diffusion kernel are the
exponential functions e−γ x , and the eigenvalues read

χ (γ ) = 1

�t
ln[1 + �t(eγ + e−γ − 1)]. (104)
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The discretization in time is chosen to be �t = 0.01. The
relevant parameters for this model are

γ0 = 0.913 38 . . . , χ ′(γ0) = 2.054 12 . . . ,
(105)

χ ′′(γ0) = 2.798 93 . . . .

C. Check of the deterministic analytical results

We solve the equivalent of the deterministic FKPP equation
with the critical initial condition. For our discretized model,
the FKPP equation becomes the finite-difference equation

lx+1(t + �t) = lx(t) + ln{1 + �t[elx+1(t)−lx (t)

+ elx−1(t)−lx (t) − 1 − elx (t)]} (106)

with the initial condition lx(t = 0) = ln[1 − exp(−e−γ0x)].
Here x is an integer that labels the sites of the lattice. lx(t)
is the logarithm of the equivalent of φ defined in Sec. IV. The
use of a logarithmic variable avoids problems with numerical
accuracy in the region φ → 0, upon which the solution
depends crucially.

First, we integrate the solution according to Eq. (89) in
order to get 1

γ0
〈ln Yt 〉. The analytical expectation for the model

that is implemented is given in Eq. (99) with the numerical
inputs (105):

1

γ0
〈ln Yt 〉 = const − 0.8969 . . .√

t
. (107)

The numerical calculation is shown in Fig. 2, and is in perfect
agreement with the analytical formula. To estimate more
quantitatively the quality of this agreement, we fit a function
of the form

f (t) = c0 +
c 1

2√
t

+ c1

t
+

c 3
2

t3/2
, (108)

where the c’s are the free parameters. The value of c 1
2

that
we get from the fit is c 1

2
= 0.8918, which is very close to the

expected value from our analytical calculation.
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FIG. 2. 1
γ0

〈ln Yt 〉 from the numerical solution of the FKPP

equation with the “critical” initial condition, as a function of 1/
√

t .
(The constant term is subtracted.) One sees that it converges to the
analytical result Eq. (99) (with t0 → +∞; straight line) for t → +∞.
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FIG. 3. 1
γ0

ln Ȳt from the numerical solution of the branching

diffusion equation with a cutoff as a function of 1/
√

t . (The constant is
subtracted.) Again, the numerical solution converges to the analytical
result [Eq. (97); straight line] as t gets large.

Next, we solve the deterministic FKPP equation with a tip
cutoff. In practice, the latter cutoff is implemented as a smooth
nonlinearity, as in Eq. (36). More precisely, the equation we
solve numerically is the following:

lx(t + �t) = lx(t) + ln

{
1 + �t

[
elx+1(t)−lx (t) + elx−1(t)−lx (t)

− 2 + 1

1 + e−lx (t)

]}
(109)

with lx(t = 0) = −|x|. Here, lx(t) is the logarithm of the
number of particles on site x at time t . The logarithmic scale for
the evolved function is useful here because of the exponential
growth of the number of particles with time. Also in this
case, the result is in excellent agreement with the analytical
expectation (see Fig. 3), which, for the considered model,
should read [see Eq. (97)]

1

γ0
ln Ȳt = const + 2.6909 . . .√

t
. (110)

The fit of the same function f (t) as before to the numerical data
gives c 1

2
= 2.7120, which again is very close to the analytical

estimate.

D. Check of the statistics of f

We now use a Monte Carlo implementation of the stochastic
model of a branching random walk described above in order
to test the probability distribution of f given in Eq. (100). The
implementation is quite straightforward, except maybe that
after a few time steps, the number of particles nx in the central
bins [typically |x| � χ ′(γ0)t] becomes very large. To handle
such large particle numbers, we further evolve these bins in
a deterministic way. (In practice in the code, we set the limit
between stochastic and deterministic evolution at nx = 106.)
Such an approximate treatment was tested before in a similar
context; see, e.g., Refs. [17–19]. As in the deterministic case
discussed above, we also switch to logarithmic variables, lx ≡
ln nx , in order to be able to handle the large particle numbers
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FIG. 4. Distribution of f for t = 1000 and two different values
of t0. The numerical data (points with statistical error bars and bin
width) are compared to Eq. (100) (continuous lines) (log10 scale on
the vertical axis).

in a standard double-precision computer representation. Of
course, the low-density tails of the system are treated fully
stochastically.

