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Quantum phase transitions in networks of Lipkin-Meshkov-Glick models
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We study the quantum critical behavior of networks consisting of Lipkin-Meshkov-Glick models with an
anisotropic ferromagnetic coupling. We focus on the low-energy properties of the system within a mean-field
approach and the quantum corrections around the mean-field solution. Our results show that the weak-coupling
regime corresponds to the paramagnetic phase when the local field dominates the dynamics, but the local
anisotropy leads to the existence of an exponentially degenerate ground state. In the strong-coupling regime, the
ground state is twofold degenerate and possesses long-range magnetic ordering. Analytical results for a network
with the ring topology are obtained.
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I. INTRODUCTION

The Lipkin-Meshkov-Glick (LMG) model describes an
ensemble of all-to-all–coupled two-level systems with
anisotropic interactions [1]. This model is complex enough to
show quantum phase transitions (QPTs) subject to the change
of parameters, but it is exactly solvable in the thermodynamic
limit [2]. The total angular momentum that is formed by
combining all the spins of single particles is, in this limit, so
long that its behavior is close to classical, and the properties of
the system can be rather precisely described in the mean-field
approximation. From a theoretical point of view, there are pro-
posals to realize the LMG model by means of cavity QED se-
tups [3]. Further theoretical approaches have shown intriguing
relations to quantum Fisher information [4] and spin squeezing
[5,6]. Experimentally, the dynamics of the LMG model has
been explored by using Bose-Einstein condensates [7–10].

Networks of coupled critical systems like LMG models may
show new phases with different long- and short-range ordering
depending on the topology of the network. In this article, we
use Holstein-Primakoff transformations [11] and a mean-field
approach to describe quantum phase transitions in a network
composed of LMG models with anisotropic ferromagnetic
interactions between different sites. Altogether, this restricts
us to the lowest energy states only and allows us to study
the quantum fluctuations about the mean field. Working in
low-energy regions is also the reason for not experiencing any
chaotic behavior in the semiclassical limit, even for networks
with more than 2 degrees of freedom [12].

Related works used Holstein-Primakoff transformations to
describe low-energy magnetic excitations in time-dependent
magnetic fields [13] and the interaction of magnons in
Heisenberg ferromagnets [14]. Furthermore, in the context of
spinor Bose-Einstein condensates [15,16], Holstein-Primakoff
transformations can be used to describe the formation of
periodic magnetic domains [17].

In most of the articles concerning long-spin chains, the
coupling is chosen to have certain continuous symmetries,
most commonly by using either isotropic Heisenberg-type or
anisotropic coupling [12,17–19]. In this article, however, we
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focus on the uniaxial coupling, which leads to the existence
of a set of global and local discrete symmetries. Thus, the
absence of rotational symmetry and the emergence of local
discrete symmetries in the problem open the possibility of
new effects. Previous works have explored dynamical aspects
of networks of coupled systems with global symmetries. For
example, the adiabatic phase transitions of networks of qubits
have been investigated [20]. In the context of quantum optics,
arrays of coupled cavities can exhibit soliton solutions [21],
the emergence of phase transitions of light [22], and dissipative
quantum phase transitions [23]. Recent theoretical approaches
have shown that cold atoms on excited bands in optical lattices
could allow for the implementation of networks of nonlinear
multiparticle bosonic models exhibiting collective behavior
[24,25].

The intriguing properties of spin networks with spatial
symmetries have found many experimental implementations.
For instance, chains of trapped ions have been shown to
undergo a variety of quantum phase transitions when inter-
acting with the laser beams [26]. They have also been used to
detect quantum correlations between a two-level system and
the environment by measuring the system only [27]. Other
experimental implementations of critical spin chains include
ultracold polar molecules [28] and Rydberg gases [29] to name
but a few.

The structure of this article is as follows. In Sec. II, we
describe the model and our bosonization approach. The latter
is then used to calculate the ground-state energy analytically
in the thermodynamic limit and to identify the different
phases of the system. We compare our results with the
exact diagonalization of the Hamiltonian in the case of the
finite j and the small number of sites N in the chain. In
Sec. III, we calculate dispersion relations for the excitation
energy in different phases by using Bogoliubov and Fourier
transformations. The behavior of the low-energy excitations
near phase boundaries is then discussed. In Sec. IV, we
calculate correlation functions in the ground state with full
translational invariance.

II. THE MODEL

In this article we consider a set of coupled LMG models,

Hl = gJ z
l − γ

2j

(
J x

l

)2
, (1)
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FIG. 1. (Color online) Ring network of LMG models. The cou-
pling between neighboring sites is determined by parameter κ , the
strength of interaction within a single site is determined by γ , and g

models an external field.

each of which is represented by a node in a network.
Throughout the text, g is the strength of an external field and
γ determines the self-interaction. We define the ξ component
of the collective angular momentum at the lth site J

ξ

l =
1
2

∑n
a=1 σ

ξ

al , where σ
ξ

al are Pauli matrices satisfying the algebra

[σ ξ

al,σ
ν
bl′ ] = 2iεξνρδabδll′σ

ρ

al and the indices ξ,ν,ρ ∈ {x,y,z}
denote the spin components. For a fixed length of the collective
angular momentum j , the Hamiltonian (1) undergoes a second-
order QPT at γ = g [2].

