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Motivated by studies on the recurrent properties of animal and human mobility, we introduce a path-dependent
random-walk model with long-range memory for which not only the mean-square displacement (MSD) but also
the propagator can be obtained exactly in the asymptotic limit. The model consists of a random walker on a lattice,
which, at a constant rate, stochastically relocates at a site occupied at some earlier time. This time in the past is
chosen randomly according to a memory kernel, whose temporal decay can be varied via an exponent parameter.
In the weakly non-Markovian regime, memory reduces the diffusion coefficient from the bare value. When
the mean backward jump in time diverges, the diffusion coefficient vanishes and a transition to an anomalous
subdiffusive regime occurs. Paradoxically, at the transition, the process is an anticorrelated Lévy flight. Although
in the subdiffusive regime the model exhibits some features of the continuous time random walk with infinite
mean waiting time, it belongs to another universality class. If memory is very long-ranged, a second transition
takes place to a regime characterized by a logarithmic growth of the MSD with time. In this case the process
is asymptotically Gaussian and effectively described as a scaled Brownian motion with a diffusion coefficient
decaying as 1/t .
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I. INTRODUCTION

“True” self-interacting random walks (as opposed to static
models like the self-avoiding walk of polymer physics)
are an important class of non-Markovian kinetic processes
with long-range memory [1]. Reinforced random walks are
self-attracting processes where, typically, a random walker
tends to preferentially revisit the nearest-neighbor sites that
it has visited before (or, in a variant, recross the edges
already crossed). In the past few decades, reinforced random
walks have received attention not only for the mathematical
challenges they raise but also for their applications to biology
[2,3]. These walks have been used for the description of the
displacements of ants or bacteria [2]. In ecology, they can
also represent simple models of “site fidelity,” a behavior
observed in many animals in the wild [4,5]. Many reinforced
walk models are defined through transition probabilities that
depend on the number of visits (or crossings) received by the
sites (or edges) and the resulting dynamics is thus strongly
path dependent.

Some rigorous results have been obtained for certain
reinforcement rules, showing that different dynamical behav-
iors can emerge depending on the strength of memory and
the spatial dimension. A single walker may asymptotically
become localized (keeping oscillating between a few sites),
or diffusive, in which the range of its position Xt is infinite
and the origin visited infinitely often in one dimension
(1D) [1,2,6]. Numerical simulations actually show that a
variety of models seems to exhibit a phase transition at
finite reinforcement between a localized and a diffusive
regime [7–10]. Interestingly, in the diffusive regime, the same
studies have presented evidence that diffusion is anomalous,
namely subdiffusive. This type of motion, widely studied in
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Markovian contexts [11,12], is characterized by a mean-square
displacement (MSD) of the particle which does not follow the
Smoluchowski-Einstein law of Brownian motion, but a slower
one, of the form 〈X2

t 〉 ∝ tμ with μ an exponent <1.
Few random-walk models with long-range memory are

analytically tractable [13–15]. For a single particle, path-
dependent diffusion is notoriously difficult to formalize and
many results on reinforced random walks are based on numer-
ical simulations. Usually, such processes cannot be described
by a master equation for the single-time occupation probability
(or propagator). Instead, they require the introduction of
multiple-time distribution functions that are related to each
other via a hierarchy of relations. Path-integral approaches
[16,17] or approximate scaling arguments [18,19] have been
developed to overcome these difficulties. Nonlinear integrod-
ifferential Fokker-Planck equations can also be derived within
a mean-field approximation [10]. This latter approach can give
a fairly good picture of the phase diagram but remains limited
for a precise dynamical description.

The recent ecological literature reveals a regain of interest
for reinforced random walks. Thanks to spectacular advances
in tracking technology, the positions of individual animals
[20–22], including humans [19,23–25], can be recorded
with a high resolution and during long periods of time.
Recently, random-walk models with memory have success-
fully explained some features of the trajectories of humans
[19], monkeys [26], or bisons [27], which all exhibit strong
recurrence, an anomalous slow diffusion, and a heterogeneous
occupation of space. Other theoretical studies have identified
memory as a key factor for the emergence of home ranges, that
is, a restricted space use [28–32]. Reinforced random walks
thus offer a promising alternative to Markovian random walks,
which remain the dominant modeling paradigm in movement
ecology [33–35]. However, most models developed so far are
computational and we still lack a basic understanding of the

1539-3755/2014/90(4)/042136(12) 042136-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.042136


D. BOYER AND J. C. R. ROMO-CRUZ PHYSICAL REVIEW E 90, 042136 (2014)

effects of memory on mobility patterns, even in simple cases.
For this purpose, it is desirable, in parallel with ecologically
realistic computational approaches, to gain knowledge from
the mathematical analysis of very simple models.

Here, we exactly solve in the asymptotic time limit a rein-
forced model that generalizes the one presented in Ref. [26],
where a random walker intermittently relocates to sites visited
in the past. We obtain not only the behavior of the MSD,
but also the properties of the propagator or diffusion front, a
quantity which is almost unknown for single reinforced walks.
In contrast with usual reinforced models, here the walker’s
steps are not necessarily directed to nearest-neighbor sites.
This property has two advantages: It agrees with the empirical
fact that many animals and humans actually perform long,
intermittent commuting bouts to visit places that are beyond
their perception range [36–39], and it also greatly simplifies
the mathematical analysis since an exact master equation can
be written in this case.

Depending on a memory parameter, we find that motion
can be Brownian or subdiffusive. Two subdiffusive regimes
are identified, with power-law and logarithmic dynamics,
respectively. Somewhat paradoxically, a Lévy-like distribution
for the length of the steps emerges at the onset of subdiffusion.
We thus suggest that a mechanism based on memory could
be at the origin of the Lévy flight patterns observed in
many animals [21,23,35,40–42]. In addition, the availability
of the propagator allows us to discuss in a formal way
some analogies and differences between the present model
and well-known, essentially Markovian, models of anoma-
lous diffusion: notably, the continuous time random walk
(CTRW) of Montroll and Weiss [43] and the scaled Brownian
motion [44].

