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Thermal rectification is the phenomenon by which the flux of heat depends on the direction of the flow. It
has attracted much interest in recent years due to the possibility of devising thermal diodes. In this paper, we
consider the rectification phenomenon in the quantum XXZ chain subject to an inhomogeneous field. The chain
is driven out of equilibrium by the contact at its boundaries with two different reservoirs, leading to a constant
flow of magnetization from one bath to the other. The nonunitary dynamics of this system, which is modeled
by a Lindblad master equation, is treated exactly for small sizes and numerically for larger ones. The functional
dependence of the rectification coefficient on the model parameters (anisotropy, field amplitude, and out of
equilibrium driving strength) is investigated in full detail. Close to the XX point and at small inhomogeneity and
low driving, we have found an explicit expression for the rectification coefficient that is valid at all system sizes.
In particular, it shows that the phenomenon of rectification persists even in the thermodynamic limit. Finally, we
prove that in the case of the XX chain, there is no rectification.
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I. INTRODUCTION

When a system is placed in contact with two heat reservoirs
maintained at a temperature difference �T , it eventually
reaches a nonequilibrium steady state (NESS) characterized
by a constant heat flux J from the hotter to the colder
reservoir. If we reverse the baths by making �T → −�T ,
and if the system is symmetric, we expect that J (−�T ) =
−J (�T ); that is, the flux should simply change direction.
Conversely, if the system is asymmetric, it is possible that
J (−�T ) �= −J (�T ). In this case, we say the system presents
thermal rectification, a name given in analogy to the electric
rectification of diodes.

Thermal rectification was first observed by Starr [1,2]
in 1936 and, after many years of dormancy, has gained
renewed interest in recent years, both experimentally [3–8]
and theoretically [9–12]. Much of this interest derives from
the possibility of developing thermal integrated circuits which
operate on heat instead of electric currents. The concept
of a thermal diode was put forth by Li et al. [13] and
subsequently demonstrated experimentally by Chang et al.
[8] using nanotubes. In the following years, the concepts of
thermal logic gates [14] and thermal transistors [15] have also
been proposed. For recent reviews, see [16,17].

Besides the applied interest, this phenomenon also raises
some fundamental questions. In particular, one may inquire
about the necessary ingredients for the existence of rectifica-
tion. Clearly, the system must be asymmetric. This, however,
does not necessarily suffice. As discussed by Pereira [18], in
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graded classical systems, the rectification is identically zero if
the interactions are harmonic. A good example is the classical
harmonic chain of Rieder et al. [19], where the system is
modeled by a chain of particles connected by harmonic springs,
with the first and last particles connected to heat baths via
a Langevin equation. In this system, it can be shown that,
irrespective of the nature of the asymmetry, the flux J is always
an odd function of �T .

The need for introducing asymmetries and more complex
interactions makes any analytical treatment of this problem
much more difficult. In fact, we are unaware of any papers
in the literature which deal with rectification exactly. Part
of the purpose of this paper is to fill this gap. Our goal
is to study rectification in a model that can be approached
analytically. With this in mind, we then discuss what the
necessary ingredients are for the existence of rectification
and also some of its general properties. This, we hope, will
give further insight into this scientifically interesting and
technologically important problem.

The system under study is the open one-dimensional
quantum XXZ chain subject to two baths at each end. The
dynamics is modeled by a Lindblad master equation [20–24]
and the asymmetry needed to generate a rectifying behavior
is introduced by means of an inhomogeneous magnetic field
acting on each site of the chain. For the homogeneous XXZ
chain, it has been shown for a specific pair of Lindblad
boundary terms that the exact stationary density matrix is given
explicitly as a matrix product state involving the infinite rep-
resentation of the quantum algebra Uq[SU(2)] [21,23]. Using
the explicit steady-state density matrix, exact magnetization
profiles and magnetization currents have been computed for
the isotropic XXX chain with N sites [25]. In particular, it
has been shown that for twisted boundary conditions, the
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longitudinal and transverse magnetization currents behave
qualitatively differently with the system size N [25].

We begin by describing the model in detail in Sec. II.
Some general properties of the rectification are discussed in
Sec. III and the method of solution we employed is explained
in Sec. IV. Afterwards we present the solution for a chain of
N = 2 and 3 spins in Secs. V and VI. This is followed with
the numerical solution for larger system sizes presented in
Sec. VII. Here we obtain a particularly interesting result: by
combining our exact calculations with the numerical solutions,
we are able to access the behavior of the rectification for any
size. We then use this to show that in the thermodynamic
limit, the rectification remains finite. Finally, in Sec. VIII we
prove that in the XX chain, the rectification is always zero.
The importance of this result lies in the resemblance to the
aforementioned fact that the rectification is zero in a classical
harmonic chain. Indeed, when written in terms of fermionic
creation and annihilation operators, the XX chain contains only
quadratic terms, whereas in the XXZ chain, a quartic term
appears.

II. DESCRIPTION OF THE MODEL

We consider a one-dimensional spin chain with N sites,
each described by Pauli matrices σx

i , σ
y

i , and σ z
i . The

Hamiltonian is chosen to be of the XXZ form,

H =
N∑

i=1

hiσ
z
i +

N−1∑
i=1

{
α
(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) + �σz
i σ z

i+1

}
,

(1)

where hi is the magnetic field acting on site i and, throughout,
we will usually set α = 1.