The result for the distribution of f is displayed in Fig. 4
compared to the analytical formulas (100). We see an excellent
agreement between the outcome of our model and the
numerical data.

We can also compute numerically the first few moments
of the variable f and plot them against t0 (Fig. 5). Here
again, there is good agreement between the analytical result
and the numerical calculation, although more statistics would
be needed in order to reach a good accuracy for the moments
of order 3 and 4.
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FIG. 5. Moments of f = ln Yt/Yt0 of order 2 to 4 for t = 500 as
a function of t0 in logarithmic scales. The numerical data (full lines)
are compared to the analytical calculation in Eq. (102) (dashed lines)
(log10 scale on both axes). There are about 4 × 105 realizations in the
statistical ensemble used to perform the averages.

VI. STOCHASTIC INTERPRETATION OF THE 1/
√

t
CORRECTIONS TO THE POSITION OF FKPP FRONTS

So far, we have essentially discussed the statistics of the ln Y

random variable in light of our phenomenological picture of
BRW. We are now going to address the average of the position
of the rightmost particle 〈Xt 〉, which is also the position of the
FKPP front, and whose expression at order 1/

√
t was obtained

in Ref. [10].

A. Correction to 〈Xt〉 due to fluctuations

As in the case of 〈f 〉, in our picture, the average value of
the position of the front is given by the deterministic evolution
of the bulk of the particles, supplemented by a contribution
from fluctuations in the low-density region. We may write

μ′
1 ≡ 〈Xt 〉 − 〈

Xt0

〉 = 2(t − t0) − 3

2
ln

t

t0
+ CX̄

(
1√
t

− 1√
t0

)

+μ′+
1 − μ′−

1 . (111)

In this section, we shall compute μ′+
1 − μ′−

1 . μ′+
1 is the

contribution at time t of fluctuations that occur all over the
range of time, and μ′−

1 is the contribution at time t0 of
fluctuations that have occurred before t0:

μ′+
1 =

∫ t

0
dt1

∫ +∞

0
dδ δXt , μ′−

1 =
∫ t0

0
dt1

∫ +∞

0
dδ δXt0 ,

(112)
where the appropriate regulators will be introduced later. δXt

is the contribution to the shift of the position of the tip of the
front at time t of a fluctuation of size δ occurring at t1. Let us
now evaluate δXt .

When a fluctuation occurs at time t1 at position δ ahead of
the tip X̄t1 of the regular front, then it develops its own front
by independent branching diffusion. The resulting density of
particles at time t � t1 becomes the sum of two terms, and
therefore has the shape

ψX̄t+δXt
(x,t) = ψX̄t

(x,t) + CψX̄δ,t
(x,t), (113)

where ψ is given by Eq. (6) and X̄δ,t by Eq. (12). Using the
latter equations, one is led to

δXt = ln

[
1 + Ceδ

(
t

t1(t − t1)

)3/2]
. (114)

The calculation of μ′+
1 and μ′−

1 proceeds exactly as in the case
of μ+

1 and μ−
1 in Sec. III C. μ′+

− is still given by an equation
of the form of (27), but with the replacements I0 → I ′

0 and
I1 → I ′

1, where now

I ′
0 =

∫ 1−t̄0/t

t ′0/t

dλ λ−3/2(1 − λ)−3/2 ,

(115)

I ′
1 =

∫ 1−t̄0/t

t ′0/t

dλ λ−3/2(1 − λ)−3/2 ln[λ3/2(1 − λ)3/2].

Note that in the present case, late times need to be cut off in
order to ensure the convergence of the integrals: We pick some
arbitrary t̄0 � t , say of order 1.
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The same change of variable as before may be used: λ =
sin2 θ , then

I ′
0 = 8

∫ arcsin
√

1− t̄0
t

arcsin
√

1− t ′0
t

dθ

sin2 2θ
,

(116)

I ′
1 = 24

∫ arcsin
√

1− t̄0
t

arcsin
√

t ′0
t

dθ

sin2 2θ
ln

sin 2θ

2
.