In this article, we study the critical behavior of networks of
quantum critical systems by assuming nondirected coupling
between the Jy components of the nodes, so the Hamiltonian
reads

H =
N∑

l=1

Hl − 1

2j

N∑
l′≥l=1

κll′J
y

l J
y

l′ , (2)

where κll′ is the coupling matrix of the network [30,31]
and l,l′ ∈ {1,2, . . . ,N} denote the sites of the chain. The
collective angular momentum operators satisfy commutation
relations [J ξ

l ,J ν
l′ ] = iεξνρδll′J

ρ

l . In the model, we assume the
constants g and γ to be positive, and by choosing κll′ ≥ 0, we
restrict ourselves to ferromagnetic coupling. The model we
are considering is a minimal example of critical networks, so
we do not look at the antiferromagnetic case κll′ ≤ 0 here, as
that would ask for facing the intricacies of frustration or of the
interplay of ferro- and antiferromagnetic couplings [32–34].

Up to Sec. II C, the actual topology of the network is
irrelevant, but afterwards it is set to the ring-type one as shown
in Fig. 1 by additionally implying periodic boundary condi-
tions J

ξ

N+1 ≡ J
ξ

1 . This type of network introduces additional
translational symmetry that allows for Fourier transformations
and thus simplifies the calculations.

A. Symmetries and limit cases

The Hamiltonian (2) preserves the local angular momentum
[H,J2

l ] = 0, where J2
l = (J x

l )2 + (J y

l )2 + (J z
l )2. Therefore,

we can fix j to its maximal value n/2 throughout the article.
This implies that instead of working in a Hilbert space with
the dimension d = 2nN , we can restrict ourselves to a subspace
with the dimension ds = (n + 1)N spanned by the basis of

tensor products of Dicke states of the individual nodes

|j,m〉ξ =
N⊗

l=1

|j,ml〉ξ , (3)

where m = (m1,m2, . . . ,mN ), −j � ml � j , and ξ denotes
the quantization axis. The states |j,ml〉ξ are eigenstates of
the collective angular momentum operators J

ξ

l , such that
J

ξ

l |j,ml〉ξ = ml|j,ml〉ξ .
The Hamiltonian (2) possesses the global parity


 = exp

[
iπ

N∑
l=1

(
J z

l + j
)]

, (4)

which is just a product of parities of individual nodes [2,35].
Under the action of 
, the total angular momentum transforms
as 
(J x

l ,J
y

l ,J z
l )
† = (−J x

l , − J
y

l ,J z
l ). In the next sections,

most importantly in order to perform numerical calculations
efficiently, we construct the basis from tensor products of
eigenstates of J z

l . The global parity operator (4) acts on these
basis states as 
 |j,m〉z = (−1)

∑
l (ml+j )|j,m〉z, allowing us to

separate the Hilbert space into two subspaces—with positive
and with negative parity. The positive-parity subspace contains
the ground state and has the dimension ds+ = (n + 1)N/2.

Apart from the global parity (4), the system is also invariant
under the local reflection Ryz

l in the yz plane:

Ryz

l = exp
[
iπ

(
J x

l + j
)]

exp
(
iπJ

y

l

)
Kl

= exp
[
iπ

(
J x

l + j
)]
Tl , (5)

where Tl = exp(iπJ
y

l )Kl is the time-reversal operator and Kl

is the operator of charge complex conjugation with respect
to the standard representation [36] acting on the lth site. The
action of the antiunitary local reflection operator on the angular
momentum reads Ryz

l (J x
l ,J

y

l ,J z
l )(Ryz

l )−1 = (−J x
l ,J

y

l ,J z
l ).

Now we focus on the analysis of the limit cases to
understand the properties of the ground state. For convenience,
we introduce the states

∣∣Gξ
p1,p2,...,pN

〉 =
N⊗

l=1

|j,(−1)pl j 〉ξ , (6)

where pi ∈ {0,1} and ξ ∈ {x,y,z}.
In the limit g � γ,κll′ , there is a unique ground state

|G〉 = |Gz
1,1,...,1〉—a paramagneticlike state with short-range

correlations (cf. Ref. [37]).
In the limit γ � g,κll′ the ground state is 2N -fold de-

generate and is represented by the set of separable states
|Gx

p1,p2,...,pN
〉 with all the possible combinations of pi . In this

regime, the system consists of an ensemble of n tightly bound
particles with parallel spins along the x direction at each site of
the network. The exponential degeneracy of the ground state
in this regime is a consequence of the local symmetry (5). It is
worth noting that exponentially degenerate ground states arise
naturally in the context of spin ice [32] and spin glasses [38].

Finally, in the strong interaction limit κll′ � g,γ , the
ground state is highly correlated, twofold degenerate, and
includes ferromagnetic states |Gy

0,0,...,0〉 and |Gy

1,1,...,1〉. From
the analysis of limit cases we can conclude that the ground
states in different limits are drastically different, so the
properties between these limits should behave nonanalytically
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at some points. This is the onset of the critical behavior that
we seek to describe in this article.