This spin chain is coupled to two baths at each end.
Assuming the Born-Markov approximation, we may describe
the time evolution of the density matrix ρ of the system using
the Lindblad master equation [20]:

dρ

dt
= −i[H,ρ] + DL(ρ) + DR(ρ), (2)

where we set � = 1. The dissipative parts DL and DR of the
equation are defined in terms of spin creation and annihilation
operators σ±

i = (σx
i ± iσ

y

i )/2, as

DL(ρ) =
∑
r=±

2LrρL†
r − {L†

rLr ,ρ}, (3)

where L± = √
γ (1 ± fL)σ±

1 and {·} is the anticommutator.
Similar definitions hold for DR with σ±

N and fR instead of σ±
1

and fL. The complete dissipator D(ρ) = DL(ρ) + DR(ρ) thus
reads

D(ρ) = γ {(1 + fL)[2σ+
1 ρσ−

1 − (σ−
1 σ+

1 ρ + ρσ−
1 σ+

1 )]

+ (1 − fL)[2σ−
1 ρσ+

1 − (σ+
1 σ−

1 ρ + ρσ+
1 σ−

1 )]

+ (1 + fR)[2σ+
N ρσ−

N − (σ−
N σ+

N ρ + ρσ−
N σ+

N )]

+ (1 − fR)[2σ−
N ρσ+

N − (σ+
N σ−

N ρ + ρσ+
N σ−

N )]}. (4)

The dimension of ρ is d = 2N . The master equation (2) can be
derived, for instance, using the repeated interactions scheme,
as demonstrated in Appendices A and B. We are interested in

the steady-state solution ρss of Eq. (2) which is obtained by
setting dρss/dt = 0. We write it as

W(ρss) = −i[H,ρss] + D(ρss) = 0. (5)

Thus, to compute the steady state, we must find the null space
of the linear superoperator W .

The two baths are characterized by the parameters fL and
fR . They can be interpreted as fL = 〈σ z

0 〉 and fR = 〈σ z
N+1〉,

where the spins 0 and N + 1 are not a part of the chain (which
runs from 1 to N ; see Appendix A). Thus, in this framework,
we are fixing the average magnetization at the boundaries.
When fL �= fR , the system will evolve to a nonequilibrium
steady state (NESS) characterized by a constant flow of
magnetization from one bath to the other. Conversely, when
fL = fR , the system relaxes to a steady state with no flux.

The flux may be found from the equation governing the
time evolution of the expectation value of σ z

i . Using Eq. (2), it
can be shown that

d

dt

〈
σ z

1

〉 = JL − J1, (6)

d

dt

〈
σ z

i

〉 = Ji−1 − Ji, i = 2, . . . ,N − 1, (7)

d

dt

〈
σ z

N

〉 = JN−1 − JR, (8)

where

Jk = 2α
〈
σx

k σ
y

k+1 − σ
y

k σ x
k+1

〉
(9)

is the magnetization flux from site k toward site k + 1, and

JL = 4γ
(
fL − 〈

σ z
1

〉)
, (10)

JR = −4γ
(
fR − 〈

σ z
N

〉)
(11)

are the fluxes from the left bath to the system and from the
system to the right bath, respectively. In the steady state
d〈σ z

i 〉/dt = 0, yielding a homogenous flux J through the
chain,

JL = J1 = J2 = · · · = JN = JR ≡ J.

It is worth mentioning that the system Hamiltonian (1) can
be mapped into a problem of hard-core bosons (the Tonks-
Girardeau model) by writing it in terms of the creation and
annihilation operators σ±

i [26],

H =
N∑

i=1

hi(2σ+
i σ−

i − 1) +
N∑

i=1

{
2α(σ+

i σ−
i+1 + σ−

i σ+
i+1)

+�[1 − 2(σ+
i σ−

i − σ+
i+1σ

−
i+1)2]

}
. (12)

Hence, instead of interpreting J as a flux of magnetization,
we may interpret it as a flux of particles in a lattice with
inhomogeneous chemical potential 2hi . We see that the terms
proportional to α give rise to a quadratic hopping term,
whereas the Z term (proportional to �) becomes quartic in
this representation and describes a two-body interaction.
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III. RECTIFICATION

For simplicity, we will assume a symmetric coupling
constant,

fL = −fR = f. (13)

We may then write the steady-state flux as J (f ). To study
the rectification, we must compare J (f ) with J (−f ), which
is the flux obtained when the baths are reversed. If the
system is symmetric, the flux will be an odd function of
f , i.e., J (−f ) = −J (f ). Otherwise, even though the sign
of J (−f ) will still be opposite to that of J (f ), in general
we will have J (−f ) �= −J (f ). In this situation, we say the
system presents rectification. To quantify this, we define the
rectification coefficient as

R = J (f ) + J (−f )

J (f ) − J (−f )
. (14)

It is zero when there is no rectification and has extrema ±1 if
the flux in one direction behaves as a perfect insulator. Also,
by definition, R(−f ) = −R(f ).