After performing the integrals and expanding in the limit of
small t̄0, t ′0 compared to t , one gets

μ′+
1 = 2CC1

{
1√
t̄0

(
ln

t̄
3/2
0

C
+ 3

)

+ 1√
t ′0

(
ln

t
′3/2
0

C
+ 3

)
− 6π√

t

}
. (117)

The main difference with respect to Eq. (32) (once the
relevant expansions have been performed) is the presence of
t̄0-dependent terms and of an extra factor 3 in the last term. As
before, μ′−

1 is deduced from the above formula by replacing t

by t0. We then see that in the difference μ′+
1 − μ′−

1 , the t̄0 and
t ′0 dependences cancel.

As for the moments of order n � 2, they are found to depend
on t̄0, that is, on the late-time fluctuations, as they should, since
Xt is the position of the rightmost particle, which experiences
a stochastic motion of size 1 over time scales of order 1.

B. Recovering the Ebert–Van Saarloos term

Putting everything together, namely the value of CX̄ from
Eq. (66) and the value of μ′+

1 − μ′−
1 just computed, we find

the interesting expression

〈
Xt−Xt0

〉 = μ′
1 = 2(t−t0) − 3

2
ln

t

t0
+
[

3
√

π

(
1√
t
− 1√

t0

)]

−
[

6
√

π

(
1√
t

− 1√
t0

)]
. (118)

The terms that grow with t and t0 are the usual deterministic
terms from Bramson’s classical solution [5]. Then, the next
terms, under the square brackets, are, respectively, the deter-
ministic correction to the position of the discreteness cutoff in
the mean-field model, and the correction due to fluctuations.
We see that the latter is exactly twice the former, with a minus
sign. The sum of these two terms gives back the Ebert–Van
Saarloos correction for 〈Xt − Xt0〉; see Eq. (3).

In other words, the mismatch between X̄t , the position of
the tip of the front in the deterministic model with a cutoff
and 〈Xt 〉, the mean position of the rightmost particle in the
full stochastic model, is exactly due to the very fluctuations
we have been analyzing in this paper.

VII. CONCLUSIONS

Some time ago, we proposed a model for the fluctuations
of stochastic pulled fronts [16], which are realizations of
the stochastic FKPP (sFKPP) equation (for a review, see
Ref. [20]). Equations in the class of the sFKPP equation may
be thought of, for instance, as representing the dynamics of

the particle number density in a branching-diffusion process
in which there is in addition a nonlinear selection/saturation
process that effectively limits the density of particles. The
realizations of such equations are stochastic traveling waves.
The stochasticity comes from the discreteness of the number
of particles. In this context, the (deterministic) FKPP equation
represents the mean-field (or infinite number of particle) limit
of the full dynamics.

Expansions about the mean-field solution were considered
already a long time ago; see, e.g., Ref. [21], where the
so-called � expansion (see Ref. [22]) was applied to study
fluctuations in the context of reaction-diffusion processes.
Later, we could obtain new analytical results thanks to a
phenomenological model [16]. The picture encoded in our
model was the following: Most of the time, the traveling
wave front propagates deterministically, obeying the ordinary
deterministic FKPP equation supplemented with a cutoff in
the tail, accounting for discreteness by making sure that the
number density of particles reaches 0 rapidly whenever it drops
below 1. Brunet and Derrida had shown [15] that such a cutoff
correctly represents the main effect of the noise on the velocity
of the front. On top of that, in our model, there are some rare
fluctuations consisting in a few particles randomly sent far
ahead of the tip of the front, which upon further evolution
build up a new front that completely takes over the old one.
A positive correction to the front velocity was found, and the
cumulants of the front position were computed (see Ref. [16]).

In the present paper, we have considered a simple branching
random walk, without any selection mechanism. We have used
exactly the same ingredients as the ones conjectured in the
model for stochastic fronts, namely deterministic evolution
with a cutoff and fluctuations consisting in a few particles
randomly sent ahead the tip of the front at a distance distributed
exponentially. We were also able to arrive at a quantitative
characterization of the fluctuations of the front in these
processes.

