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Fundamental measure theory (FMT) for hard particles has great potential for predicting the phase behavior of
colloidal and nanometric shapes. The modern versions of FMT are usually derived from the zero-dimensional
limit, a system of at most one particle confined in a collection of cavities in the limit that all cavities shrink to the
size of the particle. In Phys. Rev. E 85, 041150 (2012), a derivation from an approximated and resummed virial
expansion was presented, whose result was not fully consistent with the FMT from the zero-dimensional limit.
Here we improve on this derivation and obtain exactly the same FMT functional as was obtained earlier from
the zero-dimensional limit. As a result, further improvements of FMT based on the virial expansion can now be
formulated, some of which we suggest in the outlook.
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I. INTRODUCTION

Hard particles have been used as a reference model
for molecules in most theoretical approaches. Moreover,
recent progress [1] in synthesis techniques have allowed the
manufacture of colloids and nanoparticles of near arbitrary
shape. Predicting the collective behavior of arbitrarily shaped
particles provides a challenge for theory and simulations alike,
if only because of the plethora of available shapes.

Density functional theory (DFT) [2] is a theory for
equilibrium phase behavior of inhomogeneous many-particle
systems. A DFT for mixtures of hard spheres, fundamental
measure theory (FMT), was derived by Rosenfeld [3]. More
recent versions are based on a different derivation by Tarazona
and Rosenfeld [4] that demanded that the functional is
exact in the so-called zero-dimensional limit: A collection
of overlapping cavities which, as a whole, can contain at
most one particle in the limit that each cavity shrinks to the
size of the particle. We will refer to the functional that is
exact for three cavities whose intersection is nonzero as the
0D-FMT functional. After some modifications [4–7] (see also
Sec. VII C), the theory provides a good description of both
the crystal and the high density fluid and accurately predicts
the bulk freezing transition [8]. In addition, this latest DFT
has been applied to inhomogeneous systems of hard spheres,
such as a fluid around a hard spherical obstacle [7] and the
fluid-solid interface [9].

Fundamental measure theory was also extended to (mix-
tures of) nonspherical hard particles by Rosenfeld [10] whose
description lacked a stable nematic phase. This artifact of FMT
was repaired [11,12] by applying the Gauss-Bonnet theorem
to the intersection between two particles [13], which appears
in the lowest order in the excess free energy (with respect
to that of the ideal gas). The resulting functional has been
applied to bulk phases ranging from the nematic phase for
spherocylinders [12] to the crystal for (rounded) parallel hard
cubes [14], as well as the isotropic-nematic interface for sphe-
rocylinders [15] and inhomogeneous fluids of dumbbells [16]
and polyhedra [17]. In addition, DFT functionals for particular
shapes [18,19] and fixed orientations [20,21] can often be

derived more elegantly and using fewer approximations than
for the general case.

Recently, an FMT functional was derived from an approx-
imated and resummed virial expansion [22]. This derivation
justifies subsequent rescaling to obtain a better match to the
next-lowest-order virial diagram. A second advantage is that an
accurate approximation for the virial expansion should be valid
for all external potentials, not just for the homogeneous fluid
and extremely confined systems. Finally, and most importantly,
the approximation performed on the virial expansion should
be amendable to further improvements. Unfortunately, the
derivation in Ref. [22] did not lead to the same functional as the
one from the zero-dimensional limit [4], which is surprising as
the approximated virial series is also exact [22] for the cavities
where 0D-FMT is exact [4].

In this paper, we give an improved version of the derivation:
First, it will be clear where the combinatorial prefactors in our
approximated virial series come from. Second, we improve on
the calculation of the intersection of three particles surfaces,
which leads to consistency with 0D-FMT in three dimensions.
Finally, we will consider explicitly all d � 3 spatial dimen-
sions. The case d < 3 deserves to be considered explicitly,
since many systems—colloidal suspensions in particular—
exhibit interesting effects of reduced dimensionality [23].
Furthermore, an important test for the d = 3 functional is to
evaluate it for the density profile of an extremely confined,
quasi-d ′-dimensional system with d ′ < 3 and compare to
the results from the functional that is obtained directly by
considering d = d ′ explicitly [24].

This paper is organized as follows: We will first introduce
some notation to allow for a reasonably compact form of our
formula’s in Sec. II. In Sec. III, we will formally define the free
energy in terms of a virial expansion. Subsequently, we will
briefly describe the FMT functional [3,11,12] in Sec. IV. The
general form of the functional motivates the approximation for
the Mayer diagrams that we will use, which is the main result
of Ref. [22]. We reiterate this approximation and show its
relation to the Ree-Hoover resummation [25] of the Mayer
diagrams in Sec. V. In Sec. VI, we will use a geometric
approach to derive the functional without attempting to achieve
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full mathematical rigor. In Sec. VII, we will use the resulting
geometrical expressions to resum our approximations for the
Mayer diagrams to a closed form that turns out to be exactly
equal to the 0D-FMT functional derived by Tarazona and
Rosenfeld [4]. Our geometrical formulation of the functional
allows us to calculate the direct correlation function using a
formula from integral geometry, which we use to gauge the
accuracy of the functional. Subsequently, we briefly reiterate
the approximations and rescalings of the 0D-FMT functional
that were performed to improve both the accuracy of FMT for
certain common thermodynamic phases and the efficiency with
which the functional can be evaluated in Refs. [4,11,26,27].
Finally, we summarize our results, argue why the current
functional is successful in the light of the virial expansion,
and discuss some improvements to the functional motivated
by our derivation in Sec. VIII.

II. NOTATION

We will consider (in general) an M components system
of rigid particles in 1 � d � 3 dimensions. In other words, a
particle i is fully characterized by its species si ∈ {1, . . . ,M},
position ri ∈ Rd , and orientation, specified by a rotation
Ri ∈ SO(d). We will denote this triplet of coordinates by
Ri ≡ (ri ,Ri ,si) and take V to mean the set of all accessible
coordinates.

We also take the particles to have only-hard core interac-
tions, that is, the pairwise interaction energy φ(Ri ,Rj ) between
particles i and j is such that

e−βφ(Ri ,Rj ) =
{

0 B(Ri) ∩ B(Rj ) �= ∅
1 otherwise

,

where B(Ri) is the set of points in Rd inside a particle with
coordinates Ri . In principle, additional continuous coordinates
could also be introduced and encoded in the tuple R, for
example, internal coordinates for molecules and size or
shape for polydisperse systems. We will require that the
sets B(R) are convex for all R. We will also require that
the boundaries ∂B(R) are twice differentiable, such that the
principal curvatures κ(B,r) are well defined for all points r
on ∂B (or that the boundary can be obtained from a limiting
process of twice differentiable surfaces as, e.g., in Ref. [17]).
We will often denote B(Ri) as Bi and a property ξ (Bi ,r) of the
surface of a particle Bi at a point r by ξi(r) or even ξi if this
does not cause confusion, e.g., the notation ni for the normal
vector is an abbreviation for n(Bi ,r).