B. Bosonization and the ground-state energy

As we are working in the thermodynamic limit, i.e., j

is sufficiently large, we can map the angular momentum
operators J l = (J x

l ,J
y

l ,J z
l ) onto bosonic operators bl and b

†
l ,

which satisfy the commutation relations [bl,b
†
l′ ] = δll′ and

[bl,bl′ ] = 0, using Holstein-Primakoff transformations [11]:

J z
l = b

†
l bl − j, J+

l = b
†
l

√
2j − b

†
l bl,

(7)
J−

l =
√

2j − b
†
l bl bl .

With these transformations, the harmonic approximation
around a fixed point is done. In order to obtain the mean-field
configurations, we replace the original operators bl with
displaced operators:

bl = D†(αl

√
j ) dl D(αl

√
j ) = dl + αl

√
j, (8)

where αl are the mean fields for each of the nodes, dl are
quantum fluctuations around these, and we define the bosonic
displacement operator [39] as

D(αl

√
j ) = exp[(αld

†
l − α∗

l dl)
√

j ]. (9)

By substituting Eq. (8) into Eq. (7) and expanding the
radicals up to O[(b†l bl/2j )2] as in Refs. [35,40], we get angular
momentum operators expressed in terms of αl and dl :

J z
l = d

†
l dl + (α∗

l dl + αld
†
l )

√
j + (|αl|2 − 1)j,

J+
l =

√
j (2 − |αl|2)(d†

l + α∗
l

√
j )

(
1 − cl

2
− c2

l

8

)
, (10)

J−
l =

√
j (2 − |αl|2)

(
1 − cl

2
− c2

l

8

)
(dl + αl

√
j ),

with

cl = d
†
l dl + (α∗

l dl + αld
†
l )

√
j

(2 − |αl|2)j
.

Substituting Eq. (10) into Eq. (2) and truncating higher-
order terms we reduce the Hamiltonian to the form

H = Eg(α)j + HL(d,α)
√

j + HQ(d,α), (11)

with α = (α1,α2, . . . ,αN ) and d = (d1,d2, . . . ,dN ). The terms
HL and HQ are, respectively, linear and quadratic in bosonic
operators [41].

The O(j ) terms in the expansion of the transformed
Hamiltonian add up to form the ground-state energy of the
system, which depends on mean fields αi of each of the nodes
and takes the form

Eg(α) = Ng − γ

4

∑
l

(
α2

l + α∗2
l

) −
(

γ

2
+ g

)∑
l

αl
∗αl

+ γ

8

∑
l

α∗
l αl(αl + α∗

l )2 + 1

8

∑
l′≥l

κll′

× [(αl − α∗
l )(αl′ − α∗

l′)
√

2 − α∗
l αl

√
2 − α∗

l′αl′ ]. (12)

We are altogether interested in such α values that would
minimize Eg(α), as these would correspond to the stable
fixed points of the network. The solution of 2N simultaneous
equations {∂αi

Eg(α) = 0, ∂α∗
i
Eg(α) = 0}, which would give

us all the critical points of the surface, cannot be obtained
analytically even for N as low as 2. That leaves us with the
necessity of locating the critical points numerically.

A related work has shown that under certain conditions
the critical points of the energy landscape can be obtained by
means of a recurrence relation [12]. In that case, there is an
intriguing relation between the recurrence relations defining
the fixed points and the stroboscopic dynamics of an effective
dynamical system [12]. In our article, however, we are working
in a parameter regime where such an approach is not possible.

Another approach we can take—justified both by numerical
diagonalization and by symmetry reasons—is to assume that
the global minimum (or at least one of the global minima, if
they are degenerate) is located at the points of identical mean
fields (cf. Ref. [42]). In this case, the ground-state energy
becomes a function of only one complex variable α = α1 =
· · · = αN , and Eq. (12) simplifies to

Eg(α) = Ng − N
γ

4
(α2 + α∗2) − N

(
γ

2
+ g

)
α∗α

+N
γ

8
α∗α(α + α∗)2

+ 1

8
(α − α∗)2(2 − α∗α)

∑
l′≥l

κll′ . (13)

The simultaneous equations {∂αEg(α) = 0, ∂α∗Eg(α) = 0}
can now be solved analytically for an arbitrary network.

Because in the next sections we explore one specific
network type, namely, the looped chain (see Fig. 1), we look
for the solutions of these equations with

∑
κll′ = Nκ . Taking

into account the constraint α∗α ≤ 2 dictated by the reality of
the roots in Eq. (12), the only possible critical points in this
network are

αg = 0, αγ± = ±
√

1 − g

γ
, ακ± = ±i

√
1 − g

κ
. (14)

Of these five points, αγ± exist only in the γ -dominated region
(III), ακ± exist only in the κ-dominated region (II), and αg

is the minimum point only in the g-dominated region (I) (see
Fig. 2 for labels of phases).