II. MODEL AND BASIC QUANTITIES

Let us consider a one-dimensional lattice with unit spacing
and a walker with position Xt at time t . Time is discrete (t =
0,1,2 . . . ) and the walker starts at the origin, X0 = 0. Let q be a
constant parameter, 0 < q < 1. At each time step, t → t + 1,
the walker chooses one of the two movement modes: (i) With
probability 1 − q, the walker performs a random step to a
nearest-neighbor site, like in the simple symmetric random
walk, and (ii) with the complementary probability q, the walker
chooses a random integer t ′ in the interval [0,t] according to
a probability distribution pt (t ′), which is given a priori. Then
the walker directly relocates at the site that it occupied at time
t ′, i.e., Xt+1 = Xt ′ .

These rules are depicted in Fig. 1. If, for instance, pt (t ′)
is uniform, i.e., pt (t ′) = 1

t+1 , one recovers the preferential
visit model studied in Ref. [26] (see also Refs. [4,5]). In
this case, the memory rule (ii) is equivalent to revisiting an
already-visited site, say, n, with probability proportional to
the total amount of time spent by the walker at this site since
t = 0. Hence, the more visits site n receives, the more likely
it will be chosen for future visits in the memory movement
mode. This is the principle of reinforced random walks. In
a different context, similar rules characterize network growth
models with preferential attachment [45–47]. An important
difference with usual reinforced random walks is that, here,
any of the previously visited sites is susceptible to receive the
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q

t
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β = 0

β > 0

τ

FIG. 1. (Color online) Top: At time t , the model walker performs
a nearest-neighbor random-walk step with probability 1 − q or
relocates, with probability q, to the site it occupied at some earlier time
t ′. Bottom: Probability distribution of t ′ for the uniform preferential
visit case [β = 0 in Eq. (4)] or in a case with memory decay (β > 0).

next visit and not just the nearest neighbors of the current
position of the walker. This property considerably simplifies
the analysis, which still is not trivial. Note that a Markovian
limiting case of this model is the random walk with stochastic
resetting to the origin [48], which corresponds to pt (t ′) = δt ′,0.

We focus on the propagator P (n,t) of the single particle,
which is the probability that Xt = n given that X0 = 0. As
formally shown in Appendix A, despite the fact that our
process is highly non-Markovian, the evolution of P (n,t) is
exactly described through a single master equation as follows:

P (n,t + 1) = 1 − q

2
P (n − 1,t) + 1 − q

2
P (n + 1,t)

+ q

t∑
t ′=0

pt (t
′)P (n,t ′). (1)

The last term is the probability to choose site n using
the memory mode. This term can also be interpreted as
proportional to the weighted number of previous visits received
by site n, where the weight of a visit received at time t ′ is
pt (t ′). In this study, we will restrict ourselves to the cases
where the probability distribution of t ′ is of the form pt (t ′) ∝
F (t − t ′). Hence, the memory kernel F (τ ) depends on the time
elapsed between the remembered event and the present time,
τ ≡ t − t ′. The normalization condition

∑t
t ′=0 pt (t ′) = 1 at

each t imposes that

pt (t
′) = F (t − t ′)

C(t)
, (2)

where

C(t) =
t∑

t ′=0

F (t − t ′). (3)
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FIG. 2. (Color online) Trajectories obtained from numerical sim-
ulations of the model in the normally diffusive regime (top), at the
subdiffusive threshold (middle) and in the first subdiffusive regime
(bottom). The thick (black) vertical lines indicate the relocation steps
in the memory mode. The rate of memory use is q = 0.01 in these
cases.

In the uniform preferential visit model, dF (τ )/dτ = 0, i.e.,
memory does not decay. Here, we are interested in cases where
dF (τ )/dτ < 0, i.e., where recent visits count more than visits
performed further in the past, as represented in Fig. 1 (bottom).
We will consider a particularly interesting case, namely scale-
free memory decays,

F (τ ) = (τ + 1)−β, 0 � τ � t, (4)

with β an exponent. If β is large, the early time trajectory
(t ′ � t , or τ large) tends to be completely forgotten. Hence,
when the walker uses its memory, it will most likely decide
to revisit positions occupied at times proximate to the present
time t . But if β is small enough, memory becomes long range
and may drastically affect the diffusion process, like in the
preferential visit model (β = 0) [26].

At a given time t , it is natural to define the mean backward
jump in time as 〈τ 〉t ≡ 〈t − t ′〉, or

〈τ 〉t =
∑t

τ=0 τF (τ )∑t
τ=0 F (τ )

. (5)

If β > 2 in the kernel (4), both sums in Eq. (5) converge and
〈τ 〉t tends to a constant at large t ,

〈τ 〉∞ =
∑∞

τ=0 τ (1 + τ )−β

ζ (β)
, (6)

where ζ (β) = ∑∞
τ=0(1 + τ )−β is the Riemann ζ function. In

this case, memory has a finite range and should not affect
in an essential way the normal diffusion process. Figure 2
displays examples of walks generated numerically in 1D in
three different cases: β > 2, β = 2, and β < 2.

III. SUMMARY OF THE MAIN RESULTS

The analytical results presented below are derived in Sec. IV
using the following methodology. Instead of solving Eq. (1),
we have considered the moments of P (n,t), defined by the en-
semble averages 〈X2p

t 〉. The moments obey simpler equations
and carry information on the behavior of the distribution itself.
These equations can be solved in the asymptotic time limit. We
first study the second moment (p = 1), i.e., the mean-square
displacement (MSD). For β > 1, we assume that the leading
asymptotic term of the MSD is of the form Ktμ and calculate
the constants K and μ. For the case β < 1, the correct ansatz
is 〈X2

t 〉 
 K ln t and we determine K . We next assume that
P (n,t) obeys a scaling form at large time in each case, see
Eq. (11) below, which enables us to obtain the asymptotic
behavior of all the higher-order moments for any positive
integer p � 1. The MSD ansatzs and the scaling assumption
yield consistent results, which are also checked numerically
by simulations or exact time integration of the equations.