For any function f on V, we define

∫
V
dR f (R) ≡

∑
s

∫
Rd

dr
∫
SO(d)

dR f ((r,R,s));

n subsequent integrals over generalized coordinates will be
denoted by

∫
Vn dRn. Integration over an m-dimensional curved

hypersurface A inRd will be denoted by
∫
A

dmr (with m < d).
The unit d − 1 sphere will be denoted by Sd−1, and its (hyper-)
surface area by |Sd−1|, while the spherical area of a subset
S ⊂ Sd−1 will be denoted by σd−1(S).

III. DENSITY FUNCTIONAL THEORY
FROM A VIRIAL EXPANSION

In DFT, the structure of the system is described by the
density profile ρ(R), which is defined such that the integral
of ρ over a subset A ⊂ V is the average number of particles
with generalized coordinates in A. Using Mayer’s celebrated
virial expansion, it can be shown that the grand-canonical free
energy 	 of a system with an external potential Vext(R) can be
written as a functional 	[ρ0] of the equilibrium density profile
ρ0. This grand potential functional is defined as

	[ρ] ≡ F[ρ] +
∫
V
dR ρ(R)[Vext(R) − μR], (1)

where the chemical potential is denoted by μR, which only
depends on the species component s of R = (r,R,s), see
Sec. II. Often there will be R ∈ V, where Vext(R) is infinite; in
this case, we set Vext(R)ρ(R) = 0 if ρ(R) = 0. The intrinsic
free energy F[ρ] consists of two parts,

F[ρ] = Fid[ρ] + Fexc[ρ].

The first of these, the free-energy functional for an ideal gas,
Fid, reads [2]

Fid[ρ] = kBT

∫
V
dR ρ(R) log[ρ(R)V] − ρ(R),

where kB denotes Boltzmann’s constant, T the temperature,
and V the thermal volume (1/V is defined as the integral over
the momenta conjugate to R in the partition sum). Second, we
define an explicit expression for the excess free energy Fexc[ρ]
as an infinite series of Mayer diagrams [28,29],

−βFexc[ρ]

=
∞∑

n=2

∑
g∈M[n]

g[ρ]

= + + + + + . . . , (2)

where β = 1/kBT and the set of n-node Mayer diagrams
M[n] consists of all biconnected graphs with n nodes [30].
Each of these diagrams or graphs corresponds to a functional
g[ρ], which is constructed as follows: First, label all n circles or
nodes of a graph g with indices 1 through n in some arbitrary
way. Then define the set of index pairs P (g) ⊂ {1, . . . ,n}2,
such that (i,j ) ∈ P (g) if and only if circle i and circle j are
connected by a line in the graph g. With these definitions, the
functional g[ρ] reads

g[ρ] = 1

|Aut(g)|
∫
Vn

dRn

n∏
i=1

ρ(Ri)
∏

(i,j )∈P (g)

fM (Ri ,Rj ), (3)

where fM (Ri ,Rj ) = exp[−βφ(Ri ,Rj )] − 1 for particles in-
teracting with a pairwise potential φ. For the hard particles
of interest, fM (Ri ,Rj ) = −1 on overlap and fM (Ri ,Rj ) = 0
otherwise. Finally, the group of permutations of the nodes
1, . . . ,n that map g to a diagram with the same connectivity is
denoted by Aut(g) with order |Aut(g)| [the number of elements
in the set of Aut(g)]. We will also use the notation |g|L for the
absolute value of the integral in Eq. (3) without the factor
1/|Aut(g)| (we use a subscript L, because |g|L is equal to the
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absolute value of the diagram g′ formed by labeling the nodes
of g, such that every circle is distinguishable from the others
and Aut(g′) = 1).

It can be shown [2] that the equilibrium density profile ρ0

of a system with the external potential Vext(R) is equal to the
density profile that minimizes the grand potential functional
	[ρ] as defined in Ref. [2], provided that the set M of density
profiles considered in the minimization contains ρ0 and all ρ

in M are v representable. Here a density profile ρ is called
v representable if an external potential v exists, such that ρ

is equal to the equilibrium density profile of the system with
external potential v and the same particle-particle interactions
as the system of interest. For practical reasons, we restrict
M to those ρ for which the virial expansions of Fexc and

δ
δρ(R)Fexc converge (in practice, one often uses δ	

δρ(R) = 0 to
perform the minimization). This has the advantage that all
ρ in M are v representable; in fact, the external potential v

which represents ρ is given by v(R) = μR − δF
δρ(R) , which is

obtained from δ	
δρ

= 0 by rearranging. Unfortunately, it cannot
be guaranteed that the equilibrium density profile ρ is in M ,
as convergence of the virial expansion is difficult to ascertain.
However, the series in the approximation toFexc we will derive
below always converges for the equilibrium density profile. In
fact, the series converges for some density profiles that should
not be in M ; for example, the functional predicts a finite
free energy for the one-component homogeneous fluid for any
packing fraction η � 1, even if η is larger than the packing
fraction in the close packed limit, ηcp � 1, where the packing
fraction is defined as η = Nvp/V with the number of particles
N = ∫

V dR ρ(R), the volume of a particle vp, and the system
volume V . Of course, such a branch of (local) minima of the
grand potential can be easily dismissed as unphysical as it
extends to η � ηcp.