FIG. 2. (Color online) The phase diagram for the ring network of
LMG models. The classical energy surfaces Eg(α) are shown in each
of the characteristic regions.
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The variations of the energy per site Eg(α)/N in the γ κ

space are shown in the left column of Fig. 3 with thick red
lines, by assuming the equality of all the mean fields as in
Eq. (13). Figure 3 also depicts the exact numerical results for
a network with the ring [panels (a) and (b)] and star [panel
(c)] topology and a finite number of sites N . As implied by
Eq. (13), Eg/N is independent of the number of sites and thus
remains the same even in the limit N → ∞. Besides, in regions
II and III, Eg depends exclusively on one parameter—κ or γ ,
respectively—while in region I it is constant.

C. Finite N case

The ansatz we adopted in the previous section, namely, that
the mean fields for all the nodes in the network are identical
in the ground state, is rather strong and its acceptability
needs serious justification. To this end, we performed a direct
diagonalization of the Hamiltonian for a network of a finite
number of sites N with the topology of a ring by assuming
J

ξ

N+1 ≡ J
ξ

1 and κll′ = κ = 0 iff l′ = l ± 1, as well as with
the topology of a star by assuming κll′ = κ = 0 iff l = 1
or l′ = 1. Ground-state energy dependence on parameters γ

and κ is shown in Fig. 3 for N = 1 (single LMG), N = 3
(simplest ring), and N = 4 (simplest star). The plots for finite
angular momentum within each of the nodes ranging from
j = 4 up to 32 for N = 1 or up to 8 for N = 3 (thin purple
lines) clearly converge to the expected thermodynamic limit
acquired using the ansatz from the previous section (thick red
lines).

Calculations confirm that the phase diagram of the Hamilto-
nian (2) is similar to the one of a single anisotropic LMG model
with γx = γ and γy = κ [cf. Ref. [2] and Fig. 3(a)], though
the physical meaning of the phases is strikingly different.
There exist three distinct regions in the phase space (Fig. 2):
a “symmetric” g-dominant phase (I) and two “symmetry-
broken” κ- and γ -dominant phases (II) and (III), respectively.
In phase I, there is only one ground-state energy minimum at
α1 = · · · = αN = αg . Due to spontaneous symmetry breaking
at the phase boundary, there appear two distinct ground-state
energy minima at α1 = · · · = αN = ακ± in phase II. In phase
III, though, Eg is minimized not exclusively for the state
with identical mean fields: αl take either of the two values
αγ± given in Eq. (14), thus making the ground state 2N -fold
degenerate. The degree of degeneracy of the ground state in
different phases found numerically coincides with what was
expected from the point of view of symmetries in the limit
cases in Sec. II A.

At the critical lines (γ = 1,0 ≤ κ < 1), (0 ≤ γ < 1,κ =
1), and (γ ≥ 1,κ = γ ) the ground-state energy landscape
Eg(α) exhibits a bifurcation, which is a signature of the quan-
tum phase transition [2,35,41]. Besides, as can be concluded
from Fig. 3, derivatives of the ground-state energy in the
thermodynamic limit with respect to the parameters of the
system show no jumps at these lines (see points B and G),
allowing us to classify the QPTs occurring here as of the
second order. At the line (κ = γ > 1), a QPT also occurs (see
point E), but this time the derivative is not continuous and the
transition is of the first order.

If we adhere to the identical-mean-field ansatz, then in the
thermodynamic limit the coupling term in the Hamiltonian

(2) effectively induces a self-interaction in Jy components,
reducingH to the Hamiltonian of a single xy-anisotropic LMG
model on the level of the ground-state energy. The difference
in the ground-state properties of a network and a single system
appears then only in the degeneracy of the ground state in
phases II and III.

For further analysis it should be noted that, be the ground
state degenerate or nondegenerate, the state with identical
mean fields α1 = · · · = αN = αcr with αcr ∈ {αg,αγ±,ακ±}
depending on the phase is always a ground state and is used in
the following sections as such.

For the calculations of the energy dispersion this does not
impose any additional restrictions in phase III, where the
ground state is highly degenerate, for the following reasons.
Dispersion relations are determined by the quadratic part of
the Hamiltonian (11), which can be written as HQ = d† H d,
where (H)ll′ = ∂αlαl′ Eg(α) is the Hessian matrix for Eg(α).
In phase III, critical points αl = αγ± are real, making Eg

[see Eq. (12)] an even function in each of the variables αl

due to the local reflection symmetry (5). This means that
the second derivatives are even too, making the Hessian
and thus HQ independent of the choice of the ground
state.

III. ENERGY DISPERSION

In this section we focus on the lowest excitation energies of
our LMG ring model. As it was justified earlier, the identical-
mean-field state with αl = αcr is a ground state of such a ring
and is used throughout this section. The positions of critical
points were determined earlier in Eq. (14).

