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Two-dimensional nonlinear map characterized by tunable Lévy flights
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After recognizing that point particles moving inside the extended version of the rippled billiard perform
Lévy flights characterized by a Lévy-type distribution P (l) ∼ l−(1+α) with α = 1, we derive a generalized
two-dimensional nonlinear map Mα able to produce Lévy flights described by P (l) with 0 < α < 2. Due to this
property, we call Mα the Lévy map. Then, by applying Chirikov’s overlapping resonance criteria, we are able to
identify the onset of global chaos as a function of the parameters of the map. With this, we state the conditions
under which the Lévy map could be used as a Lévy pseudorandom number generator and furthermore confirm
its applicability by computing scattering properties of disordered wires.
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I. INTRODUCTION AND MOTIVATION

The main feature of a Lévy-type density distribution P (l) is
the slow power-law decay of its tail. More precisely, for large
l,

P (�) ∼ 1

l1+α
, (1)

with 0 < α < 2. Note that the second moment of P (l) diverges
for all α and if 0 < α < 1 also the first moment diverges.
This kind of distribution is also known as an α-stable dis-
tribution [1]. Random processes characterized by probability
densities with a long tail (Lévy-type processes) have been
found and studied in very different phenomena and fields such
as biology, economy, and physics. Among the many recently
studied systems showing Lévy-type processes are animal
foraging [2], human mobility [3], earthquake statistics [4],
mosquitoes flight under epidemiological modeling [5], and
light transmission through a disordered glass [6]. See also [7]
for a compilation of systems displaying Lévy flights.

In particular, to help us introduce later the main model
system of this study, i.e., the Lévy map, we describe in
some detail a simple dynamical model characterized by Lévy
processes: the ripple billiard. The ripple billiard (see, for
example, Chap. 6 of [8]) consists of two walls: one flat at y = 0
and a rippled one given by the function y = d + ω cos(x); here
d is the average width of the billiard and ω the ripple amplitude
(see Fig. 1). An attractive feature of the ripple billiard is that
its classical phase space undergoes the generic transition to
global chaos as the amplitude of the cosine function increases.
Then results from the analysis of this system are applicable to
a large class of systems, namely, nondegenerate, nonintegrable
Hamiltonians [8,9]. Moreover, the dynamics of classical
particles inside the ripple billiard can be well approximated by
a two-dimensional (2D) Poincaré map M between successive
collisions with the rippled boundary [10,11] (θn+1,xn+1) =
M(θn,xn), where θn is the angle the particle’s trajectory makes
with the x axis just before the nth bounce with the rippled
boundary at xn. Map M can be easily derived and, after the
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assumptions ω sin(xn) � 1 and ω/d � 1, it takes the simple
form

M :

{
θn+1 = θn − 2ω sin(xn)
xn+1 = xn + 2d cot(θn+1). (2)

As an example, in Fig. 2(a) we plot the Poincaré map M

for ω = 2π/10 and d = 2π . It is clear from this plot that
this combination of geometrical parameters produces ergodic
dynamics (also known as global chaos). Notice that in this
figure we have plotted the variable x modulus 2π , as is usual
for this kind of 2D map; with this, we can globally visualize
the map dynamics in a single plot, but we may lose important
information.

Among the dynamical information that is lost when
applying mod(2π ) to a map such as M is the length of
paths between successive map iterations l ≡ xn+1 − xn, i.e.,
the length between two successive collisions with the rippled
boundary of the billiard. In fact, in Fig. 2(c) we present P (l)
for the same parameters used to construct Fig. 2(a). From this
figure we can clearly see that (i) even though most of the paths
l produced by map M are short [i.e., P (l) is highly peaked at
P (l) = 0], there is a non-negligible probability for very large
values of l to occur [notice that the values of l = ±1000 at
the edges of Fig. 2(c) mean that a particle has traveled about
160 periods of the rippled billiard between two successive
collisions with the rippled boundary] and (ii) P (l) decays as
a power law similar to Eq. (1). These two facts are explicit
evidence of Lévy flights in the dynamics of map M . Thus,
the following question becomes pertinent: Can we provide an
analytic expression for the shape of P (l) given the simple form
of map M? Fortunately, the answer is positive, as we will show
below.