A. Mean-square displacement 〈X2
t 〉

We summarize the exact asymptotic results obtained for the
MSD, which is the second moment of P (n,t),

M2(t) ≡
∞∑

n=−∞
n2P (n,t) = 〈

X2
t

〉
. (7)

If β > 2, we have the following:

M2(t) 

(

1 − q

1 + q〈τ 〉∞

)
t. (8)

This result actually applies to any kernel F (τ ) with finite
first moment. Thus, diffusion is normal and the main effect
of memory is to decrease the diffusion constant compared
to that of the memoryless random walk (q = 0). The larger
the q (frequent memory use) and the larger the 〈τ 〉∞ (better
memory), the slower the diffusion.

If 1 < β < 2, Eq. (8) above no longer holds since 〈τ 〉∞ =
∞, making the diffusion constant vanish. Instead, motion is
asymptotically subdiffusive as follows:

M2(t) 
 Ktβ−1 with K = (1 − q)ζ (β)

q
∫ 1

0 du 1−uβ−1

(1−u)β

. (9)

If β < 1, diffusion is even slower, logarithmic in time,

M2(t) 
 K ln t with K = 1 − q

q(1 − β)
∫ 1

0 du − ln u
(1−u)β

. (10)

In particular, by setting β = 0 in (10) one recovers the result
of the uniform preferential visit model [26], M2(t) 
 1−q

q
ln t .

B. Scaling functions

In each case above, we make a scaling hypothesis for the
probability density in the long-time limit as follows:

P (n,t) 
 1√
M2(t)

g

(
n√

M2(t)

)
, (11)

where, by construction, g(x) is a normalized scaling func-
tion [

∫ ∞
−∞ g(x)dx = 1] of unit variance [

∫ ∞
−∞ x2g(x)dx = 1].
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Although g(x) may not be always obtained explicitly, its
properties can be inferred from the asymptotic behavior of
the even moments, defined as

M2p(t) =
∞∑

n=−∞
n2pP (n,t), (12)

with p being a positive integer [M2p+1(t) = 0 by symmetry].
Assuming that Eq. (11) holds, it is easy to see that in the
long-time limit the moments are given by

M2p(t) 
 ap[M2(t)]p, (13)

where ap is a constant given by ap = ∫ ∞
−∞ dx x2pg(x).

Obviously, a0 = a1 = 1. The constants ap are calculated in
Sec. IV B, and we find the following.

For β > 2, the scaling function g(x) is Gaussian, i.e.,

ap

ap−1
= 2p − 1, (14)

for any positive integer p.
For β < 1 (logarithmic diffusion case), the process is also

Gaussian asymptotically, namely ap/ap−1 = 2p − 1 as above,
despite the fact that memory is very long ranged and diffusion
strongly anomalous. This result is nontrivial: The mechanism
that makes g(x) Gaussian is strongly driven by memory and
differs from the one that leads to Gaussianity in the central
limit theorem (previous case).

In the intermediate case 1 < β < 2 (anomalous diffusion
as tβ−1), g(x) deviates from the Gaussian form. Its moments
satisfy

ap

ap−1
= (2p − 1)

pI1(β)

Ip(β)
, (15)

where

Ip(β) =
∫ 1

0
du

1 − up(β−1)

(1 − u)β
. (16)

Note that (14), (15), and (16) are universal relations, i.e., the
corresponding limiting distributions P (n,t) do not depend on
q nor on the details of the memory kernel but only on the fact
that F (τ ) ∼ τ−β at large τ .

Alternatively, expressions (15) and (16) can be written using
special functions. In this paper we define

μ ≡ β − 1. (17)

By integrating (16) by parts, we have Ip(β) = − 1
μ

+
pB [pμ,1 − μ], with 0 < μ < 1 and where B(x,y) is the Beta
function. Using properties of the � function [49], Eqs. (15) and
(16) can be rewritten as follows:

ap

ap−1
= (2p − 1)

p
[

πμ

sin(πμ) − 1
]

�(1 − μ) �(pμ+1)
�(pμ+1−μ) − 1

. (18)

In the two limiting cases μ → 1− (or β → 2−) and μ → 0+
(or β → 1+), Eq. (18) gives back ap/ap−1 → 2p − 1, namely
the two Gaussian cases previously mentioned.

IV. DERIVATION OF THE RESULTS

A. Second moment

By taking the second moment of Eq. (1), we obtain a
recursive relation for the mean-square displacement as follows:

M2(t + 1) = 1 − q + (1 − q)M2(t)

+ q

C(t)

t∑
t ′=0

F (t − t ′)M2(t ′). (19)

This equation may not be exactly solvable for all t , but we
investigate its asymptotic behavior. To show (8)–(10), we write
Eq. (19) in the following form:

M2(t + 1) − M2(t) − (1 − q) + qM2(t) = q

C(t)
F{M2(t)}

(20)

with C(t) = ∑t
τ=0(1 + τ )−β and

F{M2(t)} ≡
t∑

t ′=0

M2(t ′)
(t − t ′ + 1)β

. (21)

We notice that a diverging M2(t) in the infinite time limit
implies that the terms with large t ′ dominate in the sum (21).
Therefore, one may approximate M2(t ′) in the sum by its
leading asymptotic form, even at small t ′.

If β > 2, we make the asymptotic ansatz M2(t) 
 Kt ,
obtaining the following:

F{Kt} = Kt

t∑
τ=0

(1 + τ )−β − K

t∑
τ=0

τ (1 + τ )−β, (22)


 Kt

∞∑
τ=0

(1 + τ )−β − K

∞∑
τ=0

τ (1 + τ )−β, (23)

since the two sums above converge. Substituting (23) into
(20) and noting that M2(t + 1) − M2(t) 
 K , one obtains an
equation for K which is easily solved as K = (1 − q)/[1 +
q〈τ 〉∞]. This is result (8), which is displayed in Fig. 3 (top).
This panel also shows the MSD obtained by iterating the exact
Eq. (19) numerically from the initial condition M2(0) = 0,
as well as the MSD obtained from Monte Carlo simulations
(both are identical within numerical errors). Figure 3 (bottom)
actually shows that the time derivative of the exact MSD
tends to the calculated diffusivity K . Note that higher-order
corrections to the linear behavior become more important
at finite t as β → 2, and convergence is slower. At β = 2,
〈τ 〉∞ = ∞ and the diffusivity K vanishes, suggesting a change
of temporal behavior.