The ansatz about the ground state that was made al-
lows us to calculate energy dispersion relations analyti-
cally for an arbitrary large number of sites N in the
chain. For this purpose we consider the quadratic part of
the Holstein-Primakoff–transformed Hamiltonian (11), which
reads

HQ = L0 + L1

∑
l

d
†
l dl + L2

∑
l

(
d2

l + d
†2
l

)

+L3

∑
l

(d†
l − dl)(d

†
l+1 − dl+1), (15)

with L0 through L3 being factors depending on the parameters
of the system and on the critical point in use. For expressions
determining these factors see Table I. In order to get rid of
nonlocal terms, we map HQ onto the reciprocal space using
Fourier transformations

Dk = 1√
N

N∑
l=1

dle
−ikl (16)

to obtain the HQ in terms of Fourier images of dl :

HQ = L0 + L1

∑
k

D
†
kDk + L2

∑
k

(DkD−k + D
†
kD

†
−k)

+L3

∑
k

(DkD−ke
−ik + D

†
kD

†
−ke

ik − 2D
†
kDk cos k),

(17)
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j
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1.25

1.20

1.15

1.10

1.05

1.00

E g
N
g

A

B

C D
E

FG

Eg Γ, Κ

j 100

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

γ g

κ g

j
j 8
j 4

(b)

(a)

(c)

N 3
A B C D E F G A

1.25

1.20

1.15

1.10

1.05

1.00

E g
N
g

A

B

C D
E

FG

Eg Γ, Κ

j 8

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

γ g

κ g

j
j 4

N 4
A B C D E F G A

1.5

1.4

1.3

1.2

1.1

1.0

E g
N
g

A

B

C D
E

FG

Eg Γ, Κ

j 4

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

γ g

κ g
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FIG. 3. (Color online) Numerically calculated ground-state energy along the path ABCDEFGA in the γ κ space (see contour plots) for
the LMG rings with the number of sites N = 1 (a) and N = 3 (b); and the star-type network of N = 4 sites (c). Different single-node total
angular momentum values are drawn with thin lines; the expected thermodynamic limits are drawn with thick red lines. Contour plots show the
ground-state energy for different γ and κ values. Orange (light) lines and circles denote the first-order QPT, while brown (dark) ones denote
the second-order QPT.

with k = 0,1 2π
N

, . . . ,(N − 1) 2π
N

and −k ≡ 2π − k. Fourier
transformations preserve commutation relations between

bosonic operators, so [Dk,D
†
k′] = δkk′ and [Dk,Dk′] = 0. In

order to simplify this expression, we restrict the sums to

TABLE I. Ground-state energy jEg and parameters L0 through L3 used in Eq. (15) and further on. The ring is initialized in its ground state
in the respective region with mean fields αl = αcr.

Region αcr jEg L0 L1 L2 L3

I 0 −N g j − 1
2 Nγ g − 1

2 γ − 1
4 γ 1

4 κ

II ±i
√

1 − g/κ − 1
2κ

Nj (g2 + κ2) − 1
8 N

[
2γ

g+κ

κ
− (κ−g)2

g+κ

]
1
4

[
4κ − 2γ + γ (κ−g)

κ
+ (κ−g)2

g+κ

] − 1
8

(g2+2gκ)(γ−κ)+κ2(γ+3κ)
κ(κ+g)

1
2

g2

κ+g

III ±√
1 − g/γ − 1

2γ
Nj (g2 + γ 2) 1

4 N (γ − 3g) 1
4 (5γ − 3g) 1

8 (3γ − 5g) 1
8

γ+g

γ
κ
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positive wave numbers, thus getting rid of complex exponents:

HQ = L0 +
∑
k>0

(D†
kDk + D

†
−kD−k)(L1 − 2L3 cos k)

+
∑
k>0

(DkD−k + D
†
kD

†
−k)(2L2 + 2L3 cos k). (18)

Then the quadratic part of the Hamiltonian is readily diago-
nalized by means of Bogoliubov transformations [43]:

D±k = ukβ±k − vkβ
†
∓k, uk,vk ∈ R,

(19)
u2

k − v2
k = 1, [β±k,β

†
±k′ ] = δkk′,

which again preserve commutation relations for the new
Bogoliubov bosons. After the transformation, HQ takes the
form

HQ = L0 +
∑

k

[
ε(k)β†

kβk + 1

2
ε(k) − 1

2
ε0(k)

]
,

ε(k) =
√

ε2
0(k) − ε2

1(k), (20)

ε0(k) = L1 − 2L3 cos k, ε1(k) = 2L2 + 2L3 cos k,

where we return to the summation over all the wave numbers.
As the factors L1 to L3 do not depend on N , excitation energies
ε(k) are independent of it, too.

We note here for later reference that the products of
Bogoliubov coefficients v2

k and ukvk can be expressed in terms
of ε(k), ε0(k), and ε1(k) as

v2
k = 1

2

[
ε0(k)

ε(k)
− 1

]
and ukvk = ε1(k)

2ε(k)
. (21)

Analysis of Eq. (20) shows that the ground-state excitation
energy is minimal at k = 0 and varies with κ and γ parameters
as shown in Fig. 4(d). The energy dispersion is quadratic and
gapped in the vicinity of k = 0 for parameters away from
critical lines. At the phase boundary I-II the gap closes with
a linear dispersion [see Fig. 4(a)], denoting, much like in the
Ising model, the transition from an unordered paramagnetic
phase to the ferromagnetic one. In this case, the softening
of the collective excitation leads to long-range correlations
resembling the Ising critical point in quantum magnetism
[20,22].