Alternatively, we could take the following approach: For
this choice of master equation, the flux is independent of
a constant shift in all the hi . Hence we may choose the hi

to interpolate, say linearly, between −h and h. This reduces
the number of parameters in the system to 5: α, �, and h

(characterizing the Hamiltonian), and f and γ (characterizing
the bath). With this choice for the hi , we may now reverse
the system instead of reversing the bath. This means changing
h → −h. If we let J (h) denote the flux for a given value of
h, then we must compare J (h) with J (−h). Note, however,
that when we reverse the system, the flux will not change sign.
If the system presents no rectification, then J (h) = J (−h).
Thus, we may define the rectification coefficient as

R = J (h) − J (−h)

J (h) + J (−h)
. (15)

Note the sign difference when compered to Eq. (14). Of
course, by symmetry arguments, this definition must coincide
exactly with that of Eq. (14). Moreover, we again have
R(−h) = −R(h), so that R will be odd in both f and h.

In Sec. VIII, we shall prove the following equality:

J (α,�,h,f ) = −J (α,−�,h,−f ). (16)

Several consequences follow from this, the most important of
which is that when � = 0,

J (α,0,h,f ) = −J (α,0,h,−f ).

Combining this with Eq. (14), we conclude that

R(� = 0) = 0.

This fact bears a striking similarity with its classical counter-
part: the term proportional to � in Eq. (12) is a quartic term so
that, if � = 0, our Hamiltonian becomes quadratic (harmonic).
In classical systems, we also observe no rectification when the
model is harmonic. Finally, it is also worth noting that Eq. (16)

implies that R will be an odd function of �. Hence, R is odd
in h, f , and �.

IV. SOLUTION OF THE STEADY STATE

In this section, we describe the formal solution method
employed for finding the steady-state density matrix ρ(t →
∞) ≡ ρss. Let us define vec(A) as the operation of stacking
the columns of a matrix A. For instance,

vec

(
a b

c d

)
=

⎛
⎜⎝

a

c

b

d

⎞
⎟⎠.

For any three matrices A, B, and C, the following identity may
then be directly verified:

vec(ABC) = (CT ⊗ A)vec(B). (17)

Next define the vector of length d2 = 22N ,

|ρ〉 = vec(ρ). (18)

All operators appearing in the Lindblad master equation (2)
have the form AρC. Hence we may write

vec(AρC) = (CT ⊗ A)|ρ〉, (19)

vec(Aρ) = vec(AρI ) = (I ⊗ A)|ρ〉, (20)

vec(ρC) = vec(IρC) = (CT ⊗ I )|ρ〉, (21)

where I is the identity matrix of dimension d. It is also
worth noting that if we decompose the density operator as
ρ = ∑

i,j ρij |i〉〈j |, on a canonical (real) orthonormal basis
{|i〉}, then the vector representation of the density matrix is
given by the tensor decomposition,

|ρ〉 =
∑
ij

ρij |j 〉 ⊗ |i〉. (22)

Using these results and noting that vec(·) is a linear operator,
we may write the master equation (2) as

d|ρ〉
dt

= W |ρ〉, (23)

where the matrix W has dimensions d2 = 22N . The formal
solution of this equation is

|ρ(t)〉 = eWt |ρ(0)〉. (24)

Let us denote by |xk〉 and 〈yk| the right and left normalized
eigenvectors (〈yi |xj 〉 = δij ) of W with eigenvalue λk; viz,

W |xk〉 = λk|xk〉, (25)

〈yk|W = 〈yk|λk, (26)

where we choose to label k from 0 to d2 − 1. Then,

W =
d2−1∑
k=0

λk|xk〉〈yk|. (27)
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The solution |ρ(t)〉 in Eq. (24) may thus be written as

|ρ(t)〉 =
d2−1∑
k=0

eλkt |xk〉〈yk|ρ(0)〉. (28)

In the present problem, the steady-state solution of the
Lindblad master equation is unique. This follows from the
fact that the operators H , LL

±, and LR
± generate, under

multiplication and addition, the entire Pauli algebra of bounded
operators of the chain [27–29]. The uniqueness of the steady
state means two things: (i) all the λk must be negative, except
one (say for k = 0) which must be zero; (ii) the left eigenvector
〈y0| corresponding to λ0 = 0 must give 〈yk|ρ(0)〉 = 1 for any
valid density matrix. This means

〈y0| = vec(I )T. (29)

From these two properties, it then follows that the steady-state
density matrix is precisely given by |x0〉. Hence we may write
Eq. (28) as

|ρ(t)〉 = |ρss〉 +
d2−1∑
k=1

eλkt |xk〉〈yk|ρ(0)〉. (30)

Since all other λk have negative real parts, |ρ(t)〉 will tend to
|ρss〉 as t → ∞. It is also worth noting the similarity between
these results and those of the classical master equation [30].