There are, however, a few important differences between
the branching random walk and the stochastic FKPP front.
First, the initial fluctuations are never “forgotten” in the BRW
case. This is because of the absence of a selection mechanism
able to “kill” the front and let it be periodically regenerated by
fluctuations. Therefore, we could only compute the effect of
the fluctuations on the front position between two large times
t0 and t . Next, while it was quite straightforward to define a
proper front position in the sFKPP case (as, for example, the
integral of the normalized particle density from position say
0 to +∞), it is more tricky for the simple branching random
walk. We were led to consider the variables ln Y and ln Z

(introduced in Sec. II B). Our main result is the distribution
of the variable ln Yt/Yt0 given in Eq. (100), where t0 and t

are two large times such that t0,t,t − t0 � 1. Interestingly
enough, the distribution of the positive values of this variable
is identical (up to an overall factor) to the distribution of
the front fluctuations in the sFKPP case. The same holds
true for the distribution of ln Zt/Zt0 , to which we dedicate
Appendix B.

We were also able to discuss the average of the position of
the rightmost particle, but not its higher moments, since they
are sensitive to the very late-time fluctuations, which are not
properly described in our model. As for the average position,
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we could nevertheless propose an appealing interpretation of
the O(1/

√
t) correction to the front position computed by

Ebert and Van Saarloos in Ref. [10].
There are still many open questions. Maybe the most

outstanding one on the technical side would be to try and
compute the statistics of ln Yt/Yt0 (and of ln Zt/Zt0 ) exactly,
instead of relying on a phenomenological picture involving
conjectures. We outlined such a calculation in Appendix C,
based on the evaluation of a generating function, but without
being able to complete it.
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APPENDIX A: DETAILS OF THE CALCULATION OF THE
PROBABILITY DISTRIBUTION OF f

In this appendix, we go back to the calculations that lead
to Eqs. (15), (19), and (21), but keeping the subleading terms
that we neglected a priori in Sec. III A in order to simplify the
presentation.

The exact evaluation of Ȳt starting from its definition given
in Eq. (10), in which one inserts Eqs. (6) and (7), makes use
of the basic Gaussian integral∫ 0

−∞
dx (αx + β)e− x2

4t = −2αt + β
√

πt. (A1)

We immediately arrive at Eq. (10), which may also be rewritten
at order 1/

√
t as

Ȳt = −2αe
CȲ√

t . (A2)

We now add a fluctuation occurring, say, at time t1. It develops
a front whose tip sits, at time t , at position

X̄δ,t = X̄t + δ − 3

2
ln

t1(t − t1)

t

+CX̄

(
1√
t1

+ 1√
t − t1

− 1√
t

)
, (A3)

which is Eq. (7) supplemented with the subleading terms.
Keeping all of the latter, we see that Eq. (15) just needs to
be replaced by

δ ln Yt = ln

[
1 + C

eδ

t
3/2
1

√
t

t − t1
e

CX̄√
t1

+CȲ ( 1√
t−t1

− 1√
t
)
]
. (A4)

As for the probability distribution of the fluctuations in
Eq. (18), it becomes

p(δf ; t1) = CC1

t
3/2
1

√
t

t − t1
e

CX̄√
t1

+CȲ ( 1√
t−t1

− 1√
t
) e−δf

(1 − e−δf )2
, (A5)

which has to be integrated over t1. We recall that after
integration over t1, the obtained expression will be correct
at order 1/t1, 1/(t − t1), 1/t , hence only the first nontrivial
terms are relevant in the expansion of the exponential.

In the absence of O[1/(t − t1)] terms, the integration region
could be chosen to be [t0,t] as in Sec. III. Now, however, we
have a nonintegrable singularity at t1 = t that needs to be cut
off. Hence we write

p(δf ) =
∫ t−t̄0

t0

dt1 p(δf ; t1) = CC1e
− CȲ√

t
e−δf

(1 − e−δf )2

×
∫ t−t̄0

t0

dt1

t
3/2
1

√
t

t − t1
e

CX̄√
t1

+ CȲ√
t−t1 , (A6)

where t̄0 is an arbitrary time interval whose length is of the
order of 1.

