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Quantum distance and the Euler number index of the Bloch band in a one-dimensional spin model
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We study the Riemannian metric and the Euler characteristic number of the Bloch band in a one-dimensional
spin model with multisite spins exchange interactions. The Euler number of the Bloch band originates from
the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first
Brillouin zone. We study this approach analytically in a transverse field XY spin chain with three-site spin
coupled interactions. We define a class of cyclic quantum distance on the Bloch band and on the ground state,
respectively, as a local characterization for quantum phase transitions. Specifically, we give a general formula
for the Euler number by means of the Berry curvature in the case of two-band models, which reveals its essential
relation to the first Chern number of the band insulators. Finally, we show that the ferromagnetic-paramagnetic
phase transition in zero temperature can be distinguished by the Euler number of the Bloch band.
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I. INTRODUCTION

The topological nature of quantum states has become a
key ingredient in understanding the novel quantum phases
of condensed-matter systems in low temperatures. Since the
discovery of the Berry phase as a geometric phase picked
up from the cyclic adiabatic evolutions of the Hamiltonian
eigenstate and its holonomy interpretation on the U (1) line
bundle with parallel transport, many important findings on
the topological nature of the quantum matter have come into
physics, i.e., the quantized Hall conductance [1–3], adiabatic
pumping [4,5], topological insulators and superconductiv-
ity [6–10], and recently the fractional Chern insulators in flat
bands [11–13].

In recent years, lots of attention has been attracted into
understanding the quantum phase transitions (QPTs) [14–16]
from the quantum information and the Hilbert space geometry
aspects [17,18]. Essentially, a QPT is the result of the
competing ground-state phases driven by the quantum fluc-
tuations, which can be witnessed by some qualitative changes
of the ground-state properties, i.e., quantum entanglement
[19–23], entanglement entropy [24,25], quantum discord [26–
28], quantum fidelity and the fidelity susceptibility [29–38],
the Berry phase [39–49], and the quantum geometric tensor
[50–58].

The ground-state geometric tensor, as an intrinsic metric
on the ground-state complex manifold, is naturally expected
to shed some light on the geometric characterization of QPTs.
Mathematically, the quantum geometric tensor, also called the
Fubini-Study metric, is a Hermitian metric on the complex
projective space of the quantum states. Physically, the (non-
Abelian) geometric tensor originates from defining a local
U (n) gauge invariant quantum distance between two states in
a parameterized Hilbert space [55]. The quantum geometric
tensor brings a Riemannian structure to the parameterized
quantum states, where the corresponding Riemannian metric
is given by the real part of the geometric tensor. Meanwhile, its
imaginary part was later found to be just the Berry curvature
(up to a constant coefficient). Specifically, the ground-state
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geometric tensor provides a unified mechanism from the aspect
of information geometry to understand the critical behaviors
in quantum many-body systems.

Recently, a direct measurement of the Zak phase [59], as a
Berry phase of a one-dimensional (1D) Bloch band, has been
achieved in 1D optical lattices [60]. For the geometric tensor
of the Bloch band, some interesting measurable consequences
have been proposed by relating the geometric tensor of
band insulators to the current noise spectrum [58]. A more
interesting question is whether there exists some topological
characterization related to the Riemannian metric of the Bloch
bands? Very recently, a topological Euler number of the Bloch
band was proposed to distinguish nontrivial topological phases
in gapped free fermionic systems. This fact was pointed out in
our previous work [61] and later by Kolodrubetz et al. [62].

In this work, we study the local and topological properties
of the Bloch band in a 1D transverse field XY spin-1/2 model
with three-site spin interactions. The system exhibits a nonzero
transverse magnetization at the zero transverse field due to
its multisite spins exchange interactions. In order to obtain a
well-defined geometric tensor in the crystal momentum space,
we introduce an extra 1D parameter space by subjecting the
spin system to a local gauge transformation, which in fact puts
the Hamiltonian of the system on a torus T 2 in a 1+1D crystal
momentum space without changing its energy spectrum. By
using of the quantum Riemannian metric on the Bloch states
manifold, we introduce a class of cyclic quantum distance
as a local characterization for quantum phase transitions.
Particularly, we derive the Euler characteristic number of the
Bloch band analytically via the Gauss-Bonnet theorem on the
Bloch states manifold in the first Brillouin zone. A general
formula for the Euler number is obtained by means of the Berry
curvature in the case of two-band models, which also reveals
its relation to the first Chern number of the band insulators.
Finally, we show that the ferromagnetic and paramagnetic
quantum phase transitions can be distinguished by the different
Euler numbers of the Bloch band.