The fact that the density matrix is given by the eigenvector
|x0〉 corresponding to λ0 = 0 is also evident by setting
d|ρ〉/dt = 0 in Eq. (23). This yields the vector analog of
Eq. (5), namely,

W |ρss〉 = 0. (31)

Or, in other words, |ρss〉 is the vector that spans the null space
of W . But the null space may be computed using Gaussian
elimination, which involves only basic arithmetic operations.
Hence we reach the important conclusion that |ρss〉 (and thus J

and R) will always have the form of a ratio of polynomials in all
the parameters (no roots of high order will ever appear). This
is a very interesting result since it shows that ρss may, at least
in principle, always be computed exactly. Moreover, it follows
that as long as N is finite, ρ will always be analytic in all
parameters (this is similar to what we obtain when we compute
the partition function). It is worth mentioning, however, that
for large N , such a computation becomes impracticable. For
instance, for N = 2, 3, and 4, the dimension of W is 16, 64,
and 256, respectively.

The method just presented can also be used for numerical
calculations. Even though the matrices become very large as
N increases, they are extremely sparse. Using sparse matrix
algorithms, we are able to simulate systems up to N = 8.
It is worth mentioning that other methods, such as the time-
evolving block decimation method [24], can reach much larger
sizes. These methods, however, are asymptotically convergent,
whereas the method described above is numerically exact.

V. EXACT SOLUTION FOR N = 2

The size N = 2 is an exception in that it presents no
rectification. This is a feature of the present choice of Lindblad
operators. For N > 2, the system always presents rectification

FIG. 1. (Color online) Flux J vs f for N = 3, � = 1, and
different values of h. The points correspond to simulations and
the solid line corresponds to Eq. (34). Inset: Same but for N = 2
[cf. Eq. (33)].

as long as � �= 0. The steady-state density matrix ρss was
computed by solving Eq. (31). To write the result, let us define

a = α2γ 2,

b = γ 2(γ 2 + h2).

Then the result for ρss is

ρss = 1

4(a + b)

⎛
⎜⎜⎜⎝

ρ11 0 0 0

0 ρ22 ρ23 0

0 ρ∗
23 ρ33 0

0 0 0 ρ44

⎞
⎟⎟⎟⎠, (32)

where

ρ11 = b(1 − f 2) + a,

ρ22 = b(1 + f )2 + a,

ρ33 = b(1 − f )2 + a,

ρ44 = b(1 − f 2) + a,

ρ23 = 2αγ 2f (h + iγ ).

As can be seen, � has completely dropped out from this result.
For this reason, when N = 2, there is no rectification.

The heat flux is computed from any one of Eqs. (9)–(11)
and is proportional to the imaginary part of the off-diagonal
element ρ23. It reads

J = 4f α2γ

α2 + γ 2 + h2
. (33)

This result is illustrated in the inset of Fig. 1 as a function of
f for different values of h and α = γ = 1.

VI. EXACT SOLUTION FOR N = 3

When N = 3, the matrix W appearing in Eq. (31)
has dimensions 22×3 = 64. For simplicity, we now assume
α = γ = 1. The solution for the full density matrix is
somewhat cumbersome so we shall only present the flux.
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It reads

J (f ) = 4f
a0 + 2a1f h� + a2�

2

b0 − 2b1f h� + b2�2 + b4�4
, (34)

where the coefficients ai and bi are even functions of both f

and h:

a0 = (2 + h2)(12 + h2),

a1 = 2 + h2,

a2 = 4 + 3h2 − 2f 2(1 + h2),

b0 = (2 + h2)2(12 + h2),

b1 = 8 + 9h2,

b2 = 14 + 11h2 − 2h4 + 2f 2(1 + h2),

b4 = 1 + h2.

When f is small, Eq. (34) simplifies to

J � 4f
a0 + a2�

2

b0 + b2�2 + b4�4
,

and, to first order in both f and h, this reduces further to

J � 16f

8 + �2
.

The flux in Eq. (34) is depicted in Fig. 1 as a function
of f for different values of h, together with the numerical
simulations for comparison. Unlike the case N = 2, we now
see that J is not an odd function of f , so this system will
present rectification. Curves of the form shown in Fig. 1 are
a signature of rectification and appear frequently in papers
on this subject (cf. Ref. [13]). We emphasize, however,
that the present solution is exact and not numerical, like in
most cases.

Much more interesting is the dependence of the flux J on �.
This is shown in Fig. 2. In Fig. 2(a), we show plots for f = 0.5.
We see that J decreases rapidly with � in all cases. When
h = 0, the flux behaves as a single symmetric peak centered
around � = 0. In this case, J (−f ) = −J (f ) so there is no
rectification. When we increase h, this peak is shifted toward
positive � and a second, smaller peak appears at negative �.
As we reduce f , the two peaks become increasingly more
symmetric, as is evident in Fig. 2(b) where we plot the limit
of J/f as f → 0. Finally, in the opposite limit where f = 1,
only one peak survives. Note that as long as h �= 0 and � �= 0,
there is rectification since J (−f ) �= −J (f ).