To examine the case 1 < β < 2, we make the general ansatz
M2(t) 
 Ktν , where ν and K are unknown. Similarly to (23),
we seek to expand the memory term as F{Ktν} 
 Ktν(c1 +
c2t

−β+1) for large t . As shown in Appendix B,

F{Ktν} 
 Ktν
{
ζ (β) − t−β+1

[∫ 1

0
du

1 − (1 − u)ν

uβ

+ 1

β − 1

]}
. (24)
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FIG. 3. (Color online) Comparison between the exact MSD ob-
tained from solving Eq. (19) numerically (solid red lines), and the
asymptotic analytical results [dotted blue lines, from Eq. (8)], in
the normal diffusive case β > 2. Top: M2(t) vs t . The black dots
correspond to Monte Carlo simulations. Bottom: The same curves,
represented as dM2(t)/dt vs t . Higher-order corrections, which are
not calculated in the theory, become more important at finite t when
β approaches the subdiffusive transition point β = 2. In all cases,
q = 0.5.

The normalization constant C(t) can be written as follows:

C(t) =
t∑

τ=0

1

(1 + τ )β

 ζ (β) − t−β+1

β − 1
. (25)

Assuming that ν < 1 (subdiffusive behavior), so we can
neglect M2(t + 1) − M2(t) 
 Ṁ2(t) in (20) compared to the
constant −(1 − q), and substituting (24) and (25) in (20), we
obtain the following:

−(1 − q) = qKtν−β+1 1

ζ (β)

∫ 1

0
du

uν − 1

(1 − u)β
+ O(t−β+1).

(26)

The exponent of t in the right-hand side of (26) must be 0 for
consistency, which gives ν = β − 1 ≡ μ. Consequently, this
equation can be solved for the constant K and formula (9) is
obtained. Figure 4 (top) shows that the exact numerical MSD
obtained from iterating (19) tends to a linear behavior with
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FIG. 4. (Color online) Top panels: M2(t) as a function of tβ−1 for
two values of β in the range (1,2) and with q = 0.5. The solid red
lines are obtained from exact resolution of Eq. (19) and the dotted
blue lines are given by Eq. (9). The black dots correspond to Monte
Carlo simulations of the model. Bottom panels: The same curves,
represented as dM2(t)/d(tβ−1) vs tβ−1.

respect to the variable tβ−1, as predicted by our result. Note
that at large but finite time the exact MSD would be better
approximated by the leading asymptotic result plus a constant,
which, unfortunately, cannot be calculated by our method (this
situation occurs for β < 1 as well, see Fig. 5 below). However,
such a constant becomes negligible as t → ∞. For a more
precise comparison, we have displayed in Fig. 4 (bottom) the
derivative of the MSD with respect to tβ−1; this quantity tends
to a constant in very good agreement with the calculated K .

In the case β < 1, we follow a similar route, now with a
logarithmic ansatz M2(t) 
 K ln t , as suggested by the exact
result for the preferential visit model, i.e., β = 0 [26]. Since∑t

τ=0(1 + τ )−β does not converge, one can use directly the
Euler-Maclaurin expansion as follows:

C(t) 

∫ t

0
dτ (1 + τ )−β 
 t1−β

1 − β
, (27)
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FIG. 5. (Color online) Top: M2(t) as a function of ln t for three
values of β < 1 and with q = 0.5. The solid red lines are obtained
from exact resolution of Eq. (19) and the dotted blue lines are given
by Eq. (10). The black dots correspond to Monte Carlo simulations.
Bottom: The same curves, represented as dM2(t)/d(ln t) vs ln t .

at large t . Similarly,

F{M2(t)} 

∫ t

0
dt ′

M2(t ′)
(t − t ′ + 1)β


 K

∫ t

A

dt ′
ln t ′

(t − t ′ + 1)β
,

(28)

where A is some constant. Making the change t ′ = ut and
noticing that the functions ln u/(1 − u)β and 1/(1 − u)β are
integrable both in 0 and 1 when β < 1, we obtain, for the case
when t is large,

F{M2(t)} 
 Kt1−β

∫ 1

0
du

ln u + ln t

(1 − u)β
. (29)

By substituting (27) and (29) into (20) and neglecting M2(t +
1) − M2(t) as before, we obtain the following:

−(1 − q) = qK(1 − β)
∫ 1

0
du

ln u

(1 − u)β
, (30)

which gives the constant K and result (10). Figure 5 (top)
shows that the exact MSD obtained numerically becomes a
linear function of ln t at large times, in agreement with theory.
We have also displayed in Fig. 5 (bottom) the derivative of the

MSD with respect to ln t : This quantity tends to a constant in
very good agreement with the calculated K .

B. Higher-order moments

In a similar way, we now consider the asymptotic behavior
of the moments M2p(t). We start from the exact relation which
follows from the master equation (1),

M2p(t + 1) = 1 − q + (1 − q)M2p(t)

+ (1 − q)
p−1∑
k=1

C2k
2pM2k(t)

+ q

C(t)

t∑
t ′=0

F (t − t ′)M2p(t ′). (31)

Assuming the scaling hypothesis (13), and given that M2(t)
always diverges as t → ∞, we can neglect the term 1 − q

as well as the terms proportional to M2k(t) for all k < p −
1 in the right-hand side of (31). Substituting M2p(t + 1) −
M2p(t) by dM2p/dt in the long-time limit, Eq. (31) becomes
the following:

ap

dM2(t)p

dt

 (1 − q)p(2p − 1)ap−1M2(t)p−1

+ qap

C(t)

t∑
t ′=0

F (t − t ′)[M2(t ′)p − M2(t)p].