At the boundary I-III, on the other hand, the energy gap
becomes zero at all the wave numbers [see Fig. 4(b)], thus
allowing for the collective excitations of any wavelength and
marking the two phases between which the transition occurs
as lacking long-range ordering. At the boundary II-III the form
of the dispersion relation changes drastically: Approaching the
boundary from within phase II, the gap closes with the linear
dispersion in the limit γ → κ , while when approaching the
boundary from within phase III, all the modes are gapless in
the limit κ → γ [Fig. 4(c)]. This jump in the form of the gap
closing indicates the first-order QPT.

The linear dispersion around k = 0 at the phase bound-
aries is phononlike and lets us define the group speed c =
(dε/dk)k=0. The way it changes with parameters is shown in
Figs. 4(e) and 4(f). At the phase boundary II-III the speed
of propagation exhibits a discontinuous behavior, which is
another signature of the first-order QPT.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. (Color online) The excitation energy dispersion ε(k)
across the I-II boundary (a), across the I-III boundary (b), and across
the II-III boundary (c) as well as the energy gap ε(k = 0) as a function
of γ (d). Panels (e) and (f) show the speed of sound (dε/dk)k=0 along
the phase boundaries.

Now, to obtain the ground state of the Hamiltonian (2) we
rely on the diagonalized Hamiltonian (20), from which one
can see that the ground state |G〉 is defined by the condition
β
†
kβk|G〉 = 0, which leads to the expression

|G〉 =
⊗
k>0

S(χk) D̃(αk

√
j ) D̃(α−k

√
j )|0k,0−k〉, (22)

where α±k = 1√
N

∑N
l=1 αle

∓ikl are the Fourier images of the
mean fields and D±k|0k,0−k〉 = 0. We also have used the
displacement operators in the Fourier space [44]

D̃(α±k

√
j ) = exp[(α±kD

†
±k − α∗

±kD±k)
√

j ]. (23)

Similarly to Ref. [45], the ground state is a product of
two-mode squeezed states with squeezing parameters χk =
artanh[ε1(k)/ε0(k)], where ε0(k) and ε1(k) are defined in
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Eq. (20). The two-mode squeezing operator [44,45] is

S(χk) = exp[χk(D−kDk − D
†
−kD

†
k)]. (24)

IV. CORRELATION FUNCTIONS

In order to further characterize the phases of the system, it
is useful to calculate correlations of some observables between
different sites in the ground state for each of the phases. One
of the obvious choices is to consider correlations between
components of total angular momenta of some site l and a site
l + r , which is r bonds away from the former. Thus we are
interested in functions

Cξξ ′ (r) = 1

2jN

N∑
l=1

〈
J

ξ

l J
ξ ′
l+r

〉
G
, (25)

where ξ,ξ ′ ∈ {x,y,z}. To simplify the notation we have defined
the expectation value of an operator O in the ground state
as 〈O〉G = 〈G|O|G〉. The scaling factor 1

2j
is introduced to

maintain consistency with the original Hamiltonian (2). We
now approach the calculation of correlation functions first in
limit cases (see Sec. II A) and then take into account the equal-
mean-field ansatz.

A. Limit cases

As in Sec. II A, we can look at three limit cases for an
arbitrary value of the total angular momentum j . If g � γ,κ ,
the ground state of the system is |Gz

1,1,...,1〉 [see Eq. (6) for
notation]. The correlation functions in this state are

1

2j

〈
Gz

1,1,...,1

∣∣J z
l J z

l+r

∣∣Gz
1,1,...,1

〉 = j

2
,

(26)〈Gz|J x
l J x

l+r |Gz〉 = 〈Gz|J y

l J
y

l+r |Gz〉 = 0.

In the limit κ � g,γ , the ground state is twofold degener-
ate, so in order to take both the states into account, we consider
a symmetric combination |G〉 = 1√

2
(|Gy

1,1,...,1〉 + G
y

0,0,...,0〉)
leading to the following correlation functions:

1

2j
〈G|J y

l J
y

l+r |G〉 = 1

4j
(j 2 + j 2) = j

2
,

(27)〈G|J x
l J x

l+r |G〉 = 〈G|J z
l J z

l+r |G〉 = 0.

In the third limit, γ � g,κ , the ground state is 2N -fold
degenerate with different sites having spin projections of either
j or −j independently of one another. This limit implies
that for a small angular momentum j there is tunneling
between different ground states, making all the states have
equal probabilities. So, as in the large-κ limit, we consider the
ground state to be an equally weighted combination of ground
states:

|G〉 = 1√
2N

∑
p1,p2,...,pN

∣∣Gx
p1,p2,...,pN

〉
, (28)

with pi taking values 0 and 1. The z-z and y-y correlations are
zero (cf. previous limits), as well as the x-x correlations〈

J x
l J x

l+r

〉 = 1

2N+1jN

∑
l

∑
p1,p2,...,pN

(−1)pl (−1)pl+r j 2 = 0.

(29)

This occurs independent of r , as the pure states |Gx
p1,p2,...,pN

〉
are orthogonal and pl (as well as pl+r ) is zero 2N−1 times and
one another 2N−1 times, making the positive terms appear in
the sum precisely the same number of times as the negative
ones.

It thus may be concluded that in the large-γ limit the system
exhibits no correlations whatsoever in any of the components
[at least when it is in the state (28)], while large-κ and large-g
limits show correlations in the y and z directions, respectively.