The rectification coefficient may be computed by inserting
Eq. (34) in Eq. (14). The result is

R = 2f h�
(a1b0 + a0b1) + (a1b2 + a2b1)�2 + a1b4�

4

a0b0 + (a0b2 + a2b0 + 4a1b1f 2h2)�2 + (a2b2 + a0b4)�4 + a2b4�6
. (35)

This formula is quite interesting. Besides the factor of 2f h�,
the rest of the expression is even in f , h, and �. Hence, R is
an odd function in these three parameters and is zero if any
of f , h, and � are zero. Equation (35) takes on a particularly
simple form when we expand it to first order in both f and h:

R � f h�
24 + �2

(6 + �2)(8 + �2)
. (36)

To first order in all three parameters, this reduces further to

R � f h�

2
. (37)

The rectification coefficient, given by Eq. (35), is plotted in
Fig. 3 as a function of � for f = 0.5 and different values
of h.

The symmetry embodied in Eq. (16) is evident in Figs. 2
and 3: the behavior of J (f ) for � < 0 is the same as J (−f )
for � > 0, which makes R an odd function of �. Hence, from
now on, we will focus only on the case � > 0.

VII. NUMERICAL SOLUTION

A. General behavior of larger sizes

In this section, we consider the numerical solution for sizes
up to N = 7. In Fig. 4, we present J vs � for f = 0.5. When
� = 0, the flux is seen to be independent of the size. This
situation corresponds to the XX model that will be discussed
in Appendix C. When h is small, the solution is qualitatively
similar for different sizes [Fig. 4(a)]. But for larger values of

h, different patterns are observed. A similar behavior occurs
for the rectification coefficient plotted in Fig. 5.

B. Solution for small f , h, and �

We now discuss the behavior of R when f , h, and � are
small, with fixed α = γ = 1. For N = 3, we obtained the
linear behavior in Eq. (37). Since R must be odd in all three
parameters, it is reasonable to suppose that to first order in f ,
h, and �,

R = ANf h�, (38)

where the prefactor AN depends on the size N , and also on
α and γ , whose dependences we are omitting (we mention,
nonetheless, that AN = 0 trivially if either α or γ are zero).
The numerical results for AN when α = γ = 1 are shown in
Fig. 6. We see that it increases with N , tending to a finite value.
This is a very important result since it indicates that R should
remain finite in the thermodynamic limit N → ∞.

From the discussion in Sec. IV, we have found that R must
always be a ratio of polynomials in f , h, and �. Also, the
master equation (2) contains only whole numbers multiplying
the parameters. Hence, AN must be a rational number for
each size N (and for α = γ = 1). To determine the AN , we
performed the simulations in Fig. 6 using arbitrary precision
arithmetic so that they could be rationalized. The sequence of
numbers so obtained for N = 3 through 8 was 1

2 , 5
6 , 1, 11

10 , 7
6 ,

and 17
14 . From this, we can formulate the ansatz,

AN = 3

2
− 2

N − 1
, (39)
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FIG. 2. (Color online) J (f ) (upper curves) and J (−f ) (lower
curves) vs � for N = 3 and h = 0, 1, 2, and 4 (as signaled in each
figure). (a) f = 0.5, (b) f → 0, and (c) f = 1. In (b), we plot the
limit of J/f as f → 0.

FIG. 3. (Color online) Rectification coefficient R vs � for N =
3, f = 0.5, and different values of h, as signaled in the figure. See
Eq. (35).

FIG. 4. (Color online) J (f ) (upper curve) and J (−f ) (lower
curve) vs � for f = 0.5, different values of h (as shown in the
label of each image), and different sizes [as shown in image (d)].

which is valid for N � 3. Hence, to first order in f , h, and �,
we conjecture that the rectification for any size N is given by

R �
[

3

2
− 2

N − 1

]
f h�.

Taking N → ∞ then gives (again to first order)

R � 3
2f h�, (40)

from which it follows that, indeed, in the thermodynamic limit,
the rectification coefficient remains finite.

C. Solution for small f and h, but arbitrary �

Next let us investigate the rectification when f and h are
both small, but � is not necessarily so. When N = 3, we
obtained the behavior shown in Eq. (36). The results for other
sizes are shown in Fig. 7. We know that the rectification is
always a ratio of polynomials in all parameters. Hence, if

FIG. 5. (Color online) R vs � for f = 0.5, different values of h

(as shown in the label of each image), and different sizes. The color
scheme is the same as Fig. 4.
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FIG. 6. The function AN = R/f h� for different values of N ,
as obtained from arbitrary precision simulations. The solid line
corresponds to Eq. (39).

we expand to first order in f and h, we always expect to
obtain R in the form R � f hq1(�)/q2(�), where q1 and q2

are polynomials in �. The order of these polynomials increases
with N , but we may look for a lower order Padé approximant.
From the numerical simulations, we have found that for N = 3
to 7, the results are all very well described by

R � ANf h�
1 + v1�

2

1 + v2�2 + v3�4
, (41)

where v1, v2, and v3 are fit parameters that depend on N . This
is the (3,4) Padé approximant of the actual solution. This same
idea can be used to study R in other cases; for instance, when
f and � are small, but h is not.