(32)

If 1 < β < 2, we have M2(t) 
 Ktβ−1 and Eq. (32) reads as
follows:

Kpapp(β − 1)t (β−1)p−1


 (1 − q)p(2p − 1)ap−1K
p−1t (β−1)(p−1)

+ qapKp

C(t)

t∑
t ′=0

t ′(β−1)p − t (β−1)p

(t − t ′ + 1)β
. (33)

Using formula (24), we obtain the following:

t∑
t ′=0

t ′(β−1)p

(t − t ′ + 1)β


 t (β−1)p

{
ζ (β) − t−β+1

[∫ 1

0
du

1 − u(β−1)p

(1 − u)β
+ 1

β − 1

]}
,

(34)

whereas
t∑

t ′=0

t (β−1)p

(t − t ′ + 1)β

 t (β−1)p

[
ζ (β) − t−β+1

β − 1

]
. (35)

Since 1 < β < 2, then t (β−1)p−1 � t (β−1)(p−1) and the left-
hand side of Eq. (33) can be neglected. Substituting (34) and
(35) in (33), and then taking the limit C(t) → ζ (β) at large t

and using the expression (9) for K , Eq. (15) is obtained.
For the case β < 1, or M2(t) 
 K ln t , the derivative in

the left-hand side of (32) is O(lnp−1(t)/t) → 0 and can still
be neglected compared with terms growing with time in this
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equation. Thus Eq. (32) becomes the following:

(1 − q)p(2p − 1)ap−1K
p−1 lnp−1 t

= qapKp

C(t)

∫ 1

0
dt ′

lnp t − lnp t ′

(t − t ′ + 1)β
, (36)

where in this case the diverging sums have been replaced by
integrals. We next write∫ t

0
dt ′

lnp t ′

(t − t ′ + 1)β


 t1−β

∫ 1

0
du

(ln u + ln t)p

(1 − u)β

= t1−β

p∑
k=0

Ck
p lnp−k t

∫ 1

0
du

lnk u

(1 − u)β


 t1−β

[
lnp t

1 − β
+ p lnp−1 t

∫ 1

0
du

ln u

(1 − u)β

]
, (37)

where in the last step we have retained only the first two
dominant terms of the binomial expansion, i.e., those of indices
k = 0 and k = 1. We also have the following:∫ t

0
dt ′

lnp t

(t − t ′ + 1)β

 t1−β lnp t

1 − β
. (38)

Substituting (37) and (38) into (36), and then using the
expansion C(t) 
 t1−β/(1 − β) as well as the expression (10)
for K , one obtains the following simple result:

ap/ap−1 = 2p − 1, (39)

which corresponds to the Gaussian distribution.
Note that the equation that leads to this Gaussian result

[Eq. (36)] can be understood as a balance between diffu-
sion due to random increments (the combinatorial left-hand
side) and confining effects due to recurrent memory (the
integral right-hand side). This balance arises because the
term apdM2(t)p/dt in Eq. (32) is negligible. In the simple
random walk, on the contrary, apdM2(t)p/dt is dominant,
since M2(t) ∝ t , and equals the combinatorial term (in the
absence of a memory term). Therefore, the mechanism leading
to Gaussianity in the memory walk here differs substantially
from the central limit theorem case.

C. Numerical tests of the higher-order moments

Figure 6 shows several analytical curves ap/ap−1 as a
function of β, summarizing the three regimes discussed above.
To check these results, we performed Monte Carlo simulations
of the model and computed the quantity

Qp(t) ≡ M2p(t)

M2p−2(t)M2(t)
, (40)

after obtaining the corresponding moments by averaging X
2p
t ,

X
2p−2
t , and X2

t over many independent walks. If the scaling
hypothesis holds, Qp(t) → ap/ap−1. In each case, we checked
that Qp(t) tended to a constant at large times, which is
indicated by a dot in Fig. 6.

The agreement between theory and simulations is very
good. Note, however, that when β becomes small (β < 1.3),

 0
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 16

 0  0.5  1  1.5  2  2.5  3

a p
/a
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1

β

p=2
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FIG. 6. (Color online) Moment ratios ap/ap−1 (for p = 2, 3, and
4) as a function of β. The solid red lines correspond to the analytical
results. The two Gaussian regimes (ap/ap−1 = cst = 2p − 1) are
separated by non-Gaussian scalings in the interval 1 < β < 2, given
by Eq. (15). The dots correspond to the quantity Qp(t) computed
from simulations (q = 0.1, t = 106, 5 × 104 runs). The green crosses
correspond to Qp(t) computed from exact numerical resolution of
Eq. (1), with q = 0.1 and t = 104. The ratios ap/ap−1 corresponding
to the CTRW model (dotted blue lines) are shown for comparison for
the same values of p. In that case, β is the waiting-time exponent.

the computed Qp(t) tends to be larger than the theoretical
value. This is because diffusion is very slow in these cases and
therefore the scaling regime becomes very difficult to reach in
finite-time simulations. Recall that the scaling regime settles
only when M2(t) 
 1. In Ref. [26], the approach toward the
scaling regime was studied in detail for the case β = 0. It
was shown that the first correction to scaling slowly decayed
as 1/ ln t and thus could be neglected only at extremely long
times, which cannot be reached in practice in simulations.

As an additional test, we solved Eq. (1) numerically,
calculated the moments from P (n,t), and then calculated
Qp(t). The results are indicated by crosses in Fig. 6. The
necessary computer memory scales as t2 in this method, and
times beyond t = 15 000 could not be reached in practice (this
is a low value, compared to t = 106 used in simulations).
The scaling regime is thus less easy to observe, specially in
the subdiffusive case, and the discrepancy with the theoretical
ap/ap−1 is a bit larger than in simulations.