If we consider the dynamics of map M to be in the regime of
full chaos then a single trajectory can explore the full available
phase space homogeneously, as shown in Fig. 2(a), so P (θ ) is
constant and equal to 1/π , as verified in Fig. 2(b). Also, from
the second equation in map M we obtain θ = tan−1(2d/l).
Thus, using P (l) = P (θ )|dθ/dl|, we can write

P (l) = 2d

π (1 + l2)
, (3)
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FIG. 1. Geometry of the rippled billiard and definition of the
variables of map M [see Eq. (2)].

which is in fact a Lévy-type probability distribution function
with α = 1 [compare with Eq. (1)]. Then, in Fig. 2(c) we plot
Eq. (3) (as the red solid line) together with the numerically
obtained P (l) and observe a very good correspondence,
making clear the existence of Lévy processes, characterized
by the power-law decay α = 1, in the dynamics of the rippled
billiard.

In fact, the origin of the Lévy-type probability distribution
of Eq. (3) for the lengths l in the ripple billiard is the existence
of Lévy flights. Since a typical chaotic trajectory fills the
available phase space uniformly [see Fig. 2(a)], then all angles
θ ∈ (0,2π ) are equally probable; however, different angles
produce quite different lengths l. For example, an angle θ

very close to π/2 corresponds to a very short length l ∼ 0
(see Fig. 1). In contrast, θ tending to zero or π produce
trajectories that are nearly parallel to the x axis that may
travel very long distances between successive collisions with
the ripple boundary: In such a case l → ∞. These grazing
trajectories are indeed Lévy flights, known to produce heavy-
tailed distribution functions [12]; for the ripple billiard the
Lévy flights produce Eq. (3) as derived above. Moreover,
grazing trajectories in the ripple billiard have been found to
play a prominent role when defining the classical analogs
of the quantum structure of eigenstates and local density of
states [13].

0 1 2 3
θ

0

0.2

0.4

P(
θ)

-2 0 2
x

0

1

2

3

θ

-1000 -500 0 500 1000
l

10-6

10-4

10-2

P(
l)

(c)

(b)

(a)

FIG. 2. (Color online) (a) Poincaré map M , (b) phase distribution
P (θ ), and (c) length distribution P (l) for the ripple billiard with
ω = 2π/10 and d = 2π . A single initial condition x0 = θ0 = 0.1
was iterated (a) 104 and (b) and (c) 107 times. The red solid curve in
(c) is Eq. (3).

Equation (3) is already an interesting result of the dynamics
of the rippled billiard (and of general chaotic extended bil-
liards with infinite horizon) that deserves additional attention;
however, our goal here is different. Since now we know that
map M produces Lévy flights characterized by α = 1 we ask
ourselves whether we can propose a general 2D nonlinear
map where α can be included as a parameter. More generally,
can we construct the map Mα able to produce Lévy flights
characterized by 0 < α < 2? Indeed, in the following section
we elaborate on these questions.

II. DERIVATION OF THE LÉVY MAP

We introduce the Lévy map Mα by following the opposite
procedure we used above to obtain the distribution function
of Eq. (3) from the map M . Let us (i) consider the 2D map
(θn+1,xn+1) = Mα(θn,xn) to have the same iteration relation
for the angle θ as map M [see Eq. (2)], (ii) assume the map
Mα to be in a regime of global chaos such that

P (θ ) = const = 1

π
, (4)

and (iii) demand the variable

l ≡ xn+1 − xn (5)

from map Mα to be characterized by the Lévy-type density
distribution function

P (l) = C
l1+α

, (6)

where 0 < α < 2 and C is a normalization constant. Then

θ ≡
∫

P (l)

P (θ )
dl = πC

∫
dl

l1+α
= − πC

αlα

provides l = (−αθ/πC)−1/α . Therefore, we define the Lévy
map as

Mα :

{
θn+1 = θn − 2ω sin(xn)
xn+1 = xn + γ |αθn+1|−1/α, 0 < α < 2,

(7)

where ω, γ = (πC)1/α , and α are the map parameters. We have
introduced the absolute value in the second equation of Mα to
avoid fractional powers of negative angles. This in turn makes
all lengths l positive.