VIII. ABSENCE OF RECTIFICATION WHEN � = 0

As we have discussed, the rectification coefficient R is zero
when f = 0, since this means there is no flux from one bath to
the other. Moreover, R = 0 when h = 0 since this means the
system is symmetric (recall that by h, we mean the linear field
gradient which ranges from −h to h). However, we have also
seen that R = 0 when � = 0, a result which does not bear the
same physical intuition of the above. In this section, we wish

FIG. 7. (Color online) The rectification coefficient R/f h vs �

for f = 0.01, h = 0.01, and different values of N , as denoted in the
figure.

to prove that R(� = 0) = 0. An alternative proof, based on
the covariance matrix, is discussed in Appendix C.

Our goal is to prove Eq. (16), from which our result follows
immediately. To accomplish this, we shall investigate three
symmetry operations performed on the steady-state solution
of Eq. (5), which we rewrite more explicitly as

W(α,�,h,f )(ρ) = 0.

The solution of this equation is ρ(α,�,h,f ) (for simplicity, in
this section we write the solution as ρ instead of ρss).

The first symmetry is based on the following unitary
transformation:

U =
∏

i=1,3,5,...

σ z
i .

It maps

UH (α,�,hi)U
† = H (−α,�,hi)

and

UD(ρ)U † = D(UρU †).

Hence,

U{W(α,�,h,f )(ρ)}U † = W(−α,�,h,f )(UρU †) = 0.

But this is the equation which gives the solution ρ(−α,�,h,f ).
Hence, we conclude that

ρ(−α,�,h,f ) = Uρ(α,�,h,f )U †. (42)

That is, the two density matrices are similar (share the same
eigenvalues).

Next consider the flux, as computed from Eq. (9), and define
J (α) = 2α(σx

i σ
y

i+1 − σ
y

i σ x
i+1). Then, by definition,

J (α,�,h,f ) = tr[J (α)ρ(α,�,h,f )] (43)

and

J (−α,�,h,f ) = tr[J (−α)ρ(−α,�,h,f )]

= tr[J (−α)Uρ(α,�,h,f )U †].

Using that U †J (α)U = J (−α) then yields

J (−α,�,h,f ) = J (α,�,h,f ).

Hence, the flux is invariant by a reversal of α.
Next, consider the transformation

V =
N∏

i=1

σx
i .

It maps

V H (α,�,h)V † = H (α,�,−h)

and

V D(ρ,f )V † = D(VρV †,−f ).

Hence,

V [W(α,�,h,f )(ρ)]V † = W(α,�,−h,−f )(VρV †).

Therefore, the density matrices are related via

ρ(α,�,−h,−f ) = Vρ(α,�,h,f )V †. (44)
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If we also use the fact that VJ (α)V † = −J (α), we obtain

J (α,�,h,f ) = −J (α,�,−h,−f ).

This transformation has an intuitive physical interpretation. It
shows that if we simultaneously reverse the baths and the flux
gradient, we obtain a similar density matrix and a flux that is
simply of the opposite sign.

Finally, let us consider the operation of complex conjuga-
tion [31,32], assuming we are working with the usual basis
(where σ z

i is diagonal). We have

{−i[H (α,�,h),ρ]}∗ = −i[H (−α,−�,−h),ρ∗],

{D(ρ)}∗ = D(ρ∗).

Hence,

{W(α,�,h,f )(ρ)}∗ = W(−α,−�,−h,f )(ρ∗).

But the solution of this last equation is ρ(−α, − �,−h,f ) so
we conclude that

ρ∗(α,�,h,f ) = ρ(−α,−�,−h,f ). (45)

Combining the three symmetry operations summarized by
Eqs. (42), (44), and (45), we obtain

V Uρ(α,�,h,f )U †V † = ρ∗(α, − �,h,−f ). (46)

Applying this result in Eq. (43) yields Eq. (16), thus completing
the proof.

IX. CONCLUSIONS

The goal of this paper was to study rectification in a system
which could, at least to some extent, be treated analytically.
The system of choice was the XXZ chain under two Lindblad
baths. We studied the flux J and the rectification coefficient
R both exactly and numerically, which enabled us to extract
several important properties of the rectification. In particular,
we have emphasized the functional dependence of R on the
three main parameters of the model: the driving strength (bath
difference) f , the field gradient h (that makes the system
asymmetric), and the anisotropy parameter �. We have shown
that R is odd in all three of them, thus being zero when any one
is zero. This shows that they correspond to the three necessary
ingredients for the existence of rectification. We have also
shown that to first order in f , h, and �, the rectification
behaves as R = ANf h�. The coefficient AN was determined
by combining numerical simulations with exact calculations.
In particular, when N → ∞, we found that AN → 3/2. This
shows that the rectification is finite in the thermodynamic limit,
a most relevant result. Finally, the fact that R(� = 0) = 0 was
proven using symmetries of the Lindblad master equation.
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APPENDIX A: THE REPEATED INTERACTIONS SCHEME

In this Appendix, we discuss the repeated interaction
scheme [33], which is a discrete version of the master equation
(2). From this scheme, it is then possible to derive Eq. (2) as
an appropriate limit, as shown in Appendix B.

The idea of the repeated interactions scheme is as follows.
First we augment our spin chain with two additional spins,
labeled 0 and N + 1. These spins are coupled to the spins
1 and N , respectively, and, for simplicity, we assume that
this coupling has � = 0. Hence the total Hamiltonian of our
augmented system is

HT = H + h0σ
z
0 + hN+1σ

z
N+1 + V0 + VN, (A1)

where H is our original Hamiltonian [Eq. (1)] and Vi =
α(σx

i σ x
i+1 + σ

y

i σ
y

i+1) describes the interaction between spins
0 and 1, and spins N and N + 1.