IV. FUNDAMENTAL MEASURE THEORY

In fundamental measure theory, the excess free energy is
written as a functional of the following form:

Fexc =
∫
Rd

dr �({nA[ρ](r)), (4)

where {nA[ρ](r)} is a set of weighted densities

nA[ρ](r) ≡
∫
V
dR wA(R,r)ρ(R) (5)

(in the remainder we will drop the argument [ρ] of nA).
These weight functions where originally derived from the
low-density limit [3] for spheres in three dimensions, but
subsequent generalizations all have this form. For d = 3,
the superindex A takes values in {0,1, . . . ,3} ∪ {(α,τ,c) | α ∈
{1,2}, τ ∈ N, c ∈ {1, . . . ,d}τ }, where

∫
Rd dr wA(R,r) has

dimension [length]α , τ denotes the tensor rank, and the index c

denotes the tensor component. The weight functions wA(R,r)
are distributions rather than functions. The first, wd , is defined
by ∫

Rd

dr f (r)wd (R,r) ≡
∫
B(R)

dr f (r), (6)

for any function f : Rd → R, that is, wd simply restricts the
integral to the interior of the particle. There is also a weight
function that restricts the integral to the surface of the particles,
namely, wd−1,∫

Rd

dr f (r)wd−1(R,r) ≡
∫

∂B(R)
dd−1r f (r). (7)

Similarly, w0 is defined by∫
Rd

dr f (r)w0(R,r) ≡
∫

∂B(R)

K(r)

|Sd−1|d
d−1r f (r), (8)

where K(r) is the Gaussian curvature of the surface at r and
|Sd−1| the spherical measure of the unit d − 1 sphere. Finally,
for A �= d,d − 1,0, we only give the general form of the weight
functions∫

Rd

dr f (r)wA(R,r) ≡
∫

∂B(R)
dd−1r w̄A(R,r)f (r),

where w̄A(R,r) contain local properties of the surface at r [11].
Clearly, the wA(R,r) for all A are invariant under simultaneous
translation of the particle coordinates R and the position r.

Taylor expanding the fundamental measure free-energy
density �({nα}) around (n0,n1, . . . ) = (0,0, . . . ) yields

∞∑
n=0

1

n!

∑
A1,...,An

∂n�

∂nA1 · · · ∂nAn

∣∣∣∣
nA=0

n∏
i=1

nAi
(r).

Inserting this expression into the free energy (4), we see that
the free energy can be written as

Fexc =
∞∑

n=0

∫
Vn

dRn

n∏
i=1

ρ(Ri)Kn(Rn), where (9)

Kn(Rn) = 1

n!

∑
A1,...,An

∂n�

∂nA1 · · · ∂nAn

∣∣∣∣
nA=0

×
∫
Rd

dr
n∏

i=1

wAi
(Ri ,r), (10)

which is only nonzero if there is at least one r that is inside
each particle Bi , as a result of the range of the weight functions
wA. In other words, if we interpret (9) as a virial expansion,
then in each n-particle diagram only configurations Rn with⋂n

i=1 B(Ri) �= ∅ are included.

V. STACKS AND REE-HOOVER DIAGRAMS

As we have just shown in Sec. IV, only n-particle configura-
tions Rn with

⋂n
i=1 B(Ri) �= ∅ have to be taken into account in

the n-th order virial term in order to obtain a functional of the
FMT form (4). For this reason, it was suggested in Ref. [22]
to approximate a specific Mayer diagram by restricting the
integral to configurations with a nonempty “particle stack,”
where the “stack,” introduced in Ref. [22], is defined as

Stn(Rn) ≡
n⋂

i=1

B(Ri).

In Ref. [22], only the fully connected Mayer diagram (the
diagram where each node is connected to all other nodes by
Mayer bonds) was included in the virial expansion; all other
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diagrams were neglected. Subsequently, a somewhat involved
argument was used to obtain a free energy that is of the FMT
form. Here we retain all Mayer diagrams and apply the same
approximation as in Ref. [22] to every diagram, which allows
a more straightforward route using only the virial expansion.

The approximation to only include Rn with nonempty
Stn(Rn) in a Mayer diagram greatly simplifies the correspond-
ing integrals, because it implies that each particle overlaps
with each other particle or, equivalently, fM (Ri ,Rj ) = −1 for
1 � i �= j � n. As a result, the product of the Mayer bonds in
each Mayer diagram g with n nodes, cf. Eq. (3), becomes∏

(i,j )∈P (g)

fM (Ri ,Rj ) → (−1)|P (g)| χ ′(Rn)

where χ ′(Rn) =
{

1 if Stn(Rn) is nonempty
0 otherwise (11)

and |P (g)| denotes the number of elements of P (g) or,
equivalently, the number of lines in g. In order to simplify
this expression further in Sec. VI, we have to introduce
a notion from geometry, namely the Euler characteristic.
The Euler characteristic χ (S) of a subset S of Rd is equal
to 1 when S is a convex set and zero when S is empty.
Therefore, χ ′(Rn) is equal to χ [

⋂n
i=1 B(Ri)] as we have

restricted ourselves to convex bodies, see Sec. II, and the
intersection of any number of convex sets is either convex
or empty. As χ (S) is a topological invariant, χ (S) is also
equal to 1 if S is a smooth deformation of a convex set,
such as the set that we will encounter in Sec. VIA5. In other
cases, χ (S) can have any integer value (positive, negative, or
zero). Therefore, χ ′(Rn) = χ [

⋂n
i=1 B(Ri)] does not hold in

general for nonconvex particles whose intersections can be
topologically nontrivial.

Collecting all approximated Mayer diagrams with the same
number of nodes, the approximation for the excess free energy
from the virial expansion (2) can be written as

∞∑
n=2

cn

∫
Vn

dRn χ

[
n⋂

i=1

B(Ri)

]
n∏

i=1

ρ(Ri), (12)

where we introduced the combinatorial factor cn,

cn ≡ −
∑

g∈M[n]

1

|Aut(g)| (−1)|P (g)|. (13)

It remains to obtain a closed form for cn as a function of n.
The latter problem has already been solved by Ree and Hoover
in the context of their resummation of the Mayer diagrams to
obtain an efficient algorithm for the virial expansion for homo-
geneous fluids of hard spheres [25,31]. They introduced a new
type of diagram, which we will call a Ree-Hoover diagram,
which contains Ree-Hoover bonds eRH ≡ 1 − fM in addition
to the Mayer bonds fM . The systematic resummation of the
Mayer diagrams into Ree-Hoover diagrams is obtained in the
following way [25]: First, the integrand of each Mayer diagram
g is multiplied by a factor 1 = eRH (Ri ,Rj ) − fM (Ri ,Rj ) for
every pair of nodes (i,j ) that is not connected by a line
in g. Subsequently, one expands the resulting expression in
products of eRH (Ri ,Rj ) and fM (Ri ,Rj ) functions, and, finally,
the diagrams g that have the same |g|L are collected into
one diagram, which we call a Ree-Hoover diagram. It can be

easily seen that each Ree-Hoover diagram gRH contains the
contributions of all configurations for which a given pair of
particles i and j is either required to overlap, if i and j are
connected by an fM bond in gRH , or i and j are not allowed
to overlap if i and j are connected by a eRH bond in gRH .
Ree and Hoover abbreviated the diagrams by leaving out the
fM bonds and denoted the n-particle diagram without eRH

bonds by the symbol for the empty set (∅)n.
The Ree-Hoover resummation reduces the amount of

cancellation between different diagrams in the virial series:
The configurations in a class in which P is the set of
overlapping pairs contribute to all Mayer diagrams g for which
at least each pair of nodes in P is connected by a line, that
is, all g for which P ⊂ P (g). Therefore, for many classes
with overlapping particles in P , the negative contributions to
diagrams with an odd number of bonds partially cancel the
positive contributions to the Mayer diagrams with an even
number of bonds. In particular, each n-particle configuration
that contributes to the (∅)n diagram contributes to all Mayer
diagrams, but with different prefactors (with oscillating signs),
such that