Notice that for α = 1 and θn+1 � 1, where cot(θn+1) ≈
1/θn+1, we recover map M from Mα (with γ = 2d). We
also note that Mα has a similar form to the maps studied
in Refs. [14–17] in the sense that the function f (θn+1), in the
second line of the map Mα , is inversely proportional to θn+1

to a noninteger power.
Below we will focus our attention on map Mα with the

parameter α in the interval 0 < α < 2 because our motivation
is to construct a map able to produce pseudorandom variables
distributed according to α-stable distributions. However, the
parameter α may also take values outside this interval.

III. ONSET OF GLOBAL CHAOS

In general, depending on the values of the parameters
(ω,γ,α), the dynamics of the Lévy map may be integrable,
mixed (where the phase space contains periodic islands
surrounded by chaotic seas, which may be limited by invariant
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spanning curves), or ergodic. That is, the classical phase space
of map Mα develops the generic transition to global chaos (not
shown here). However, for Eq. (4) to be valid the map dynamics
must be ergodic. Therefore, below, by applying Chirikov’s
overlapping resonance criteria, we shall identify the onset of
global chaos as a function of the parameters of the Lévy map.

Following [9], we linearize Mα around the period-1 fixed
points (x∗,θ∗), which are defined through

θn+1 = θn = θ∗,

xn+1 = xn = x∗ + 2πm, m = 1,2,3, . . . .

This condition provides

x∗ = 0,π, θ∗ = 1

α

( γ

2πm

)α

. (8)

Then, for an angle close to θ∗ we can write θn = θ∗ + �θn,
getting

θn+1 = θ∗ + �θn+1 = θ∗ + �θn − 2ω sin(xn).

Thus,

�θn+1 = �θn − 2ω sin(xn). (9)

In addition, for x we have

xn+1 = xn + γα−1/α(θ∗ + �θn+1)−1/α

≈ xn + γ (αθ∗)−1/α[1 − (αθ∗)−1�θn+1]

= xn + 2πm[1 − (γ /2πm)−α�θn+1]

= xn − γ −α(2πm)α+1�θn+1. (10)

Finally, by substituting the new angle

	n ≡ −γ −α(2πm)α+1�θn

in (9) and (10) we can write the linearized map

MSM :

{
	n+1 = 	n + K sin(xn)
xn+1 = xn + 	n+1,

(11)

where 	 and x, respectively, play the role of action-angle
variables in the standard map [9,18] with

K = 2(2πm)α+1ωγ −α, m = 1,2,3, . . . (12)

being the stochasticity parameter.
Chirikov’s overlapping resonance criteria predicts the

transition to global chaos for K > KC , where KC ≈
0.971 635 . . . [9,18,19]. Global chaos means that chaotic re-
gions are interconnected over the whole phase space (stability
islands may still exist but are sufficiently small that the chaotic
sea extends throughout the vast majority of phase space). This
criterion for the Lévy map reads

ω
>∼ γ α

2(2π )α+1
= C

4(2π )α
. (13)

In fact, to get Eq. (13) from Eq. (12) we have applied the
resonance criterion to the period-1 fixed point corresponding
to m = 1 [see Eq. (8)], which is the fixed point having the
largest θ (i.e., it is located highest in phase space) and the
one closer to the last invariant spanning curve bounding
the diffusion of the variable θ .
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FIG. 3. (Color online) (a)–(d) Phase distributions P (θ ) and (e)–
(h) length distributions ρ(ln l) for the Lévy map Mα with ω = C = 1
and (a) and (e) α = 1/4, (b) and (f) α = 1/2, (c) and (g) α = 1,
and (d) and (h) α = 3/2. To construct each histogram a single initial
condition x0 = θ0 = 0.1 was iterated 107 times. The red solid curve
in (e)–(h) is ρ(ln l) = l−α .