We now assume that at t = 0, the system is decoupled from
the spins 0 and N + 1 so that the total density matrix ρT may
be factored as a product,

ρT (0) = ρLρ(0)ρR, (A2)

where ρL and ρR are the density matrices of spins 0 and N + 1,
respectively. Further, we assume that at t = 0, these two spins
are in thermal equilibrium so we may write

ρL = (1 + fL)

2
|z+〉〈z+| + (1 − fL)

2
|z−〉〈z−|, (A3)

where fL = tanh(β0h0) and β0 is the inverse temperature of
the left spin. A similar formula holds for ρR ,

ρR = (1 + fR)

2
|z+〉〈z+| + (1 − fR)

2
|z−〉〈z−|, (A4)

where fR = tanh(βN+1hN+1). Note that fL = 〈σ z
0 〉 and fR =

〈σ z
N+1〉, which gives a clear physical interpretation of the

parameters fL and fR .
The dynamics of the augmented system is now described

by the standard Von Neumann equation,

dρT

dt
= −i[HT ,ρT ],

whose formal solution is

ρT (t) = U (t)ρT (0)U †(t),

with U (t) = e−iHT t being the time propagator.
We now arrive at the repeated interactions scheme. We

start at t = 0 with ρT (0) factored as in Eq. (A2) and allow the
system to evolve up to a time τ , at which

ρT (τ ) = U (τ )[ρLρ(0)ρR]U †(τ ).

Then, at t = τ , we “throw away” the spins 0 and N + 1 and
get fresh new ones from a thermal bath. Thus, we first obtain
ρ(τ ) by taking the partial trace over the spins 0 and N + 1,

ρ(τ ) = trL,R[ρT (τ )],

and then we construct

ρT (τ ) = ρLρ(τ )ρR,

where ρL and ρR are again given by Eqs. (A3) and (A4). We
then repeat this process up to time 2τ , when we again throw
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away the boundary spins and get fresh new ones, and so on.
This idea is based on Boltzmann’s Stosszahlansatz.

If we let ρn = ρ(nτ ) be the density matrix of the (reduced)
system at time t = nτ , then this entire procedure can be
summarized by

ρn+1 = trL,R[U (τ )(ρLρnρR)U †(τ )]. (A5)

This is a discrete mapping for the time evolution of ρ(t) and
can be seen as the quantum version of a Markov chain. This
mapping will eventually reach a steady state ρss defined by

ρss = trL,R[U (τ )(ρLρ∗ρR)U †(τ )].

It is perfectly possible to use this framework to study the
dynamics of the system. The only additional parameter is the
time of interaction τ . However, it is more convenient to study
the limit τ → 0, which will lead us to the Lindblad equation
used in this paper.

APPENDIX B: FROM REPEATED INTERACTIONS
TO LINDBLAD

We now show how to derive the master equation (2) from
the discrete mapping in Eq. (A5). For this, we may use the
Baker-Campbell-Hausdorff formula to write

e−iHT τ ρT eiHT τ = ρT − iτ [HT ,ρT ]

− τ 2

2
[HT ,[HT ,ρT ]] + · · · .

We then insert this into Eq. (A5) and take the partial traces.
The first term gives trL,R(ρLρnρR) = ρn. As for the second
term, it can be verified that

trL,R{[HT ,ρT ]} = [H,ρn].

Note, however, that this is not necessarily true for all
Hamiltonians. It is, in our case, due to our choice of Vi in
Eq. (A1).

Thus we see that to first order in τ , the coupling to
the boundary spins becomes negligible. This is physically
intuitive: if the interaction time τ goes to zero, then so does the
interaction. In order to obtain a finite contribution, we must
therefore also let Vi increase with τ . The correct way to do
this, in order to obtain a finite limit, is to let Vi increase as

Vi =
√

γ

τ

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

)
,

where γ is a new constant. This is similar to what happens
in the Langevin solution of classical Brownian motion: if we
make the noise infinitesimally short, then we must also make it
infinitely large in order to give a non-negligible contribution.
Hence, define

−τ 2

2
[V0,[V0,ρT ]] := τDL(ρ),

−τ 2

2
[VN,[VN,ρT ]] := τDR(ρ).

After going through the algebra, one obtains the formulas
appearing in Eq. (4). Equation (A5) thus becomes

ρn+1 = ρn − iτ [H,ρn] + τ [DL(ρn) + DR(ρn)].

Finally, dividing by τ and taking the limit τ → 0 produces the
master equation (2).

APPENDIX C: EXACT SOLUTION OF THE X X CHAIN

In this section, we study the exact solution in the case when
� = 0 in Eq. (1), which is nothing but the XX model. This
analysis will also give an alternative way of seeing that the
rectification is zero when � = 0.