II. THE MODEL

We consider a 1D anisotropic XY spin-1/2 model with
three-site spin exchange interactions in a transverse field. This
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spin model exhibits a nonzero transverse magnetization at the
zero transverse field due to its multiple sites spin coupling
and shows a rich ground-state phase diagram [63–66]. The
Hamiltonian reads

HS =
PBC∑
l∈N

−(1 + γ )Sx
l Sx

l+1 − (1 − γ )Sy

l S
y

l+1

− 2δ
(
Sx

l−1S
z
l S

x
l+1 + S

y

l−1S
z
l S

y

l+1

) − hSz
l , (1)

where Sα
l (α = x,y,z; l ∈ N ) is the Pauli operator on

the local site l, N denotes the total number of the sites, γ is
the anisotropy parameter in the in-plane interaction, δ denotes
the three-site XZX + YZY type spins exchange interactions,
h is the transverse magnetic field, and the periodic boundary
condition (PBC) has been imposed on this model.

Here we will show that the quantum critical points of the
system can be witnessed by some local geometric character-
ization, i.e., the Riemannian metric on the Bloch band, and
some partial derivative of the ground-state quantum distance.
Particularly, we show that the zero-temperature phase diagram
of the system can be marked by a nontrivial topological Euler
number index of the Bloch band in the crystal momentum
space.

In order to investigate the ground-state geometric tensor
for the system, we need to define the metric tensor on a
two-dimensional (2D) parameter space. This can be achieved
by subjecting the system to a local gauge transformation
HS (ϕ) = g(ϕ)HSg(ϕ)† by a twist operator g(ϕ) = ∏

l e
iϕSz

l ,
which makes the system a rotation on the spin along the
z-direction. It can be verified that HS(ϕ) is π periodic in ϕ

because the quadratic form about the x and y axes appears
symmetric in the Hamiltonian. Considering the unitarity of the
twist operator g(ϕ), the critical behavior and energy spectrum
of the system are obviously parameter ϕ independent.

The spin Hamiltonian HS(ϕ) can be mapped exactly on
a spinless fermion Hamiltonian HF(ϕ) by the Jordan-Wigner
transformation al = ∏l−1

m=1(−2Sz
m)S−

l , a†
l = ∏l−1

m=1(−2Sz
m)S+

l ,
where S±

l = Sx
l ± iSx

l denote the spin ladder operators and al ,
a
†
l are the corresponding Fermion annihilation and creation

operators, respectively, on the local site l. After applying a
Fourier transformation al = 1√

N

∑
k∈Bz eiklck , we can rewrite

the fermion Hamiltonian as

HF(ϕ) =
∑
k∈Bz

�
†
k,ϕ

(
3∑

α=1

dα(k,ϕ)σα

)
�k,ϕ, (2)

where d1(k,ϕ) = 1
2γ sin k sin 2ϕ, d2(k,ϕ) = 1

2γ sin k cos 2ϕ,

d3(k,ϕ) = 1
2 (−h + δ cos 2k − cos k), �

†
k,ϕ := (c†k , c−k), and

σα denotes the the Pauli matrices, represent the pseudospin
degrees of freedom.