Let us compute the integral

J ≡
∫ t−t̄0

t0

dt1

t
3/2
1

√
t

t − t1
e

CX̄√
t1

+ CȲ√
t−t1 (A7)

appearing in the previous expression. We expand the exponen-
tial to lowest order, and hence we get the three terms

J = J0 + CX̄J (1)
1 + CȲJ (2)

1 , (A8)

where J0 [which is essentially the same integral as I0 in
Eq. (30)] gives back the lowest-order result in Eq. (19):

J0 =
∫ t−t̄0

t0

dt1

t
3/2
1

√
t

t − t1
= 2

√
t − t0

t t0
− 2

√
t̄0

t(t − t̄0)


 2

√
t − t0

t t0
+ O(1/t). (A9)

As for the two other terms,

J (1)
1 = √

t

∫ t−t̄0

t0

dt1

t2
1

1√
t − t1

,

(A10)

J (2)
1 = √

t

∫ t−t̄0

t0

dt1

t
3/2
1

1

t − t1

are new contributions that are subleading, as is easy to
demonstrate from an exact calculation of these integrals. We
start with the computation of J (1)

1 :

J (1)
1 =

√
t − t0

t

(
1

t0
+ 1

t
arctanh

√
t − t0

t

)

−
√

t̄0

t

(
1

t − t̄0
+ 1

t
arctanh

√
t̄0

t

)
. (A11)

Since arctanh
√

1 − x ∼
x→0

− 1
2 ln x, it is clear that the largest

terms in J (1)
1 are at most of order ln(t/t0)/t and 1/t0. As

for J (2)
1 ,

J (2)
1 = 2

(
1√
t t0

− 1√
t(t − t̄0)

)

+ 2

t

(
arctanh

√
1 − t̄0

t
− arctanh

√
t0

t

)
. (A12)

The second term is divergent for t̄0 → 0. It gives the dominant
contribution at large t : J (2)

1 ∼ ln(t/t̄0)/t . The other terms are
also subleading, of order 1/

√
t t0 and 1/t .

Hence we see that at order O(1/
√

t,1/
√

t0,1/
√

t − t0), J
boils down to the first term in the expansion of J0 in Eq. (A9).
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Lastly, we have already noticed in Sec. III that

f − δf = ln
Ȳt

Ȳt0


 CȲ

(
1√
t

− 1√
t0

)
, (A13)

thus replacing δf by f in p(δf ) brings about only subleading
contributions.

All in all, we have justified the approximations that led
to Eq. (19). From a very similar calculation, we would also
recover Eq. (21).

APPENDIX B: STATISTICS OF fZ ≡ ln Zt − ln Zt0

In the same way as for the variable f = ln Yt − ln Yt0 , we
may try to get the statistics of fZ = ln Zt − ln Zt0 from our
phenomenological model. The variable Zt is of interest since
it is used in a mathematical theorem to characterize what we
call the position of the front in each realization, however, as we
shall see, we cannot obtain full analytical formulas for the first
moment of fZ as in the case of f . Moreover, as was already
commented above, the Zt variable has properties that make it
awkward for numerical simulations.

The first step is to compute Zt in the mean-field approxi-
mation with a tip cutoff. The result reads

Z̄t = −2α
√

π

(
1 + 3 ln t

2
√

πt

)
. (B1)

This formula is analogous to Eq. (10), but there is now a
slightly stronger t dependence, ∝ ln t/

√
t , which we are able

to determine completely from the leading-order shape of the
particle distribution. We have dropped terms of order 1/

√
t

and higher.
The effect of a fluctuation occurring at time t1 on ln Zt is

δ ln Zt = ln

⎡
⎢⎣1 + C

eδ

t
3/2
1

1 + ln
{

[t1(t−t1)]
3
2 e−δ
}

√
π(t−t1)

1 + ln t
3
2√

πt

⎤
⎥⎦ (B2)

[compare to Eq. (15)]. The following approximate formula can
now be written for the distribution of fZ:

p(fZ) =
∫

dt1

∫ +∞

0
dδ p(δ) δ

[
fZ − (

δ ln Zt − δ ln Zt0

)]
,

(B3)
where δ ln Z is given by Eq. (B2), while p(δ) is the probability
distribution (8). The bounds on the integral over t1 depend on
whether fZ is positive or negative. Indeed, positive values of
fZ are generated by fluctuations occurring at t1 between t0 and
t , while fluctuations before t0 (namely between the times t ′0 at
which we declare that the system contains a large number of
particles and t0) give rise to negative values of fZ .