The XX chain may be treated exactly using fermionic
operators [34],

ck =
⎡
⎣k−1∏

j=1

eiπσ+
k σ−

k

⎤
⎦ σ−

k (C1)

and c
†
k . These operators satisfy {ck,c

†
�} = δk,�. In terms of them,

Eq. (1) (with � = 0) becomes

H =
N∑

i=1

2hic
†
i ci + 2α

N−1∑
i=1

(c†i ci+1 + c
†
i+1ci).

Instead of solving for the density matrix, in this case we can
obtain a closed system of equations for the covariance matrix,

Ck,� = 〈c†kc�〉 = tr(c†kclρ). (C2)

This suffices for our purposes since J in Eq. (9) is entirely
determined by the entries of C:

J = 4iα(Ck,k+1 − Ck+1,k). (C3)

Using the master equation (2) with Eq. (C2), it is possible
to obtain the following system of linear equations for C:

dC

dt
= AC + CA† − F, (C4)

where

Ak,� = 2i[h�δk,� + αδk+1,� + αδk−1,�]

− 2γ [δk,1δ�,1 + δk,Nδ�,N ], (C5)

Fk,� = −2γ [(1 + fL)δk,1δ�,1 + (1 + fR)δk,Nδ�,N ]. (C6)

Note that we are assuming a general field distribution h�. The
steady-state solution is then obtained by setting dC/dt = 0 in
Eq. (C4), leading to the Lyapunov equation [35],

AC + CA† = F. (C7)

Since, by construction, C is Hermitian, we may write CA† =
(AC)†. Thus, Eq. (C7) says that the Hermitian part of AC

should be proportional to F , whereas the anti-Hermitian part
should be zero.

The arguments that follow will be valid for any fL and
fR . Hence let us parametrize them as fL = f0 + f and fR =
f0 − f (thus far in the paper we have been using f0 = 0). We
may then write Eq. (C6) as

F = −2γ [(1 + f0)
 + f ϒ] , (C8)
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where


 = diag(1,0,0, . . . ,0,0,1), (C9)

ϒ = diag(1,0,0, . . . ,0,0,−1). (C10)

Moreover, the matrix A in Eq. (C5) can be written as

A = −2γ (
 − iT ), (C11)

where

Tk,� = t�δk,� + β(δk+1,� + δk−1,�), (C12)

and where we have defined the rescaled parameters t� =
h�/γ and β = α/γ . These definitions make it clear that the
covariance matrix will depend only on the parameters t�, β,
f0, and f .

With these definitions in hand, we may divide Eq. (C7) by
−2γ and write it as

{
,C} − i[T ,C] = (1 + f0)
 + f ϒ. (C13)

Let C0 be the solution of Eq. (C13) when f = 0, i.e.,

{
,C0} − i[T ,C0] = (1 + f0)
. (C14)

It can be verified by direct substitution that

C0 = 1
2 (1 + f0)I, (C15)

where I is the identity matrix of dimension N . Let us then
define

C = C0 + f CI .

Inserting this into Eq. (C13) and using Eq. (C14) yields the
following equation for CI :

{
,CI } − i[T ,CI ] = ϒ. (C16)

This equation is independent of f . This, in a sense, suffices
to show that the rectification is always zero in the XX model:
since C0 is diagonal, the flux (C3) will depend only on CI

through

J = 4iαf
[
CI

i,i+1 − CI
i+1,i

]
.

By reversing the baths (i.e., by making f → −f ), we thus see
that J (−f ) = −J (f ). Hence the rectification coefficient, as
defined in Eq. (14), is zero.

The similarity with the classical case is worth noting [36].
As here, when the forces are harmonic, it is possible to obtain
a closed system of equation for the covariances, from which
the flux is determined to be linear in the bath difference f .
Conversely, when anharmonic terms (higher than quadratic)
appear in the Hamiltonian, the equations are no longer closed;
that is, the equation for the covariances would depend on higher
order correlations.

To finish, let us also present the solution of Eq. (C16) for
certain field distributions. First we write

CI = X + iY

for real matrices X and Y . Since C† = C, we have that XT = X

and Y T = −Y . Inserting this in Eq. (C16) yields the following
real equations for X and Y :

[T ,X] − {
,Y } = 0, (C17)

[T ,Y ] + {
,X} = ϒ. (C18)

When all hi = h, the field terms completely drop out of
Eqs. (C17) and (C18). In this case, the solution is

X = 1

2

1

β2 + 1
ϒ,

Y = −1

2

β

β2 + 1
Sy,

where (Sy)k,� = δk+1,� − δk−1,�.
Another interesting situation is when h1 = −h, hN = h,

and all other hi = 0 (note that this is different from the linear
field gradient we have been using so far). In this case, the
solution is

X = 1

2

1

β2 + t2 + 1
[(t2 + 1)ϒ − βtSx],

Y = −1

2

β

β2 + t2 + 1
Sy,

where (Sx)k,� = δk+1,� + δk−1,� and t = h/γ . The important
point to be noticed here is that the steady-state covariances
are size independent and tridiagonal. This means that the
correlations are strictly local, being reduced to the occupation
density Ckk and the nearest neighbor correlation Ck,k+1.
Remarkably this is true only in this particular case. For other
field distributions, the correlations Ck,� are nonzero for any
(k,�).
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