The Bloch wave function can be expressed as

u±(k,ϕ) = 1√
2d(d ∓ d3(k,ϕ))

(
d1(k,ϕ) − id2(k,ϕ)

±d − d3(k,ϕ)

)
, (3)

and the corresponding energy spectrum is E±(k) = ±d, where

d :=
√∑3

α=1 d2
α(k,ϕ). The Hamiltonian can be diagonalized

as H (ϕ) = ∑
k∈Bz E+(k)α†

k,ϕαk,ϕ + E−(k)β†
k,ϕβk,ϕ , and the ϕ

parameterized ground-state |e(ϕ)〉 is the filled fermion sea

|e(ϕ)〉 =
∏
k>0

β
†
−k,ϕβ

†
k,ϕ|0〉, (4)

where the quasiparticle operators αk,ϕ = [u(ϕ,k)+]†�k,ϕ and
βk,ϕ = [u(ϕ,k)−]†�k,ϕ . Note that the Bloch Hamiltonian
H(k,ϕ) := ∑3

α=1 dα(k,ϕ)σα is period π on the parameter ϕ,
that is,H(k,0) = H(k,π ). On the other hand, the Bloch Hamil-
tonianH(k,ϕ) can be regarded periodic in the Brillouin zone up
to a gauge transformation H(k + G,ϕ) = e−iG·rH(k,ϕ)eiG·r ,
where G and r are the reciprocal lattice vector and position
vector, respectively. Note that in a lattice model, here the gauge
factor is just identically equal to 1, and we haveH(k + G,ϕ) =
H(k,ϕ). Hence, the Bloch Hamiltonian H(k,ϕ) has been put
on a torus T 2 in a 1+1D crystal momentum space.

III. GEOMETRIC TENSOR ON THE BLOCH
STATES MANIFOLD

To begin with, we give a brief discussion on the quantum
geometric tensor of the Bloch band. The quantum geometric
tensor of the Bloch band can be derived naturally from a gauge
invariant distance between two Bloch states on the U (1) line
bundle induced by the quantum adiabatic evolution of the
Bloch state |un(k)〉 of the nth filled band. The gauge invariant
quantum distance between two states |un(k+δk)〉 and |un(k)〉
is given by

dS2 =
∑
μ,υ

〈∂μu
n
|[1−Pn]|∂νun〉dkμdkυ, (5)

where Pn = |un〉〈un| is the projection operator, and μ,ν

denote the components kμ and kν , respectively. The quantum
geometric tensor is given by

Qμν = 〈∂μu
n
|[1−Pn]|∂νun〉. (6)

The underlying mechanism for the quantum distance can
be understood as follows: The term |∂μu

n
〉 can be decom-

posed in the complete Hilbert space as |∂μu
n
〉 = |Dμu

n
〉 +

[1 − Pn]|∂μu
n
〉, where |Dμu

n
〉 = Pn|∂μu

n
〉 is the covariant

derivative of |un〉 on the line bundle. Under the condition
of the quantum adiabatic evolution, the evolution of |un(k)〉
to |un(k + δk)〉 will undergo a parallel transport, that is,
|Dμu

n
(k)〉 = 0, which will lead to a gauge invariant quantum

distance as Eq. (5). The geometric tensor Eq. (6) can be
rewritten as Qμν = Gμν − iFμν/2, where Gμν := ReQμν can
be verified as a Riemannian metric, which establishes a Rie-
mannian manifold of the Bloch states. It can be verified that the
quantum distance only depends on the real part of the quantum
geometric tensor, that is, dS2 = ∑

μ,υ Gμνdkμdkυ , because
the term Fμν := −2ImQμν is canceled out in the summation
of the distance due to its antisymmetry. However, the term Fμν

can be associated to a two-form F = ∑
μ,υ Fμνdkμ ∧ dkν ,

which is nothing but the Berry curvature.

A. Riemannian metric and the cyclic quantum
distance of the Bloch band

The Riemannian metric of the Bloch band is given byGμν =
ReQμν , where the geometric tensor Qμν can be obtained by
substituting Eq. (3) to Eq. (6), and it can be verified that this
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FIG. 1. (Color online) The trace of the Riemannian metric TrG
as a function of the external field h and the crystal momentum k with
the fixed Hamiltonian parameters: (a) the three-site spins exchange
interactions δ = 0 and the anisotropy parameter γ = 1; (b) δ = 0.3
and γ = 0.9.

metric G is given by the following diagonalized form [67]

dS2 = Gkkdk2 + Gϕϕdϕ2, (7)

with

Gkk =
[

1

2

γ + γ (h − 2δ + δcos2k)cosk

(h + cosk − δcos2k)2 + γ 2sin2k

]2

,

(8)

Gϕϕ = γ 2sin2k

(h + cosk − δcos2k)2 + γ 2sin2k
.