(∅)n =
∑

g∈M[n]

1

|Aut(g)| (−1)|P (g)||sn|L,

where sn is the fully connected Mayer diagram. We see
that the prefactor is equal to −cn, where cn is defined in
Eq. (13). In other words, we would have obtained the same
functional if we had started our derivation with the Ree-Hoover
resummation of the Mayer diagrams, only retained the (∅)n
diagrams, and, finally, neglected those configurations Rn in
the integrals of (∅)n, where Stn(Rn) = ∅. Following Tarazona
and Rosenfeld [4], we will use the term “lost cases” for the
configurations neglected in the latter approximation.

Combinatorial techniques for the Mayer diagrams [32],
which are beyond the scope of this work, have been used
to find a closed form for the prefactor cn as a function of n. In
our case, it is found [25] that the prefactor cn is

cn = 1/[n(n − 1)]. (14)

As an aside, we note that the prefactor of Ree-Hoover diagrams
with a small number of eRH bonds can be conveniently
calculated using techniques from Refs. [33,34] if the prefactor
of the smallest such diagrams is known.

VI. GEOMETRY OF A STACK

We wish to find an expression for χ (Stn) [where Stn =⋂n
i=1 B(Ri) as before] that allows summation of the free

energy (12) to a closed form. In order to do this we will
require some concepts from integral geometry, which we
will introduce along the way. More information and more
definitions for more general (nonsmooth) convex bodies can
be found in, e.g., Refs. [35,36].

As noted by Gauss for three dimensions, there exists a
natural map, the Gauss map, from the surface of a smooth
d-dimensional body to the d-dimensional unit sphere Sd−1,
where a point p on the surface is mapped to the outer normal
of the surface at p. We will use a slight extension for nonsmooth
particles, where a point p on the surface ∂B of a body B is
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mapped to the “normal cone,” defined as

N+(B,p) = {n ∈ Sd−1|n · (b − p) � 0 ∀b ∈ B}.
If ∂B is locally smooth at p, N+(B,p) is a set with one
element, the unique normal at p. Note that the definition of
the normal cone N+(B,p) is only useful for convex particles:
N+(Bnc,p) = ∅ for a point p on the concave part of the surface
of a nonconvex bodyBnc. We can straightforwardly extend this
definition to (Borel) subsets A of Rd to obtain the normal cone
of A,

N+(B,A) =
⋃

p∈A∩∂B
N+(B,p). (15)

The spherical measure σd−1(·) of the normal cone relative to
the total measure of the (d − 1) sphere |Sd−1| will play a central
role in our derivation, so we will use a separate symbol γ (B,·)
for the corresponding measure,

γ (B,A) ≡ σd−1(N+(B,A))
|Sd−1| ,

for any (Borel) subset A ⊂ Rd . Applying this measure to the
stack, we can write

χ

(
n⋂

i=1

Bi

)
= γ (Stn,R

d ) = γ (Stn,∂Stn). (16)

Here and in the remainder of this section (Sec. VI), we write
Bi instead of B(Ri). Of course, if Stn = ∅, N+(Stn,p) = ∅ and
γ (Stn,p) = 0 for all p ∈ Rd , while N+(Stn,Rd ) is the full unit
sphere if Stn is nonempty, such that γ (Stn,Rd ) = 1, which
proves Eq. (16) for a stack of convex particles.

In our case, this is useful because of the following
decomposition:

N+(Stn,∂Stn)

=
n⋃

i=1

N+(
Stn,∂Bi ∩ St∪n\i

)

∪
n⋃

i,j = 1
i < j

N+(
Stn,∂Bi ∩ ∂Bj ∩ St∪n\i,j

)
(17)

∪ . . .

∪
n⋃

i1, . . . ,im = 1
i1 < . . . < im

N+(
Stn,∂Bi1 ∩ . . . ∩ ∂Bim ∩ St∪n\i1,...,im

)
,

where we have defined the open subset of Rd ,

St∪n\i1,...,im
≡

n⋂
ν = 1

ν �= i1, . . . ,ν �= in

int(Bν).

Here, int(B) is the interior of the body B, i.e., int(B) = B\∂B.
An example of the decomposition (17) in d = 2 dimensions is
shown in Fig. 1.

In the remainder of this section, we will exclude some
pathological n-particle configurations with a vanishing contri-
bution to the free energy, namely those for which one or more
surfaces ∂Bi are tangent to either another surface ∂Bj or the

(b)(a) (c)

FIG. 1. (Color online) (a) Example of a “stack” in two dimen-
sions: The dark area denotes the “stack” of three arbitrary convex
bodies, defined as the intersection between the bodies. The main
approximation necessary to derive FMT is to restrict the multidi-
mensional integrals in the Mayer diagrams to include only those
configurations as shown here, that is, where the intersection between
all bodies is nonempty. [(b) and (c)] The union of all normal vectors
of the surface of a convex body (b) is just the (d − 1)-dimensional
unit hypersphere (c), (a circle with unit radius for d = 2). The set
of vectors normal to a point p on the surface of a stack, N+(p), can
either contain a single normal vector for a point p on one of the
surfaces of the particles that constitute the stack (examples are the
dark arrows) or a (k − 1)-dimensional set of normal vectors for p on
the intersection between k surfaces (e.g., the sectors containing the
light arrows for k = 2).

intersection between two or more of the other surfaces or for
which the intersection between d particles in d dimensions lies
on one of the surfaces. With this restriction, the intersection
between k surfaces is always a (d − k)-dimensional subset of
Rd . As a result, the number of elements in the union (17),
m, is at most min{n,d} in d dimensions [37]. Note, that the
surface of the stack is nonsmooth near all points p on the
intersections of k surfaces ∂Bi (for k � 2) and that N+(Stn,p)
is a (k − 1)-dimensional set for such points p. For convex
particles, we know that every unit vector is an outer normal
vector to the surface in exactly one point, which implies that
the sets in the union (17) are pairwise disjoint [more precisely,
σd−1(A ∩ B) = 0 for any two sets A, B in the union (17) with
A �= B]. Therefore,