V. COMPARISON OF THE CASE
1 < β < 2 WITH THE CTRW

A. Qualitative analogy

The subdiffusive law (9) is the consequence of a diverging
average backward time 〈τ 〉t as t → ∞. Interestingly, this
situation is analogous to that of the continuous time random
walk (CTRW), where subdiffusion arises due to diverging
waiting times [50,51]. In this well-known renewal Markovian
process, an unbiased random walker remains at its current
location during a random time τ , independent and identically
distributed from a distribution ψ(τ ), before performing the
next step to a nearest-neighbor site [43]. If ψ(τ ) ∼ τ−β
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FIG. 7. (Color online) Qualitative comparison between the cur-
rent model (left) and a CTRW (right); see text.

with 1 < β < 2 (or setting β = 1 + μ, if 0 < μ < 1), then
〈τ 〉 = ∞ and a diffusion constant cannot be properly defined.
In this case, motion is subdiffusive with M2(t) ∼ tβ−1, the
same scaling as in Eq. (9).

The following qualitative argument can be made to explain
the similar behaviors of the mean-square displacements in
these two models. Let us consider a walker in our model
starting from the origin O and taking a relocation step at a
time t (Fig. 7, left). This step, represented by the arrow, brings
the walker back to some position O ′ that was occupied earlier,
τ time units before time t , where τ is a random variable � t

drawn from the probability density function F (τ ) ∝ τ−β . Just
before taking this step, the walker was at some distance from
the origin, represented by the large circle. In order to reach this
circle again from O ′, the walker will typically need to diffuse
during another time interval τ again (assuming stationarity
in the process). Hence, only at about time t + τ may the
walker’s displacement grow beyond the radius of the circle.
This situation can be seen as analogous to keeping the walker
immobile at the position reached at t during a time τ , which is
the basic rule of the CTRW (Fig. 7, right).

However, one may intuitively guess that the two models
differ quantitatively, namely that their probability densities
P (n,t) are given by different scaling functions g(x). This is
actually the case, since g(x) is exponential when β → 1 in the
one-dimensional CTRW, i.e., gCTRW(x) → 1√

2
exp(−√

2|x|)
[11], instead of the Gaussian form in the memory model. More
generally, for 1 < β < 2 the expression of gCTRW(x) is exactly
known in terms of the fully asymmetric Lévy law of index
(β − 1)/2. Its moments can be calculated exactly, giving [11]

ap

ap−1

∣∣∣∣
CTRW

= (2p − 1)(p − 1)
�[μ(p − 1)]�(μ + 1)

�(μp)
.

(41)

The above expression indeed differs from (15) or (18). The
limit distribution g(x) in the present model does not reduce,
to our knowledge, to a standard distribution. Figure 6 displays
ap/ap−1 as a function of β for p = 2, 3, and 4 for the CTRW
and the present model, in which deviations from Gaussianity
are weaker.

B. Large x behavior of g(x)

Further insights on g(x) in the memory model can be gained
by studying its behavior at large x for β in the range (1,2). This
asymptotic behavior can be derived by analyzing the moments

in the limit p 
 1. Knowing the properties of g(x) is also
useful to understand how the distribution tends to a Gaussian
instead of a exponential as β → 1+.

The large p behavior of (18) for any 0 < μ < 1 can
be obtained by using the Stirling formula �(az + b) 
√

2πe−az(az)az+b−1/2 for large z:

ap

ap−1

 χμ p2−μ with χμ = 2

πμ

sin(πμ) − 1

�(1 − μ)μμ
. (42)

Clearly, the asymptotic result (42) is valid as long as χμ is
nonzero. This prefactor is strictly positive if 0 < μ � 1 but
vanishes at μ = 0 and this case will receive special attention
below.

If 0 < μ < 1, Eq. (42) implies that the scaling function
follows, at large x, the following leading behavior:

g(x) ∝ e−bμ|x|δμ , |x| 
 1, (43)

with

δμ = 1

1 − μ/2
and bμ = 2χ

− δ
2

μ /δμ. (44)

Let us notice that the large-x behavior above is similar to
that of the CTRW with a waiting-time distribution ψ(τ ) ∼
τ−(1+μ), namely the leading part of gCTRW(x) is also of the
form (43) and with the same exponent δμ as given by (44).
This property stems from the fact that the moment relation for
CTRW, Eq. (41), also becomes proportional to p2−μ at large
p, like in (42). However, the scaling functions do differ in the
two models since the prefactors χμ (and therefore bμ in the
exponential) differ.

This difference increases drastically as μ → 0: It is easy to
see from (42) that

χμ → 0 as μ → 0, (45)

whereas χCTRW
μ=0 is > 0. The fact that the prefactor vanishes is

a crucial property of the memory model. It indicates that the
leading term of the scaling function at large x is no longer
given by (43) and (44). A higher-order calculation shows that,
for any p,

ap

ap−1
→ 2p − 1 as μ → 0+, (46)

which confirms our previous result that g(x) becomes Gaussian
again at μ = 0. An expansion of the moment relation (18) at
large p and small μ generalizes Eq. (42),

ap

ap−1

 π2μ2

3
p2−μ + 2p − 1, (p 
 1, μ � 1). (47)

Therefore the exponential behavior of g(x) at large x (i.e.,
ap/ap−1 ∝ p2 for large p) is avoided at μ = 0 due to the
vanishing prefactor and the distribution adopts a Gaussian
profile instead.

VI. LÉVY-LIKE DISTRIBUTIONS
OF RELOCATION LENGTHS

Every time the walker uses memory, it performs a relocation
step, of length, say, �, corresponding to the distance between
its current location and the newly chosen site. These lengths �
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FIG. 8. (Color online) Probability distribution function of the
relocation length � in simulations for several values of β (q = 0.01
in all cases). The solid lines have slopes −(2β − 1), i.e., −4, −3,
and −2, from bottom to top. The variance of the distribution thus
becomes infinite at the subdiffusion threshold β = 2.

are represented by the thick (black) vertical lines in the one-
dimensional simulations of Fig. 2. They can be quite large in
the subdiffusive regime. We present below a scaling argument
to obtain an expression for the probability distribution of �.