Indeed, we have verified that the phase space of Mα is er-
godic if condition (13) is satisfied (not shown here). Moreover,
in Figs. 3(a)–3(d) we plot the phase distribution functions P (θ )
for the Lévy map with ω = C = 1 corresponding to α = 1/4,
1/2, 1, and 3/2. From these figures it is clear that P (θ ) is
certainly a constant distribution. In particular, note that with
ω = C = 1 condition (13) is satisfied for any α, so we shall
use this set of parameter values in all figures below.

Now we would like to verify that once P (θ ) = 1/π , Mα

must produce lengths {l} distributed according to Eq. (6).
However, we notice that for α < 1 the Lévy map produces
huge values of l. To show this, in Fig. 4 we plot the typical
value of l,

ltyp = exp〈ln l〉, (14)

as a function of α; here we can observe that for α = 1/4 the
typical l is larger than 105 [in fact, from the data we used to
construct the P (θ ) of Fig. 3(a) we obtained several lengths l of
the order of 1030]. Thus, it is not practical to construct P (l) to
test the validity of Eq. (6) itself. Instead, we make the change
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MÉNDEZ-BERMÚDEZ, DE OLIVEIRA, AND LEONEL PHYSICAL REVIEW E 90, 042138 (2014)

0 0.5 1 1.5 2
α

100

1010

1020

1030
l ty

p

FIG. 4. Typical value of l, ltyp = exp〈ln l〉, for the Lévy map Mα

as a function of α; ω = C = 1 were used. The average was performed
over 107 values of l obtained by iterating Mα from the single initial
condition x0 = θ0 = 0.1.

of variable l → ln l, which leads to

ρ(ln l) = lP (l) = C
lα

.

Then in Figs. 3(e)–3(h) we show length distribution functions
ρ(ln l) for the Lévy map with α = 1/4, 1/2, 1, and 3/2
(histograms). As can be clearly seen, the agreement between
the histograms and ρ(ln l) = l−α (shown as red thick lines) is
indeed excellent.

It is relevant to stress that since the phase space of the Lévy
map is ergodic when condition (13) is satisfied, the sequences
{l} can then be considered as Lévy-distributed pseudorandom
numbers. In fact, in the next section we will show through a
specific application that the lengths l can be used in practice
as random numbers.

IV. THE LÉVY MAP AS A LÉVY-DISTRIBUTED
PSEUDORANDOM NUMBER GENERATOR

There is a good deal of work devoted to the use of nonlinear
maps as pseudorandom number generators (see some examples
in Refs. [20–25]). Therefore, in a similar way, we would
like to use the Lévy map to generate pseudorandom numbers
particularly distributed according to the Lévy-type probability
distribution function of Eq. (6). However, instead of analyzing
the randomness of the sequences {l} produced by Mα , here we
will show that these numbers can be successfully used already
in a specific application: We shall compute transmission
through 1D disordered wires.

Recently, the electron transport through 1D quantum wires
with Lévy-type disorder was studied in Refs. [26,27]. There it
was found that the average (over different disorder realizations)
of the logarithm of the dimensionless conductance G behaves
as

〈− ln G〉 ∝
{
Lα for 0 < α < 1
L for 1 � α < 2,

(15)

where L is a length that depends on the wire model. For
example, for a wire represented as a sequence of potential
barriers with random lengths, L = ∑

n νn [26], where νn is the
length of the nth barrier in the wave propagation direction. In
contrast, for a wire represented by the 1D Anderson model
with off-diagonal disorder, L = ∑

n νn,n+1 [27], where νn,n+1

is the hopping integral between the sites n and n + 1.
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FIG. 5. (Color online) Average 〈− ln G〉 as a function of L/ltyp

for the 1D Anderson model with off-diagonal Lévy-type disorder
characterized by α. We used an incoming wave with energy E = 0.1.
The dashed lines are fittings of the data with Eq. (15). Each symbol
was calculated using 105 wire realizations. Each wire realization was
constructed from a single sequence of lengths {l} generated by map
Mα having random initial conditions uniformly distributed in the
intervals −π < x0 < π and 0 < θ0 < 2π .