B. Equal-mean-field case

In this section we consider correlation functions in a ground
state that has full translational invariance. It is important to
note that both the paramagnetic and the ferromagnetic ground
states inherit this property. In region III, however, due to the
exponential degeneracy, there are only two ground states that
possess full translational invariance. Other ground states have
lower translational symmetry.

Working in the equal-mean-field ansatz we can use the
Bogoliubov vacuum (22) as the ground state |G〉. Cξξ ′ is a sum
of correlations of classical background, which are of order
j , and correlations of microscopic fluctuations of angular
momenta, which are of order 1, much like the Hamiltonian
(15) consists of the classical ground-state energy jEg ∼ O(j )
and microscopic fluctuations HQ ∼ O(1) thereupon. (As we
consider only minima of Eg , linear terms vanish.)

By calculating both classical and microscopic parts of cor-
relation functions in the limit r → ∞ (implying N → ∞), we
can classify the phases according to the long-range ordering.
We do it by applying Holstein-Primakoff transformations to
the component products followed by Fourier transformations
thereof. After these operations we get the following cor-
relations between similar components [restricting wave num-
bers to positive values of k again, cf. Eq. (18)]:

Cξξ (r) = jMg + M0

+
∑
k>0

(M1 ± 2M3 cos kr)〈D†
kDk + D

†
−kD−k〉G

+
∑
k>0

(2M2 + 2M3 cos kr)〈DkD−k + D
†
kD

†
−k〉G,

(30)

with parameters Mg and M0 through M3 as well as the sign
in the first sum defined in Table II. Note that approaching the
limit cases where either of the parameters g or κ is much larger
than the others, the macroscopic part of correlation functions
is in accordance with the functions from the previous section,
as in the respective regions the ground state consists of
parallel spins. The value of Cxx in region III, on the other
hand, is different, which is due to the exponential degeneracy
of the ground state. If in Sec. IV A, a small total angular
momentum j is considered, the tunneling between different
states is highly favorable, making the resulting ground state
uncorrelated. The equal-mean-field ansatz for large j , though,
implies that once initialized in a state with all the spins
parallel the system stays in that state and no tunneling occurs
resulting in long-range correlations.
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TABLE II. Classical correlations jMg and parameters M0 through M3 used in microscopic correlations (31) in regions with ground-state
mean fields αl = αcr between angular momenta components J

ξ

i and J
ξ

i+r . The “±” column shows whether in Eq. (31) the upper (+) or the
lower (−) sign should be chosen.

Region αcr ξ jMg M0 M1 M2 M3 ±
x 0 0 0 0 1

4 +
I 0 y 0 0 0 0 1

4 −
z j

2 0 − 1
2 0 0 +

x 0 0 0 0 − g−κ

8κ
+

II i
√

1 − g/κ y j

2

(
1 − g2

κ2

) (g+κ)2

8κ(g−κ)
5κ2+2gκ−3g2

8κ(g−κ) − 3κ2+2gκ−g2

16κ(g−κ)
g2

2κ(g−κ) −
z j

2
g2

κ2 0 g

2κ
0 − g+κ

2κ
−

x j

2

(
1 − g2

γ 2

) (g+γ )2

8γ (g−γ )
5γ 2+2gγ−3g2

8γ (g−γ )
3γ 2+2gγ−g2

16γ (g−γ ) − g2

2γ (g−γ ) +
III

√
1 − g/γ y 0 0 0 0 g−γ

8γ
−

z j

2
g2

γ 2 0 g

2γ
0 g+γ

2γ
+

Fourier-transformed correlation functions (30) can then
be mapped onto Bogoliubov bosons βk,β

†
k obtained from

diagonalization of the original Hamiltonian taking into account
expressions (21) as well as that 〈β†

kβk〉G = 〈β†
−kβ−k〉G =

〈βkβ−k〉G = 〈β†
kβ

†
−k〉G = 0 in the ground state (22).

For a finite size N of the ring, the final expression for the
correlation function (30) reads

Cξξ (r) = jMg + M0 + 2

N
M1

∑
k>0

[
ε0(k)

ε(k)
− 1

]

− 4

N
M2

∑
k>0

ε1(k)

ε(k)

± 2

N
M3

∑
k>0

cos kr

[
ε0(k) ∓ ε1(k)

ε(k)
− 1

]
, (31)

where we used Eq. (21) to express Bogoliubov coefficients in
terms of ε(k), ε0(k), and ε1(k).

In the limit N → ∞, we can rewrite the sums as integrals,
assuming dk ≡ 2π

N
to get

Cξξ (r) = jMg + M0 + M1

π

∫ π

0

[
ε0(k)

ε(k)
− 1

]
dk

− 2M2

π

∫ π

0

ε1(k)

ε(k)
dk

± M3

π

∫ π

0

[
ε0(k) ∓ ε1(k)

ε(k)
− 1

]
cos krdk. (32)

The macroscopic part of Eq. (32), namely, jMg , is pro-
portional to the respective projection of any of the angular
momenta [Ccl

ξξ = 1
2j

(J ξ

l )2], because we initialize the ring in
the ground state where all the angular momenta of different
sites are parallel and macroscopically static. Thus Ccl

ξξ is
maximized.