γ (Stn,∂Stn)

=
m∑

k=1

n∑
i1, . . . ,ik = 1
i1 < . . . < ik

γ
(
Stn,∂Bi1 ∩ . . . ∩ ∂Bik ∩ St∪n\i1,...,ik

)
,

which is also obvious from the fact that γ (B,·) is additive [36].
The decomposition of γ is a special case of the decomposition
of local Minkowski functionals [38]. Consider a d − k dimen-
sional intersection �d−k of k � 2 surfaces of some convex
bodies {Bj }kj=1 for k � d. Using the Lebesgue integral with
γ (B,·) as the integration measure, we can now formally define
a generalized weight function w[k](B1, . . . ,Bk,r) by∫

Rd

dr f (r)w[k](B1, . . . ,Bk; r)

≡ 1

k!

∫
�d−k⊂Rd

γ (B1 ∩ · · · ∩ Bk,dp) f (p) (18)
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TABLE I. As shown in the text, all k-body weight
functions, w[k](B1, . . . ,Bk; r), have the form Q

[k]
d (B1, . . . ,Bk; r)∏k

i=1 wd−1(Bi ,r) in d spatial dimensions with the factors Q
[k]
d that

are listed in this table. See text for the definitions of the symbols;
K1, ni , κ

g

i , and αijk depend implicitly on the point r and the body or
bodies with the corresponding index or indices. For comparison to
Refs. [4,11,26,27], we wrote [n1] = 1 and [n1,n2] =

√
1 − (n1 · n2)2,

which are valid for general d , as well as [n1,n2] = |n1×n2| and
[n1,n2,n3] = |n1 · (n2×n2)|, which are valid only for d = 3.

d k Q
[k]
d (B1, . . . ,Bk; r)

1 1
1

2

2 1
K1

2π

2
√

1 − (n1 · n2)2
arccos(n1 · n2)

4π

3 1
K1

4π

2 |n1×n2| κ
g

1 + κ
g

2

8π

3 |n1 · (n2×n3)| α123 + α231 + α312 − π

24π

for any piecewise continuous function f (r) on Rd . We have
absorbed a factor 1/k! into the generalized weight function
that would have otherwise appeared explicitly in the excess
free-energy functional Fexc in Sec. VII.

With this definition (18), we can write the normalized
normal cone area of the stack as

γ (Stn,∂Stn) =
∫
Rd

dr
m∑

k=1

n∑
i1, . . . ,ik = 1
i1 �= . . . �= ik

w[k]
(
Bi1 ,. . .,Bik ; r

)

×
n∏

j = 1
j /∈ {i1, · · · ,ik}

wd (Bj ,r), (19)

with the volume weight function wd from Eq. (6). This expres-
sion suffices to resum the approximated Mayer diagrams in a
closed form to obtain a functional. However, the expressions
for the k-weight functions (18) for k � 2 are not very useful
for explicit calculations and they are difficult to compare to
the FMT weight functions. Therefore, we specialize to cases
where we can give explicit expressions in Sec. VI A.

A. Special cases

In this section, we will restrict ourselves to the relevant
cases for the spatial dimensions 1 � d � 3, namely k = d =
1; k = d for d = 2,3; k = 1 for general d > 1, and, finally, k =
2 for d = 3. For these cases, we will obtain explicit expressions
for the resulting weight functions, which are summarized in
Table I. The general case will be discussed elsewhere [39].

1. One dimension

For d = 1, every Bi = [ai,bi] for some real numbers ai and
bi and we have m = 1 since the boundaries of the particles
cannot intersect. The stack for d = 1 is illustrated in Fig. 2.

FIG. 2. (Color online) In one dimension, “particles” are line
intervals and only two normals are possible +1 and −1 as shown
by the arrows. The “stack” of the three particles shown is the line
interval labeled “intersection.”

It is nonempty if mini bi > maxi ai , in which case the normal
cone of the stack [as defined in Eq. (15)] consists of the normal
vectors +1 at mini bi and −1 at maxi ai . (The 0-dimensional
unit sphere consist of the two points ±1 and |S0| = 2.) The
normal cone area for δBi in d = 1 dimensions has the form (19)
with

w[1](Bi ; x) ≡
∑

p∈{ai ,bi }

1

2
δ(x − p).

2. Intersection between d particles (k = d)

We will first consider k = d intersecting surfaces for
general d. The set �d−k = �0 is then a set of discrete points at
which the boundaries intersect. Therefore, we can immediately
write down the w[k],

w[d](Bi1 , . . . ,Bik ; r
) ≡

∑
p∈�0

σd−1(N+(Stn,p))
|Sd−1|k!

δ(r − p), (20)

where explicit expressions for σd−1(N+(Stn,p)) are given
below for d = 2,3. Note that w[1] for d = 1 is consistent with
the expression obtained in Sec. VIA1.

3. No intersection (k = 1)

In order to discuss k = 1 for d > 1 [the case k = d = 1 is
already covered by Eq. (20)], we will use the equality ([36]
and p. 608 in Ref. [35]) of γ and �0, one of the curvature
measures [40], which for a smooth body and some (Borel)
subset A ⊂ Rd reads

�0(B,A) =
∫

∂B∩A

dd−1r
K(r)

|Sd−1| = γ (B,A), (21)

where K(r) is the Gaussian curvature at r: K ≡ ∏d−1
j=1 κj ,

where the principal curvature in direction vj is denoted by
κj for 1 � j � d − 1. The equality between the integrated
Gaussian curvature �0(B,A) and the normal cone area γ (B,A)
(which in its original version in d = 3 dimensions is due to
Gauss) is illustrated in Fig. 3. Using this equality, we can define
w[1] as

w[1](Bi ,r) = Ki(r)

|Sd−1|wd−1(Bi ,r), (22)

which is equal to the FMT weight function w0, see Eq. (8).
Here we used the weight function wd−1 as defined in Eq. (7).
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FIG. 3. (Color online) Illustration of the equality of γ and �0,
see Eq. (21). The radius of curvature Ri = 1/κi in principal direction
vi at some point p is illustrated by the dashed circle. The intersection
between the surface ∂B of a particleB and the plane spanned by vi and
the normal vector n at p is denoted by the black curve. The extension
in direction vi of the normal cone to an infinitesimally small patch dA

of the surface near p is denoted by the angle dθi 
 dli/Ri = κidli ,
where dli is the extension of the patch in direction vi . Now the
spherical area of the normal cone to dA can be seen to be equal to the
Gaussian curvature integrated over dA: |Sd−1|γ (B,dA) 
 ∏

i dθi 
∏
i κidli 
 �0(B,dA)|Sd−1|.