The metric G is obviously independent on the parameter ϕ

because of its U (1) gauge invariance on the twist operator.
In Fig. 1, we show that the trace of the Riemannian metric

as a function of the external field h and the crystal momentum
k with different three-site spins coupled parameters and
anisotropy parameters. As we expect, the singularity regions of
the metric will appear when the external field h is close to the
quantum critical points. We define a cyclic quantum distance
on the Bloch band from (0, − π ) to (π,π ) in the extended first
Brillouin zone (the inset in Fig. 2), where the parameter path
of the integral loop C is ϕ = k/2 + π/2, (k ∈ 1Bz), which is
just the diagonal line in the extended Brillouin zone.

FIG. 2. (Color online) The cyclic quantum distance l of the Bloch
band as a function of h, with the fixed anisotropy parameter γ = 1/3
and different three-site spins coupled coefficients δ, where the integral
path is along the diagonal line in the extended Brillouin zone (inset).

FIG. 3. (Color online) The cyclic quantum distance l of the Bloch
band as a function of h, with the fixed three-site spins coupled
coefficient δ = 0.3 and different anisotropy parameters γ .

The cyclic quantum distance l of the Bloch band is given
by

l =
∮

C

√
Gkkdk2 + Gϕϕdϕ2 =

∫ π

−π

√
Gkk + 1

4
Gϕϕdk, (9)

where the Riemannian metric Gkk and Gϕϕ are given by Eq. (8).
As shown in Fig. 2, we calculate the cyclic quantum distance
l as a function of h, with the fixed anisotropy parameter
γ = 1/3 and different three-site spins coupled coefficients δ.
The singularity points on the cyclic quantum distance are just
corresponding to the quantum transition points |δ − 1| and
|δ + 1|.

In Fig. 3, we plot the the cyclic quantum distance l with the
fixed three-site spins coupled coefficient δ = 0.3 and different
anisotropy parameters γ . It can be seen that the value of
the anisotropy parameter γ does not affect the critical point
but makes the cyclic quantum distance l approach zero more
quickly in the paramagnetic phase.

B. Cyclic quantum distance of the ground state

It is worth noting that the metric component Gϕϕ on the
Bloch band is closely related to the ground-state quantum
distance in the parameter ϕ space. In fact, the ground state
|e(ϕ)〉 is π periodic in the parameter ϕ. In the condition of the
large sites limit N → ∞, a cyclic ground-state distance le can
be defined along the ϕ ring as

le =
∫ π

0

√〈∂ϕe(ϕ)|[1−Pe]|∂ϕe(ϕ)〉dϕ

= 1

2π

∫∫ √
Gϕϕdkdϕ, (10)

where Pe = |e(ϕ)〉〈e(ϕ)| denotes the ground-state projection
operator and the Eqs. (3) and (4) have been used in the
intermediate steps. Note that the result in Eq. (10) is general,
which only relates to the metric Gϕϕ on the Bloch band and the
concrete expression of the ground state is not required.

In Fig. 4(a), we show the derivative of the cyclic ground-
state distance with respect to the external field h under different
lattice sizes N , where the Hamiltonian parameters γ = 0.7 and
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FIG. 4. (Color online) (a) The derivative of the cyclic ground-
state distance dle/dh with different lattice sizes N , where the
Hamiltonian parameters γ = 0.7 and δ = 0.3; (b) with the increasing
of the lattice sizes, the positions of the maximum points of dle/dh tend
as N−1.0074 and N−0.7122 to the critical points hc = 0.7 and hc = 1.3,
respectively.

δ = 0.3. As shown in Fig. 4(b), we can see that the positions
of the maximum points of the derivative dle/dh, with the
increasing of the lattice sizes, tend as N−1.0074 and N−0.7122 to
the critical points hc = 0.7 and hc = 1.3, respectively.