The microscopic correlations, too, may be separated into
two parts: the background, which is independent of the distance
r ,

C∞
ξξ = 1

π

∫ π

0

{
M0 + M1

[
ε0(k)

ε(k)
− 1

]
− 2M2

ε1(k)

ε(k)

}
dk,

(33)

and oscillations around this background, decaying with r ,

Cosc
ξξ (r) = ±M3

π

∫ π

0

[
ε0(k) ∓ ε1(k)

ε(k)
− 1

]
cos krdk. (34)

In the limit r → ∞ the oscillating part vanishes leaving
us with Cξξ (∞) − jMg = C∞

ξξ . Microscopic parts of the
correlation functions are plotted in Fig. 5. The plots show
that they differ distinctly in different regions only in the
background terms C∞

ξξ and the amplitude of the oscillations.
The quasiperiod of the oscillations remains the same for all γ

and κ .

(a)

(b)

(c)

FIG. 5. (Color online) Microscopic parts of correlation functions
Cξξ (r) − jMg in region I with γ /g = 0.5 and κ/g = 0.5 (a), region II
with γ /g = 0.5 and κ/g = 1.5 (b), and region III with γ /g = 1.5 and
κ/g = 0.5 (c).
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In region I, only z-z correlations persist in the long-range
limit [Fig. 5(a)], repeating the behavior of the macroscopic cor-
relations. The same correspondence between the macroscopic
and microscopic correlations is also found in regions II and
III. That said, we can classify the phases limiting ourselves
to the macroscopic functions without loss of generality to
get that the long-range ordering exists in all the phases in
corresponding spin components, i.e., in Jz’s in region I, Jy’s in
region II, and Jx’s in region III. Note again that the presence
of the long-range ordering in region III is subject to tunneling
possibility between the ground states and the initial conditions.

Around the phase boundaries, the correlations show partic-
ular behavior. For instance, the Cyy correlation function flips
the sign crossing the boundaries I-II and I-III, and in addition
shows an ever growing correlation length approaching I-II. x-x
and z-z correlations diverge at I-III. At the phase boundary
II-III, Cxx , Cyy , and Czz show infinite correlation length.

V. CONCLUSIONS

We have discussed the quantum phase transitions in a
network of LMG systems coupled via ferromagnetic inter-
actions. In the particular case of a ring topology of the
network, we have shown that the ground state can be obtained
by calculating the quantum corrections about the mean-field
solution. Within the mean-field approach, the ground state
can be interpreted as an alignment of angular momenta of the
individual sites along the directions that minimize the classical
energy of the network. The phase diagram determined from
this assumption shows three distinct phases in the γ κ space
in the thermodynamic limit. Such a phase diagram can also
be obtained from observing the quantum corrections, i.e., the
energy of the collective excitations above the ground state,
because the system is gapless along the critical lines [37].

In the particular case of a ground state of the network
with full translational invariance, the correlation functions
between angular momentum components are clearly distinct
for different phases, showing κ- and γ -dominated phases being
ferromagnetic in the y and x directions, respectively, and
the g-dominated phase showing no long-range ordering. The
order parameter increases with the strength of the exchange
interaction κ and decreases with the strength of the local
interaction γ .

Possible experimental realizations of our model may be
based on Bose-Einstein condensates in optical lattices (cf.

Refs. [7–10]). Other possibilities include, inter alia, single-
chain magnets and nanomagnets (cf. Refs. [12,46–48]).

In a recent experiment, by superimposing an optical
lattice on a harmonic trap it was possible to create N = 30
independent transversely confined BECs. This allows one
to perform quantum-enhanced magnetometry by using spin
squeezing [49]. In such an experimental setup, our model could
be realized by inducing a coupling between the condensates at
different sites of the optical lattice. At each site, it is possible
to create condensates consisting of up to n = 600 atoms. If the
dynamics is restricted to two hyperfine levels of the atoms, an
on-site linear coupling between the levels could be realized. In
addition, the on-site nonlinear terms of the Hamiltonian (2) can
be controlled by means of intrawell atom-atom interactions.

In single-chain magnets, the model can be realized by
choosing appropriate ligands for magnetic nuclei that would
create an easy axis in the chain to induce Ising-like coupling
(e.g., as in Ref. [50]). An accurate choice of ligands may also
give rise to the quadratic local term in the Hamiltonian [47].
The ring topology used in our work can be realized by cycling
the chain as in the related work [18].

As a consequence of finite-size effects, within phase III,
there is tunneling between the 2N ground states, while in
phase II, there is tunneling between the two ferromagnetic
ground states. The method we have developed in this work
can be extended to study other kinds of networks consisting
of coupled mean-field-type critical systems, e.g., the Dicke
models [35] and spinor Bose gases within the single-mode
approximation [15].

Further studies may include the detailed description of the
first-order phase transition at the boundary between regions
II and III and what happens with correlation functions in its
vicinity. In this article we have not considered the issue of
antiferromagnetic coupling, i.e., the case when κll′ ≤ 0. In this
context, it would be interesting to explore other topologies of
the network to study the emergence of frustration and exotic
states such as spin ice [32].
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