Since the site occupied after a relocation is the site that was
occupied τ time units ago, one may expect that, typically,

� ∼ [M2(τ )]1/2. (48)

In the case with β > 2, we know that M2(t) ∝ t , thus the
random variables � and τ should be related through the scaling
relation � ∼ τ 1/2. Denoting byP (�) the distribution function of
�, probability conservation implies P (�)d� = ψ(τ )dτ , where
ψ(τ ) ∼ τ−β . Hence

P (�) ∼ �
(
�2)−β ∼ �−(2β−1). (49)

Thus, when β = 2, the distribution P (�) obeys a “Lévy-like”
power-law distribution with marginal exponent 2β − 1 = 3,
which is characterized by an infinite variance 〈�2〉. If β > 2,
Eq. (49) indicates that the step-length distribution exponent is
>3, outside the Lévy range, and 〈�2〉 is therefore finite. Note
that, unlike in a genuine Lévy process, the steps in the present
model are long-range correlated and thus not independent.
Consequently, our model exhibits a paradoxical behavior: The
divergence of the variance of the relocation length � happens
at the onset of subdiffusion, and not superdiffusion, as in usual
Lévy flights. This important feature can be understood by
the fact that when the relocation lengths become large, they
also become strongly anticorrelated and thus limit the walker’s
diffusion overall. The scaling law predicted in (49) agrees very
well with simulation results, as shown in Fig. 8.

The case β ∈ (1,2), corresponding to subdiffusive motion,
is more complicated and the above argument to obtain P (�) is
not applicable strictly speaking. Equation (48) may not hold
due to nonergodic effects, which are well known to be strong
in subdiffusive processes such as the CTRW [52,53]. If we

naively assume that (48) is correct (which makes the implicit
assumption that the mean-square displacement of the walker
during an interval of time τ is independent of the time taken
as the origin along the trajectory), we have � ∼ τ (β−1)/2 from

(48), which gives P (�) ∼ �
2

β−1 −1[�
2

β−1 ]−β ∼ �−3. Hence, the
relocation length distribution would remain at the border of
the Lévy range for any 1 < β < 2.

But this prediction is not confirmed by the numerical results
of Fig. 8, which show that for intermediate values of � the
distribution P (�) decays more slowly than the law �−3. If
we assume that the average displacement � taken along the
trajectory looks normally diffusive, like in the ordinary CTRW
process [52,54], then we should use the scaling � ∼ τ 1/2

instead of τ (β−1)/2. This relation leads to the same form (49)
obtained for β > 2. Thus the step-length exponent would be
2β − 1, spanning the whole Lévy range (1,3) as β is varied
is between 1 and 2. The numerical simulations support this
qualitative prediction partly. As displayed by Fig. 8, P (�)
exhibits an intermediate power-law regime with an exponent
quite close to 2β − 1 (case β = 1.5). Nevertheless, the actual
distribution seems more complicated than an inverse power
law and it is truncated at large �.

VII. CASE β < 1 AND THE SCALED BROWNIAN MOTION

Scaled Brownian motion (SBM) is a well-known anoma-
lous diffusion process with Gaussian property. Typically, it is
simply generated by rescaling the time variable of an ordinary
Brownian motion as t → tα , with 0 < α < 2 a constant (see,
e.g., Ref. [44]). Thus, the diffusion front P (n,t) of a SBM
is Gaussian, but with variance 2D0t

α , instead of 2D0t in
the original process. Consequently, it obeys a Fokker-Planck
equation (in continuous space) of the form

∂P

∂t
= D(t)

∂2P

∂n2
(50)

with D(t) a time-dependent diffusion coefficient, given by
D(t) = αD0t

α−1.
When β < 1 in the present model, and in the very long

time limit, P (n,t) becomes a Gaussian, too, but with variance
M2(t) 
 Kβ ln t , where the generalized mobility Kβ is given
by Eq. (10). Therefore, setting T = ln t we see that P (n,T )
obeys the simple effective diffusion equation ∂T P 
 Kβ

2 ∂n2P

in the limit T 
 1. Coming back to the time variable, the
equation becomes

∂P

∂t

 Kβ

2t

∂2P

∂n2
, (51)

which is a SBM in the limit α → 0, i.e., with D(t) ∝ 1/t

at large times. This result highlights the nonstationary nature
of the process due to the very long-ranged memory, which
gradually slows down the walker. This mapping is also
interesting because it provides a concrete example of a random
walk with constant parameters and constant time increment
that can be described as a SBM asymptotically [at least, as far
as the probability function P (n,t) is concerned]. Here the SBM
time rescaling is not of the power-law form usually considered
but is given by

t → ln t. (52)
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Conversely, this type of SBM can be considered as a mean-
field model for the path-dependent random walks studied here
(individual trajectories clearly differ in the two processes). As
noted earlier, we emphasize that this correspondence is valid
only at very large times. At moderate ln t (e.g., for t ∼ 1010 or
any numerical simulation time in practice), the memory model
does not obey simple scaling a priori.

The SBM analogy could be used to infer the first-passage
properties of the model (although they would be limited to the
regime of extremely long times). In addition, the nonergodic
properties of SBM systems have been recently studied in detail
in Refs. [55,56] and could be used here.

VIII. CONCLUSIONS

Non-Markovian, path-dependent processes are in general
difficult to analyze for a single particle, since a rigorous
description usually requires the introduction of multiple-time
distribution functions that are related to each other via a
hierarchy of master equations [16].

Here we have introduced a path-dependent random-walk
model that does not exhibit such complications and can
be described by the single-time distribution function. This
property stems from the linear nature of the model, in which
the walker can perform nonlocal steps backwards in time.
With this form of self-attraction, the process can be exactly
described by one master equation. Additionally, the equation
is solved exactly in the long-time limit thanks to the scaling
hypothesis. Therefore, a rather precise picture of the dynamics
is obtained, which is not limited to the derivation of the MSD.