IV. THE EULER CHARACTERISTIC NUMBER
OF THE BLOCH BAND

What is more interesting is that the Euler characteristic
number of the Bloch band can be derived from the Gauss-
Bonnet theorem on the Bloch states manifold established by
the Riemannian metric G(n)

μν . The Euler characteristic number
χ of all occupied bands can be generalized written by (see
Ref. [61])

χ = 1

4π

∑
n

∫∫
1Bz

R(n)
√

detG(n)
μν dkμdkν, (11)

where the R(n) is the Ricci scalar curvature associate to the
Bloch state |un(k)〉 of the nth Bloch band. The Ricci scalar
curvature R can be calculated by using the standard steps:

R = GabR ···c
acb·, where the Riemannian curvature tensor

R ···d
abc· = ∂b�

d
ac − ∂a�

d
bc + �e

ac�
d
be − �e

bc�
d
ae, (12)

and the Levi-Cività connection �a
bc can be calculated by

�a
bc = 1

2G
ad (∂bGdc + ∂cGbd − ∂dGcb). (13)

The Riemannian metricG of the Bloch band is given by Eq. (8),
and its contravariant component can be easily obtained as
Gkk = 1/Gkk , and Gϕϕ = 1/Gϕϕ . By using Eqs. (8) and (13),
we can obtain all of the nonzero connections as

�
ϕ

kϕ = �
ϕ

ϕk

= (B − γ 2cosk)sink − 2δB sin2k

B2 + γ 2sin2k
+ cot k,

�k
kk = 2

(B − γ 2cosk)sink − 2δBsin2k

B2 + γ 2sin2k
(14)

− (h + 3δcos2k)sink

1 + Acosk
,

�k
ϕϕ = − 4Bsink

1 + Acosk
,

with

A = h + δcos2k − 2δ,
(15)

B = h − δcos2k + cosk.

The Euler characteristic number χ is a topological invariant
and equals to 2(1 − g) with genus g for a closed smooth
manifold. Note that the Bloch band of the model forms a
2D closed Riemannian manifold in the first Brillouin zone,
and then the Euler characteristic number can be calculated
conveniently by the Gauss-Bonnet theorem χ = 1

2π

∫
1Bz KdA,

where K =Rkϕϕk/ detGkϕ is the Gauss curvature, which just
equals to the half of the Ricci scalar curvature R, and
the covariant Riemannian curvature tensor Rabcd := R ···e

abc·Ged

have only one substantial component Rkϕkϕ , and dA =√
detGkϕdkdϕ denotes the area measure.
The direct calculation of the Rkϕkϕ and

√
detGkϕ are

tedious; however, it can be verified that there exists a
general relation in a generalized two-band Hamiltonian on a

2D manifold as Rkϕkϕ = 4 detGkϕ and detGkϕ = ( d̂·∂k d̂×∂ϕ d̂
4 )2.

That is to say that the Bloch band manifold is a curved surface
with a constant Gauss curvature K = 4. Finally, we can derive
the Euler number of the Bloch band as

χ = 1

2π

∫
1Bz

KdA

= 1

2π

∫∫
1Bz

|d̂ · ∂k d̂ × ∂ϕ d̂|dkdϕ, (16)

where

d̂ · ∂k d̂ × ∂ϕ d̂ = 2γ 2sink + γ 2(h − 2δ + δcos2k)sin2k

[(h + cosk − δcos2k)2 + γ 2sin2k]3/2
.

(17)
As shown in Fig. 5, we plot the Euler number χ of the Bloch

band as a function of the external field h and three-site spins
coupled coefficients δ. In the ferromagnetic phase, the Bloch
band is characterized by a nontrivial Euler number χ = 4,
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FIG. 5. (Color online) The Euler number χ of the Bloch band
as a function of the external field h and three-site spins coupled
coefficients δ. The ferromagnetic phase in this model can be marked
by a nontrivial Euler number χ = 4, and the Euler number χ → 0
quickly with the increasing of the external field h in the paramagnetic
phase.

whose topology is equivalent to two unconnected spheres S2;
in the paramagnetic phase, the Euler number of the Bloch
band χ → 0 quickly with the increasing of the external field
h, whose topology is equivalent to a torus T 2. The effects of
the anisotropy parameter γ on the Euler number are shown in
the Fig. 6. It can be seen that the Euler number is independent
of γ in the region of the ferromagnetic phase, but declines to
0 more quickly with the decreasing of γ in the region of the
paramagnetic phase.