4. Two dimensions

For the case k = d = 2, the normal cone of the intersection
point is just the arc spanned by the normal vectors n1 and n2

of the two intersecting surfaces and the arc length reads

σ1(N+(Stn,p)) = arccos(n1 · n2). (23)

Using this arc length in Eq. (20) for d = 2, the weight
function w[2] is defined. For the remaining case, k = 1 in
d = 2 dimensions, we can use the expression (22) for w

[1]
0

given above.

5. Three dimensions: The Gauss-Bonnet theorem

The intersection of three bodies in three dimensions with
the three different types of contributions (k = 1,2,3) to the
normal cone is shown in Fig. 4.

First, the weight function w[1] as defined in (22) can be
used. Second, the normal cone for d = k = 3 is a spherical
triangle spanned by the normal vectors n1, n2, and n3 of the
three intersection surfaces. Its area reads

σ2(N+(Stn,p)) = α123 + α231 + α312 − π for d = 3,

which can be inserted in Eq. (20) for d = 3 to define the weight
function w[3]. Here αijk denotes the dihedral angle, as depicted
in Fig. 4(a), which reads

αijk = arccos(N [ni×nj ] · N [nk×nj ]),

where N [v] for v ∈ Rd denotes the normalized vector v/|v|
and the cross product (in d = 3 only) is denoted by ×.

(a) (b)

(c)

FIG. 4. (Color online) The intersection between three particles
(spheres in this case) in three dimensions (the surfaces of the three
spheres have different colors for clarity). For d = 3, there are three
contributions that are distinguished by the number of intersecting
surfaces k as shown in the three panels: (a) k = 3, (b) k = 2, and
(c) k = 1. For k = 3 surfaces that intersect at a point p, the normal
cone N+(p) is a spherical triangle spanned by the normals of the
intersecting surfaces at p depicted by the arrows in (a). For k = 2 and
k = 1, the contribution of a small section of the intersection (b) or
the surfaces itself (c) is indicated by the filled area. In (b), we also
indicated the geodesic curvatures κ

g

1 and κ
g

2 of the paths indicated by
arrows with the corresponding labels.

Finally, the normal cones for k = 2 in three dimensions,
or 1 < k < d for general d � 3, contain continuous (d − k)-
dimensional sets of points that contribute to the total normal
cone, which requires a different way of calculating the total
normal cone area of the stack. One option would be to use
Chern’s direct approach [41]. Instead, we will perform a less
involved calculation using the Gauss-Bonnet theorem, which
reads (in three dimensions),∫

S

KdA +
∑

k

∫
∂Sk

κgdl +
∑

n

∠n = 2πχ (S), (24)

where S is a compact twice differentiable two-dimensional
surface bounded by an oriented curve ∂S consisting of M

smooth sections ∂Sk , while the curve turns by ∠n at the inter-
section between sections ∂Sn−1 and ∂Sn (and ∂S0 ≡ ∂SM ).
Furthermore, K is the Gaussian curvature and κg is the
geodesic curvature on the smooth sections of ∂S. Finally, χ (S)
is the Euler characteristic of the surface.

The Gauss-Bonnet theorem cannot be directly applied to
the stack because it is not smooth (the Gaussian curvature
is not well defined on the intersection between two or three
surfaces), so we will consider the “tube” or the surface parallel
to a subset A of the surface of the stack,

tε(A) =
⋃
p∈A

εN+(Stn,p) + p

(where scaling a set by a constant and summing a set and
a vector implies performing the operation to each element
separately: p + εC := εC + p := {p + εr|r ∈ C} for any set
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C ⊂ Rd ). The parallel body is defined by

(B)ε = {p + r : p ∈ B, r ∈ Rd , |r| � ε}. (25)

Note that the normal cone of a subsection S of ∂Stn is
the same as the normal cone of the surface parallel to S:
N+(tεS,(Stn)ε) = N+(S,Stn); however, tεS is always a twice-
differentiable (d − 1)-dimensional hypersurface even if S is
not. With these definitions, we can consider the remaining
case: k = 2 intersecting surfaces in d = 3 dimensions. A very
similar calculation was also used to decompose the Mayer
bond into weight functions [11,26].

We will consider a subsection δC of the curve �2 =
∂Bi1 ∩ ∂Bi2 and consider the normal cone of tεδC [the latter
is denoted by the light blue area in Fig. 4(b)]. The direct
approach, integrating the Gaussian curvature K over tεδC, has
been followed in Refs. [22,26] and will not be repeated here.

As a second approach [26], which connects to the decon-
volution of the Mayer bond in Ref. [11], the Gauss-Bonnet
theorem, Eq. (24) can be applied for S = tεδC. The boundary
∂S consists of the arcs

∂S1 = {a + ε[cos φe1(a) + sin φe2(a)] : |φ| < φij (a)/2},
∂S3 = {b + ε[cos φe1(b) + sin φe2(b)] : |φ| < φij (b)/2},

which have zero geodesic curvature, and the curves

∂S2 = {r + εni(r)|r ∈ δC} and

∂S4 = {r + εnj (r)|r ∈ δC},
whose geodesic curvatures reduce to those of δC on the
two respective surfaces when ε → 0. Here a and b are
the end points of the curve δC; the angle φij is defined
as φij ≡ arccos(ni · ni); e1 = (n1 + n2)/

√
2(1 + n1 · n2) and

e2 = (n1 − n2)/
√

2(1 − n1 · n2). It can easily be seen that
the angles ∠n between the curves ∂Sn and ∂Sn+1 are equal
to π/2 for all n. Applying the Gauss-Bonnet theorem to
S = tεδC, rearranging, and inserting the above expressions
for the geodesic curvatures and angles ∠n, we obtain

lim
ε→0

∫
S

d2r K(r)

= lim
ε→0

[
2π − 4×π/2 −

∫
∂S2

d1r κ
g

i (r) −
∫

∂S4

d1r κ
g

j (r)

]

=
∫

δC

d1r
[
κ

g

i (r) + κ
g

j (r)
]
.

Therefore, the generalized weight function for k = 2 and
d = 3 is defined by∫

Rd

dr f (r)w[2](Bi ,Bj ,r) =
∫

∂Bi∩∂Bj

d1r
κ

g

i + κ
g

j

8π
f (r).