Here we use the 1D Anderson model with off-diagonal
disorder to represent 1D quantum wires (see details in the
Appendix) where the hopping integrals νn,n+1 are in fact the
pseudorandom lengths l generated by our Lévy map. Then in
Fig. 5 we plot 〈− ln G〉 as a function of L for the 1D Anderson
model with Lévy-type disorder characterized by α = 1/4, 1/2,
1, and 3/2. We have computed the dimensionless conductance
by the use of the effective Hamiltonian approach (see details in
the Appendix). In Fig. 5 we are using ltyp to normalize L to be
able to show curves corresponding to different values of α in
the same figure panel. Also in Fig. 5 we are including fittings of
the curves 〈− ln G〉 vs L with Eq. (15) (see red dashed lines),
which certainly show the anomalous conductance behavior
predicted in Refs. [26,27]. Therefore, in this way the use of the
Lévy map as a pseudorandom number generator is validated.

V. CONCLUSION

In this paper we have introduced the so-called Lévy map:
a two-dimensional nonlinear map characterized by tunable
Lévy flights. Indeed, it is described by a 2D nonlinear and area
preserving map with a control parameter driving two important
transitions: (i) integrability (ω = 0) to nonintegrability (ω =
0) and (ii) local chaos with ω < C/4(2π )α to globally chaotic
dynamics with ω > C/4(2π )α . We have applied Chirikov’s
overlapping resonance criterion to identify the onset of global
chaos as a function of the parameters of the map, therefore
reaching condition (ii) as described in the preceding sentence.
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In this way we stated the requirements under which the Lévy
map could be used as a Lévy pseudorandom number generator
and confirmed its effectiveness by computing scattering
properties of disordered wires.

ACKNOWLEDGMENTS

J.A.M.-B is grateful to the Brazilian agency FAPESP for
support through Grant No. 2013/14655-9; partial support from
VIEP-BUAP through Grant No. MEBJ-EXC14-I and Fondo
Institucional PIFCA through Grant No. BUAP-CA-169 is also
acknowledged. J.A.M.-B is grateful for the warm hospitality
at Departamento de Fı́sica at UNESP, Rio Claro, where this
work was mostly developed. J.A.O. thanks FAPESP (Grant No.
2014/18672-8) and PROPe/FUNDUNESP/UNESP. E.D.L.
is grateful to the Brazilian agencies FAPESP (Grant No.
2012/23688-5), CNPq, and CAPES.

APPENDIX

In Sec. IV we considered 1D tight-binding chains of size
N described by the Hamiltonian

Hmn = hnδmn + νn,n+1δn,n+1 + νn,n−1δn,n−1, (A1)

where hn are on-site potentials that we set to zero and νn,n+1 =
νn+1,n are hopping amplitudes connecting nearest sites. Here
m,n = 1, . . . ,N . We open the 1D chains by attaching two

single-mode semi-infinite leads to the opposite sites on the
1D samples. Each lead is described by the 1D semi-infinite
tight-binding Hamiltonian

Hlead =
−∞∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|).

Then, following the effective Hamiltonian approach, the
scattering matrix (S matrix) has the form [28]

S =
(

r t ′
t r ′

)
= 1 − 2πiWT 1

E − Heff
W, (A2)

where t , t ′, r , and r ′ are transmission and reflection amplitudes,
1 is the 2 × 2 unit matrix, k = arccos(E/2) is the wave
vector supported in the leads, and Heff is an effective energy-
dependent non-Hermitian Hamiltonian given by

Heff = H + π cot(k)WWT − iπWWT . (A3)

Above, W is an L × 2 matrix with elements Wi,j =
[sin(k)/π ]1/2(δ1,1 + δL,2). Finally, within a scattering ap-
proach to electronic transport, once the scattering matrix is
known, we compute the dimensionless conductance as [29]

G = |S12|2. (A4)
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