Note that the Berry curvature of the Bloch band can be
written as Fkϕ = 1

2 d̂ · ∂k d̂ × ∂ϕ d̂, so we can get a first Chern
number index for the Bloch band as

C1 = 1

4π

∫∫
1Bz

d̂ · ∂k d̂ × ∂ϕ d̂ dkdϕ. (18)

However, the Bloch Hamiltonian for this model H(k,ϕ) =∑3
α=1 dα(k,ϕ)σα is time reversal invariant, i.e., H∗(−k,

−ϕ) = H(k,ϕ), so the Berry curvature Fkϕ is odd with the

FIG. 6. (Color online) The Euler number χ with several groups
of the anisotropy parameter γ and three-site spins coupled
coefficients δ.
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FIG. 7. (Color online) The trajectories of the two-dimensional
vector d(k) with the Hamiltonian parameters δ = 0.7, γ = 1 and
(a) h = −0.3; (b) h = 1; (c) h = 1.7; (d) h = 2.

crystal momentum k (note Fkϕ is not dependent on ϕ), and
the first Chern number C1 ≡ 0. In this case, the first Chern
number can not serve as a sufficient index for the topology of
the Bloch band in the time reversal invariant systems.

For an intuitive picture, the original 1D fermionic Hamil-
tonian without the twist operation is given by

H1D =
∑
k∈Bz

(c†k , c−k)H1D(k)

(
ck

c
†
−k

)
, (19)

where the Bloch Hamiltonian H1D(k) = ∑3
α=1 dα(k)σα ,

with d1(k) = 0, d2(k) = 1
2γ sin k, d3(k) = 1

2 (−h + δ cos 2k −
cos k), can be verified to be time-reversal invariant be-
cause H∗

1D(−k) = H1D(k). Meanwhile, H1D(k) has a particle-
hole symmetry (σxK)H 1D(k)(σxK)−1 = −H1D(−k) because
d3(k)∗ = d3(−k), d1(k)∗ = −d1(−k), and d2(k)∗ = −d2(−k).
As a result of the time-reversal and particle-hole symmetry, the
HamiltonianH1D(k) has also a chiral symmetry. Therefore, the
1D Hamiltonian H1D is in the BDI class. It has been shown
that BDI class Hamiltonians in one dimension are classified
by an integer Z topological invariant [68]. The Z number
can be expressed as the winding number of the 2D vector
d(k) = (d2(k),d3(k)) around the gapless point |d(k)| = 0 when
k runs across the first Brillouin zone. The winding number can
be written as [69]

NBDI = 1

2π

∫ π

−π

d�(k), (20)

where �(k) = arctan[d3(k)/d2(k)] denotes the angle of the
vector d(k). As shown in Fig. 7, we plot the vector d(k) with the
Hamiltonian parameters δ = 0.7, γ = 1 and different h. It can
be seen clearly that the ferromagnetic phase and paramagnetic
phase are topologically nonequivalent depending on whether
or not the gapless point is enclosed within the curve of d(k),
and the quantum phase transitions occur at h = δ ± 1.

In the Euler number approach, the 1D Hamiltonian has
been extended to two dimensions by subjecting the system
to a gauge transformation [see Eq. (2)], and meanwhile its
energy spectrum remains unchanged. As a consequence, the
2D Bloch Hamiltonian H(k,ϕ) only remains time-reversal
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FIG. 8. (Color online) The trajectories of the three-dimensional
vector d(k,ϕ) with the Hamiltonian parameters δ = 0.7, γ = 1 and
(a) h = −0.3; (b) h = 1; (c) h = 1.7; (d) h = 2.

invariant, and then belongs to the symmetry class AI without
a strong topological invariant in two dimensions.