This can be seen to be equal to the result from Ref. [22]
using the explicit expression for the geodesic curvature from
Refs. [11,26],

κ
g

i + κ
g

j = κ II
i

(
vI

i · nj

)2 + κ I
i

(
vII

i · nj

)2

|ni×nj | (1 + ni · nj )
+ (i ↔ j ),

where (i ↔ j ) means the preceding expression with i and j

interchanged. This concludes the calculation of the k-body
weight function in the form given in Eq. (18) for the special

cases k = 1,d for any d and 1 � k � d for 1 � d � 3. The
weight function for k = 2 and d = 3 was further simplified in
Refs. [11,26] as we will show in the Sec. VI B for general k

and d.

B. Simplifying the integral over the intersection

The definition of the k-body weight function contains a
cumbersome integral over the intersection of k surfaces. This
integral can be simplified using∫

∂B1∩···∩∂Bk

f (r)dd−kr =
∫
Rd

[n1, . . . ,nk]f (r)

×
k∏

i=1

wd−1(Bi ,r)dr (26)

for any function f : Rd → R, see Refs. [11,26] for k = 2
and d = 3 and the Appendix. Here we used the subspace
determinant, [n1, . . . ,nk] ≡ |det(M)| (see p. 598 in Ref. [35]),
where M is the matrix M whose elements are Mi,j = ni · eN

j

for 1 � i,j � k expressed in some orthonormal basis eN
j of the

k-dimensional subspace spanned by the normal vectors. With
this definition, all k-body weight functions have the form

w[k](B1, . . . ,Bk; r) = Q
[k]
d (B1, . . . ,Bk; r)

k∏
i=1

wd−1(Bk,r).

(27)

Here the functions Q
[k]
d do not contain any distributions unlike

w[k] and only depend on the local properties of the surfaces
∂Bi at the intersection point r. The Q

[k]
d are summarized in

Table I.

VII. FUNDAMENTAL MIXED MEASURE FUNCTIONAL

Inserting the expression (19) for χ [Stn(Rn)] = γ (Stn,∂Stn)
into our approximation for the virial expansion of the excess
free energy (12) and, recalling Eq. (14) for cn, we find

Fexc =
∫
Rd

dr
d∑

k=1

�
[k]
d , (28)

where

�
[k]
d ≡ n[k](r)

∞∑
n=k

k!

n(n − 1)

(
n

k

)
nd (r)n−k

= n[k](r)χk(nd (r)) (29)

with

χk(η) =
{
∂k[(1 − η) log(1 − η) + η]/∂ηk for η < 1 and
∞ for η � 1.

Here the weighted density nd is defined as usual, see Eq. (5),
while the k-body weighted density is defined as

n[k](r) ≡
∫
Vk

dRk w
[k]
0 (Rk,r)

k∏
i=1

ρ(Ri).

By integrating the k-body weight functions over all positions
of the particles, we obtain mixed Minkowski volumes (or
“fundamental mixed measures”), which are generalizations of
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the fundamental measures to multiple bodies [42]. Therefore,
the DFT with the functional (28) could be called “fundamental
mixed measure theory” (FMMT). A FMMT functional con-
taining only one-body and two-body weighted densities has
already been derived from the lowest-order virial order and
applied to spherocylinders [43].

Note that the free energy is infinite if nd (r) > 1 for any
r. This is a physical divergence, as nd (r) > 1 implies that the
point r lies inside more than one particle on average; therefore,
some particles must overlap at r and the free energy should
indeed be infinite.

We will now compare the FMMT functional to the exact
result in the zero-dimensional limit.

A. Comparison to the zero-dimensional limit

Consider a monodisperse system of hard particles in a
quasi-zero-dimensional system, that is, in a cavity that is so
small that only one particle fits into the cavity. Alternatively,
in a multicomponent system an artificial external potential can
be considered, which allows only particles of a single species
to be inserted. Denote the accessible domain of the particle by
V, the set of coordinates R (positions and orientations) that
the particle can have without extruding from the cavity. The
set of accessible coordinates V is not necessarily connected as
the cavity can have any shape.

The usual approach to obtain the free energy of this system
starts with the grand-canonical partition sum � that can be
calculated exactly for this quasi-zero-dimensional system,
� = 1 + z|V|, where z = exp(βμ)/V is the fugacity and |V| is
the accessible hypervolume. From this, the excess free energy
can be calculated [10],

βFexc = (1 − x) log(1 − x) + x. (30)

where x = 〈N〉 is the average number of particles in this
system, which is less than 1.

A second approach to obtain the excess free energy would
be to perform a virial expansion for this system. For all
configurations that contribute to a Mayer diagram, that is,
for all configurations Rn ∈ Vn, each particle always overlaps
with all other particles by construction. Therefore, each of
the Mayer diagrams can be evaluated easily in this quasi-zero-
dimensional system, as the Mayer bonds are always −1 and the
density profile ρ(R) = ρ ≡ 〈N〉/|V| is constant for all R ∈ V
(and ρ(R) = 0 if R /∈ V). The resulting value of a diagram g

with n nodes and |P (g)| bonds is

g = 1

|Aut(g)|
∫
Vn

dRn (−1)|P (g)|ρn = (−1)|P (g)|

|Aut(g)| xn. (31)

Therefore, the virial result for the excess free energy (2) in this
case is

βFexc = −
∞∑

n=2

⎡
⎣ ∑

g∈M[n]

(−1)|P (g)|

|Aut(g)|

⎤
⎦ xn. (32)

As before, we use the combinatorial result [25] cn ≡
−∑

g∈M[n](−1)|P (g)|/|Aut(g)| = 1/[n(n − 1)] to obtain

βFexc =
∞∑

n=2

xn

n(n − 1)
= (1 − x) log(1 − x) + x, (33)

which, of course, is equal to the exact excess free energy (30),
as obtained from the partition sum.

A functional can be obtained using this system [10] by
taking the zero-dimensional limit, V → {R0D

i }, where R0D
i

for 1 � i � M are the only accessible (discrete) states in the
resulting “zero-dimensional” cavity. In this limit, the density
profile is simply a sum over δ functions and the functional
can be constructed by demanding that the excess free energy
from the functional goes to the exact free energy for this
system (30) in the zero-dimensional limit. For details on
the calculation, see the original works for spheres [4,10]
and the extension to anisometric particles [27]. In two and
three dimensions, the excess free energy from the functional
could not be reduced to the exact expression (30) for cavities
for which

⋂M
i=1 B(R0D

i ) was empty. These cavities were
subsequently ignored. The virial expansion route to the excess
free energy in Eqs. (31)–(33) shows that (i) the resulting
functional is equivalent to the one obtained in this work
by performing a virial expansion and ignoring all n-particle
configurations Rn for which

⋂M
i=1 B(R0D

i ) = ∅ and (ii) the
nontrivial combinatorial result cn = 1/[n(n − 1)] can actually
be obtained by considering the quasi-zero-dimensional system
as the excess free energy (33) has to be exact in that system.