The distribution of positive fZ is quite easy to compute. It
is enough to recognize that the terms of order 1/

√
t − t1 and

1/
√

t inside the square brackets give subleading contributions
to p(fZ). It turns out that the final result is very similar to
p(f ) [see Eq. (19)], except for the detailed form of the t0 and
t dependence:

p(fZ > 0) = 2CC1

(
1√
t0

− 1√
t

)
e−fZ

(1 − e−fZ )2
. (B4)
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fZ ≡ log Zt − log Zt

t0 = 200
500

analytical

FIG. 6. Distribution of fZ for t = 1000 and two different values
of t0. The numerical data (points with statistical error bars and bin
width) are compared to Eq. (B5) (continuous lines). (log10 scale on
the vertical axis.)

Inserting the value of the constant CC1 previously determined
[see Eq. (91)] and going to a general branching diffusion
kernel, we get

p(fZ > 0) =
√

2

πχ ′′(γ0)

(
1√
t0

− 1√
t

)
e−fZ(

1 − e−fZ

)2 . (B5)

Negative values of fZ are more complicated to deal with since
we can no longer neglect the 1/

√
t − t1 term in Eq. (B2)

a priori. Performing the change of variable u ≡ t
3/2
1 /(Ceδ)

and expanding for large t and t0, the equation for p(fZ)
simplifies to

p(fZ < 0) = CC1

∫ t0

t ′0

dt1

t
3/2
1

∫ t
3/2
1
C

0
du δ

×
[
fZ − 1√

π

ln(Cu)

1 + u

(
1√
t

− 1√
t0

)]
. (B6)

Due to the Dirac δ function, we see that p(fZ) = 0 as soon as
fZ < 1√

πu0
( 1√

t
− 1√

t0
), where u0 solves ln(Cu0) = 1 + 1

u0
, and

hence is of order 1. This means that p(fZ) is of higher order
in powers of 1/

√
t and 1/

√
t0 when fZ < 0.

Our formula for the distribution, Eq. (B5), successfully
compares to the numerical data; see Fig. 6. We also see that
the distribution of negative values of fZ is indeed sharply
suppressed (compare to the distribution of f in Fig. 4).

As for the mean of fZ , we found that it depends on the
arbitrary time t ′0 roughly as 1/

√
t ′0, and thus is not calculable.

APPENDIX C: GENERATING FUNCTION FOR
THE MOMENTS

In this section, we are going to find the form of the large
positive f fluctuations from a generating function, hence from
a deterministic calculation.
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1. General framework and exact formulas

We can write the following identity:〈(
Ỹt

Ỹt0

)ν〉
= sin πν

πν

∫ +∞

0
dũ dṽ

(
ṽ

ũ

)ν
∂2

∂ũ ∂ṽ
〈e−ũỸt−ṽỸt0 〉,

(C1)

see Eq. (9) for the definition of Ỹ . This equation follows
from the integral representation of the � function, and it is
suitable for series expansions in ν, which eventually lead to the
moments of ln Ỹt /Ỹt0 . For some calculations outlined below, it
will prove useful to change ũ and ṽ to the variables

u = ũ
e2t

√
t

, v = ṽ
e2t0

√
t0

(C2)

since Eq. (C1) then holds in the very same form (just up to
the replacements {ũ,ṽ,Ỹt ,Ỹt0} → {u,v,Yt ,Yt0}) directly for the
moments of ln Yt/Yt0 = f .