However, it can be verified that there exists an intuitive
topological connection between H(k,ϕ) and H1D(k). As
shown in Fig. 8, the trajectories of the vector d(k,ϕ) are
corresponding to the rotation of the vector d(k) around the “d3”
axis, and meanwhile, keeping the gapless point unchanged.
As the same as the 1D case, the ferromagnetic phase and
paramagnetic phase are topologically nonequivalent which
can be characterized by whether or not the gapless point is
enclosed by the closed surface of d(k,ϕ). Note that here the
first Chern number can not provide an effective distinction
because the Berry curvature is odd with k in the time-reversal
invariant HamiltonianH(k,ϕ). However, we show that here the
Euler number of the band can serve as an effective topological
number as the replacement of the Chern number, because the
Euler number can be expressed as the integral of the absolute
value of the Berry curvature in the first Brillouin zone.

It also needs to be pointed out that the Euler number in
the ferromagnetic phase is characterized by the even number
χ = 4 instead of χ = 2.

This is because the trajectories of the vector d(k,ϕ) can be
split into two equal disjoint topological spheres d(k,ϕ) with
k ∈ [−π,0], and d(k,ϕ) with k ∈ [0,π ] (see Fig. 9). Note that
each of the topological spheres will contribute a Euler number
2 [χ = 2(1 − g), with g = 0 for a topological sphere], and
hence the two topological spheres will contribute the Euler
number χ = 4.

For the measurable consequence, Neupert et al. have
recently shown that the quantum geometric tensor Qμν of
the band can be measured by the current noise spectrum of the
band insulators. In a two-band Hamiltonian, the current noise

FIG. 9. (Color online) The trajectories of the three-dimensional
vector d(k,ϕ) with the Hamiltonian parameters δ = 0.7, γ = 1 and
h = 1 can be split into two equal disjoint topological spheres (a)
d(k,ϕ) with k ∈ [−π,0]; and (b) d(k,ϕ) with k ∈ [0,π ].

spectrum can be expressed by the Qμν of the band as {see
Eq. (13) in Ref. [58]}

Sμν(ω) = −2πω2
∫

1Bz

dd k
�Bz

δ[ω − E+(k) + E−(k)]Qμν(k),

(21)
where �BZ denotes the volume of the Brillouin zone, d denotes
the dimension of the crystal momentum space, and

Sμν(ω) :=
∫

dt e−iωt 〈0|Jμ(0)Jν(t)|0〉 (22)

is the spectral function of the current-current correlation. As
shown by Marzari and Vanderbilt [70], the integral of the
trace of the Riemannian metric over the Brillouin zone �I =∫

1Bz
dd k
�Bz

TrG is a gauge invariant measure of the delocalization
or spread of the Wannier functions. Here, we would like to
point out that the Euler number of the band, in the case of a 2D
two-band Hamiltonian, can be reduced to a gauge invariant
volume of the Brillouin zone as measured according to the
metric G [see Eq. (16)] and this volume can be topological
invariant in the nontrivial topological phase.

The spin-spin correlation functions can be derived by using
the similar method for the transverse field XY spin model (see
Refs. [20] and [71]), and we can obtain

Cx
i,i+r = 〈

Sx
0 Sx

r

〉 − 〈
Sx

0

〉〈
Sx

r

〉

= 1

4

∣∣∣∣∣∣∣∣
G−1 G−2 · G−r

G0 G−1 · G−r+1
...

...
. . .

...
Gr−2 Gr−3 · G−1

∣∣∣∣∣∣∣∣
,

C
y

i,i+r = 〈
S

y

0 Sy
r

〉 − 〈
S

y

0

〉〈
Sy

r

〉
(23)

= 1

4

∣∣∣∣∣∣∣∣
G1 G0 · G−r+2

G2 G1 · G−r+3
...

...
. . .