The model exhibit three regimes, depending on how
fast memory decays. In the weakly non-Markovian regime,
diffusion is asymptotically normal but with a reduced diffusion
coefficient. A transition to a second regime occurs if the
mean memory time diverges, i.e., when the memory kernel
decays as τ−β with β = 2. In this case, recurrence to
previously visited sites increases sharply and motion becomes
subdiffusive. When memory decays very slowly, slower than
τ−1, a third, “ultra-slow,” diffusion regime with logarithmic
behavior settles.

The diffusion front is a function which is practically
unknown for reinforced walk models and almost never studied
for other non-Markovian models which are solvable for the
MSD [13–15] (but see Ref. [57] for a discussion on the so-
called elephant walk). The knowledge of the scaling function
here has allowed us to establish useful connections between
a reinforced walk and well-known Markovian models of
anomalous diffusion: namely the CTRW (1 < β < 2) and the
SBM (β < 1). The present model exhibits distinctive features,
such as a new scaling function defined through Eq. (18), and
anticorrelated Lévy steps with exponent −3 at the subdiffusive
transition. The visitation and first-passage statistics are also
likely to be peculiar in this model, and their study certainly
deserves future work.

Our results also unveil a novel, memory-driven mechanism
for the emergence of Lévy flights. Whereas Lévy flights are
a paradigmatic model of superdiffusive behavior in physical
[11] and biological [35] systems, the model exposed here
illustrates that (truncated) Lévy flights can be also closely
linked to subdiffusion. This aspect is particularly relevant to the

mobility of many living organisms like humans [19,23,24,42]
or nonhuman primates [58], to name a few, who often combine
two apparently contradictory patterns: a power-law step length
distribution and a very slow diffusion or limited space use.
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APPENDIX A: DERIVATION OF THE
MASTER EQUATION (1)

Let Xt be the position of the walker at time t and let
P (n,t + 1|it ,it−1, . . . ,i0) define the probability that Xt+1 = n,
given that {X0,X1, . . . ,Xt } = {i0,i1, . . . ,it }, a prescribed set
of integers. The model is defined by the following:

P (n,t + 1|it ,it−1, . . . ,i0) = 1 − q

2
δit ,n−1 + 1 − q

2
δit ,n+1

+ q

t∑
t ′=0

pt (t
′)δit ′ ,n, (A1)

where the last non-Markovian term indicates that n can be
revisited if it has been visited at any previous time t ′. In this
memory movement mode, which is used with probability q,
site n does not need to be a nearest-neighbor of the current
position it , and the probability that n is chosen depends on all
its previous visits weighted with the memory kernel pt (t ′).

Let p(i1, . . . ,it |i0) define the probability of a particular
trajectory generated with the model rules and starting at i0. We
have the general relation∑

i1

· · ·
∑

it

P (n,t + 1|it , . . . ,i0)p(i1, . . . ,it |i0)

= P (n,t + 1|i0), (A2)

where P (n,t + 1|i0) is the single-time occupation probability,
evaluated at time t + 1. In addition, for any integer t ′ in [0,t],∑

i1

· · ·
∑
ik

k �= t ′

· · ·
∑

it

p(i1, . . . ,it |i0) = P (it ′ ,t
′|i0). (A3)

Multiplying Eq. (A1) by p(i1, . . . ,it |i0) and summing over all
possible values of i1,...,it , we obtain, using Eqs. (A2) and (A3),

P (n,t + 1|i0) = 1 − q

2

∑
it

δit ,n−1P (it ,t |i0)

+ 1 − q

2

∑
it

δit ,n+1P (it ,t |i0)

+ q

t∑
t ′=0

pt (t
′)

∑
it ′

δit ′ ,nP (it ′ ,t
′|i0), (A4)
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or

P (n,t + 1|i0) = 1 − q

2
P (n − 1,t |i0) + 1 − q

2
P (n + 1,t |i0)

+ q

t∑
t ′=0

pt (t
′)P (n,t ′|i0), (A5)

This is the master equation (1) for the single particle. In
this paper, i0 = 0 and we rewrite P (n,t |i0) → P (n,t) for
convenience.

APPENDIX B: MEMORY TERM
IN THE SUBDIFFUSIVE CASE

We choose a fixed ε � 1 and t large enough so εt 
 1.
Hence, the memory term of Eq. (20) for the evolution of M2(t)
reads as follows:

F{Ktν} = K

t∑
τ=0

(t − τ )ν

(1 + τ )β
= Ktν

t∑
τ=0

(1 − τ/t)ν

(1 + τ )β

= Ktν

[
εt∑

τ=0

(1 − τ/t)ν

(1 + τ )β
+

t∑
τ=εt+1

(1 − τ/t)ν

(1 + τ )β

]


 Ktν

[
εt∑

τ=0

1

(1 + τ )β
− ν

t

εt∑
τ=0

τ

(1 + τ )β

+
t∑

τ=εt+1

(1 − τ/t)ν

(1 + τ )β

]
. (B1)

The first sum in the brackets of (B1) can be written as
εt∑

τ=0

1

(1 + τ )β
= ζ (β) −

∞∑
τ=εt+1

1

(1 + τ )β
(B2)


 ζ (β) −
∫ ∞

εt

dτ (1 + τ )−β (B3)


 ζ (β) − (εt)−β+1

β − 1
, (B4)

due to the Euler-Maclaurin expansion of the discrete sum.
Similarly, the third sum in the brackets of (B1) reads as follows:

t∑
τ=εt+1

(1 − τ/t)ν

(1 + τ )β



∫ t

εt

dτ
(1 − τ/t)ν

(1 + τ )β
, (B5)


 t−β+1
∫ 1

ε

du
(1 − u)ν

uβ
, (B6)

= O((εt)−β+1). (B7)

The second term in the brackets of (B1) is

ν

t

εt∑
τ=0

τ

(1 + τ )β
= O

(
t−1

∫ εt

dττ 1−β

)
= O(ε(εt)−β+1),

(B8)

and thus negligible compared to (B4) and (B6). We then
substitute (B4) and (B6) into (B1), and Eq. (24) is obtained
after taking the limit ε → 0.
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