Let us introduce the generating function

Gt0 (x) = 〈e−(ũỸt+ṽỸt0 )e−x 〉. (C3)

It is the value of this function at zero, Gt0 (0), from which one
computes the generating function in Eq. (C1), which reads〈(

Ỹt

Ỹt0

)ν〉
= sin πν

πν

∫ +∞

0
dũ dṽ

(
ṽ

ũ

)ν
∂2Gt0 (0)

∂ũ ∂ṽ
. (C4)

The function Gt0 (x) may also be written as

Gt0 (x) =
〈

N(t0)∏
i=1

gτ [x − xi(t0)]e−ṽe−[x−xi (t0)]

〉
, (C5)

where τ ≡ t − t0 is a parameter in this equation, and

gτ (x) ≡ 〈e−ũỸτ e
−x 〉. (C6)

In this form, it is clear that Gt0 (x) obeys the FKPP equation
(with time variable t0), with the initial condition gτ (x)e−ṽe−x

.
But gτ (x) may also be written as

gτ (x) =
〈

N(τ )∏
i=1

e−ũe−[x−xi (τ )]

〉
, (C7)

which makes it obvious that it also obeys the FKPP equation
(with time variable τ ), with the initial condition g0(x) =
e−ũe−x

.
So far, these formulas are exact and should in principle

enable the computation of the moments of f , from some
hopefully limited knowledge of the properties of the solutions
to the FKPP equation.

We have not been able to fully compute the generating
function. However, we can use the systematic solution to FKPP
for the evolution of g, and a mean-field approximation for G:
Interestingly enough, this turns out to be enough to compute
the positive fluctuations of f .

2. Approximate solution: Moments of f > 0

In this section, we shall consider the stronger limit t �
t0 � 1. Let us treat the evolution from the initial time t = 0
to time t0 in the mean-field approximation with a tip cutoff:
This means that we assume a distribution of particles at time
t0 given by Eq. (6). Then the product over the particles in
Eq. (C5) becomes the exponential of an integral over the spatial
coordinate weighted by the particle density:

Gt0 (x) = exp

[
−
∫ X̄t0

−∞
dx ′α

(
x ′ − X̄t0

)
e
−(x ′−X̄t0 )− (x′−X̄t0 )2

4t0

×{ṽ e−(x−x ′) − ln[gt−t0 (x − x ′)]}
]
, (C8)

where X̄t0 = 2t0 − 3
2 ln t0. We have dropped the β term in the

form of the particle distribution as well as the 1/
√

t0 term in
X̄t0 since they would eventually give subleading contributions,
of order 1/t0, at large t0. We see that the Gaussian under the
integral makes sure that the range of integration in the variable
x ′ − X̄t0 is effectively [−2

√
t0,0].

We turn to the gt−t0 . We know that it obeys the FKPP
equation with the critical initial condition. Hence the solution
can be deduced from Eq. (87). However, since t0 � t , defining
ξ = x − ln u − 2(t − t0) + 1

2 ln(t − t0), we may expand the
solution for 1 � ξ � √

t − t0, namely

1 − gt−t0 (ξ ) 
 1√
π

ξ e−ξ . (C9)

We have dropped the term of order 1/
√

t − t0 in ξ .
We shall now proceed with the integration in Eq. (C8).

Keeping only the term of order 1/
√

t0 and switching to the u,
v variables, we find

Gt0 (0) = e−2(u+v)

(
1 + u

2 ln u − 3 ln t0√
πt0

)
. (C10)

Inserting this expression into Eq. (C4) (with ũ, ṽ being replaced
by u, v), we now perform the integrals over u and v. The exact
result is

〈eνf 〉 = 1 + 1√
πt0

[
− ν ψ(−ν) + 1 + ν

(
3

2
ln t0 + ln 2

)]
.

(C11)

Remarkably, if we invert this equation for the probability
distribution of f by performing an appropriate contour
integration over ν, we exactly recover Eq. (100) for the case
f > 0 [in the limit t → +∞, and up to replacements of
the parameters in (100): γ0 → 1, χ ′′(γ0) → 2]. Note that the
constant CC1 that appeared in the phenomenological model
is determined without any further calculation in the present
approach. The case f < 0, however, cannot be obtained unless
we were able to release the mean-field approximation for the
evolution between t = 0 and t = t0.
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