...
Gr Gr−1 · G1

∣∣∣∣∣∣∣∣
,

Cz
i,i+r = 〈

Sz
0S

z
r

〉 − 〈
Sz

0

〉〈
Sz

r

〉 = −1

4
GrG−r ,

where the expectation values 〈 〉 are taken in the ground state
(at zero temperature) or in the canonical ensemble (at finite
temperature), and the Green function Gr at finite temperature
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FIG. 10. (Color online) The nearest neighbors spin-spin corre-
lations Cx

i,i+1, C
y

i,i+1, and Cz
i,i+1 as functions of h, with the fixed

parameters (a) γ = 1,δ = 0; (b) γ = 0,δ = 0; (c) γ = −1,δ = 0;
(d) γ = 0.3,δ = 0.4; (e) γ = 0,δ = 0.4; (f) γ = −0.3,δ = 0.4.

is given by

Gr (β) = 1

π

∫ π

0
(h + cos k − δ cos 2k) cos kr

tanh
(

1
2β�k

)
�k

− γ sin k sin kr
tanh

(
1
2β�k

)
�k

dk, (24)

where β = kBT and the energy spectrum �k =√
(h + cos k − δ cos 2k)2 + γ 2 sin2 k. Meanwhile, the

Green function Gr at zero temperature can be obtained by
setting tanh(β�k/2) = 1, that is,

Gr = 1

π

∫ π

0

(h + cos k − δ cos 2k) cos kr − γ sin k sin kr√
(h + cos k − δ cos 2k)2 + γ 2 sin2 k

dk.

(25)

The nearest neighbors spin-spin correlation functions at zero
temperature as functions of h with different Hamiltonian
parameters γ and δ have been shown in Fig. 10.

On the other hand, the Euler number of the system can be
expressed as [see Eq. (16)]

χ = 1

2π

∫
1Bz

4
√
Gkk · Gϕϕdkdϕ, (26)

where the Riemannian metric Gkk and Gϕϕ are given by Eq. (8).
Considering Eqs. (23), (25), and (8), we have

1

2π

∫∫
sin k

√
Gϕϕdkdϕ = π

4

(
Cx

i,i+1 − C
y

i,i+1

)
. (27)

FIG. 11. (Color online) The spin-spin correlations Cx
i,i+1, C

y

i,i+1,
and Cz

i,i+1 as functions of h with the fixed parameters γ = 0.3, and
(a) δ = 0; (b) δ = 0.5; (c) δ = 1. The spin-spin correlations Cx

i,i+1,
C

y

i,i+1, and Cz
i,i+1 as functions of δ with the fixed parameters γ = 0.3,

and (d) h = 0; (e) h = 0.5; (f) h = 1.

By a similar way, the metric component Gkk and the Euler
number can also be expressed in some combination of the
spin-spin correlation functions.

In Figs. 11(a), 11(b), and 11(c), we show the correlation
functions Cx

i,i+1, Cx
i,i+1, and Cz

i,i+1 as functions of the trans-
verse field h with the Hamiltonian parameters γ = 0.3, and
δ = 0, 0.5, 1. In Figs. 11(d), 11(e), and 11(f), we show the cor-
relation functions as functions of the three-site spin coupling
coefficient δ with the Hamiltonian parameters γ = 0.3, and
h = 0, 0.5, 1. As shown in Fig. 11, the three-site spin coupling
coefficient δ will affect the behavior of the spin-spin correlation
functions. Meanwhile, the critical points of the system will be
moved to h = δ ± 1 where the energy gap will be closed, and
this can be witnessed by the Euler number of the band.

V. CONCLUSIONS

In summary, we study the Euler number index of the Bloch
band in a transverse field XY spin-1/2 chain with multisite
spin couplings. This approach is based on the topological
characterization from the Gauss-Bonnet theorem on a 2D
closed Bloch states manifold in the first Brillouin zone, where
the Riemannian structure of the Bloch band is established by
the geometric tensor in the crystal momentum space. For a
local geometric witness to the quantum phase transitions, we
introduce the cyclic quantum distance of the Bloch band and
show the Riemannian metric on the Bloch states manifold can
be relate to a corresponding ground-state quantum distance in
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the parameter space. Finally, we derive the Euler characteristic
number of the Bloch band analytically via the Gauss-Bonnet
theorem on the 2D Bloch states manifold in the first Brillouin
zone. We show that the ferromagnetic-paramagnetic quantum
phase transition in this model is topologically different in the
Bloch band’s Euler number index. We also give a general
formula of the Euler number for the 1D or 2D two-band
systems, which reveals its essential relation to the first Chern
number of the band insulators.
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