It should be noted that the final form for the functional
proposed in Ref. [4] for hard spheres differs from the functional
obtained in Sec. VII, as additional approximations were
performed in Ref. [4] to obtain an efficient expression and
the functional was rescaled to obtain a more accurate result
for the homogeneous fluid. We outline these approximations
in Sec. VII C.

B. Direct correlation function

One way to test the accuracy of the approximated functional
is to compare the second direct correlation function,

c(R1,R2) = −β
δ2Fexc

δρ(R1)δρ(R2)
, (34)

with simulation results and established theories, which we
will do in the following. Since previous results for c(R1,R2)
are only available for the homogeneous and isotropic bulk
fluid (isotropic phase), we restrict ourselves to a constant
density profile. In principle, we could obtain c(R1,R2) by
inserting the constant density profile into Eq. (34) with the
functional (28) and performing the many-particle integrals
explicitly; however, we chose a simpler route using the
kinematic formula from integral geometry (see below).

We start with Eq. (12) forFexc in which the ρ(Ri) occur in an
explicitly symmetric fashion, which makes it easier to perform
the functional derivatives. Inserting Eq. (12) into Eq. (34) and
using Eq. (14) for cn, we find that

c(R1,R2) = −
∞∑

n=2

∫
Vn−2

dRn
3 χ

[
n⋂

i=1

B(Ri)

]
n∏

i=3

ρ(Ri), (35)

where
∫
Vn−k dRn

k+1 = ∫
V dRk+1 · · · ∫V dRn and the prefactor

cn = 1/(n(n − 1)) is canceled by the factors n(n − 1) that
appear in the second functional derivative of

∏n
i=1 ρ(Ri). From

this expression, it can be seen that c(R1,R2) only depends
on the properties of B1∩2 ≡ B(R1) ∩ B(R2) and not on the
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properties of the separate particles. As a result, we can consider⋂n
i=1 B(Ri) as the intersection of a fixed particle B0 ≡ B1∩2

and n′ moving particles Bi = B(Ri+2) for 1 � i � n′, where
n′ = n − 2.

To calculate c(R1,R2) for the isotropic and homogeneous
fluid, we will use the iterated kinematic integral formula
(Theorem 5.1.5 of Ref. [35]) from integral geometry, which
leads to Isihara’s formula for the second virial coefficient [44]
when restricted to the Euler characteristic and two convex
particles in three dimensions. The iterated kinematic formula
is also valid for quite general [45] classes of nonconvex
bodies Bi and for other intrinsic volumes than the Euler
characteristic; however, we only require the formula for the
Euler characteristic, which reads∫

Gn
d

dgnχ (B0 ∩ g1B1 ∩ · · · ∩ gnBn)

=
d∑

i0, · · · ,in = 0
i0 + · · · + in = nd

Ci0,··· ,invi0 (B0) · · · vin(Bn), (36)

where
∫
Gn

d
dgn ≡ ∫

Gd
dg1 · · · ∫

Gd
dgn denotes the n-fold inte-

gral over Gd , the group of rigid body motions (translations
and rotations) isomorphic to Rd×SO(d), normalized such
that

∫
Gd

dg wd (gB,r) = vd (B); also, vi(Bj ) is the ith intrinsic
volume of body Bj (for d = 3, v0, πv1, 2v2, and v3 are the
Euler characteristic, the integrated mean curvature, the surface
area, and the volume respectively) and, finally, Ci0,··· ,in is a
prefactor,

Ci0,··· ,in ≡ i0!κi0

n∏
j=1

ij !κij

d!κd

with κi the volume of the i-dimensional unit ball Bi (i.e.,
the solid sphere with unit radius). For bodies with a smooth
boundary, the intrinsic volumes vi for 1 � i � d − 1 can be
calculated using (p. 607 from Ref. [35]):

vi(B) ≡
(
d

i

)
dκd−i

∫
∂B

dd−1r Hd−i−1(B,r), (37)

where H0 = 1 and Hj is the product of j principal curvatures
averaged over all combinations of j principal directions:

Hj (B,r) =
(

d − 1

j

)−1 d−1∑
i1,··· ,ij =0

j∏
k=1

κij (B,r),

Also, we denote the volume of a body B by vd (B). In principle,
it should be possible to prove the kinematic formula, which
is outside of the scope of this work, by inserting χ (Stn) =
γ (Stn,Rn) from Eq. (19) and performing the integrals over Rj

for 1 � j � n and r.
While the iterated kinematic formula looks complicated

for large n, it should be realized that due to the condition
i0 + · · · + in = nd ⇔∑n

j=1(d − ij ) = i0 only at most i0 of
the ij for 1 � j � n are unequal to d, such that the factors in
Ci0,··· ,in corresponding to the remaining ij are unity.

In order to write the direct correlation function (35) for the
bulk fluid in the form of the iterated kinematic formula, we
rewrite the combined integral and sum over the (generalized)

coordinate Rj in Eq. (35) as∫
V

dRj ρ(Rj )χ (B(Rj ) ∩ · · · )

=
M∑

sj =1

∫
Gd

dgj ρ̄sj
χ

(
gjB(0)

sj
∩ · · · ),

for a constant density profile ρ(R) = ρ̄s/|SO(d)|, where M

is the number of species in the system, B(0)
s is the set of points

inside a particle of species s centered at the origin with identity
orientation (see also Sec. II), and |SO(d)| = ∫

SO(d) dR the
volume of the group of rotations in Eq. (35). Now we
can apply the iterated kinematic formula and subsequently
simplify the resulting expression by denoting the number of
ij ’s equal to α by Nα for 0 � j � n and k = ∑d−1

α=0 Nα is
the number of ij ’s unequal to d. Also we define the scalar
(one-body) weighted densities,

ñi = i!κi

d!κd

M∑
s=1

vi

(
B(0)

s

)
ρ̄s

(note that ñd = η is the packing fraction), which are
normalized in a manner that differs from the nA from FMT
for d = 3. With these definitions, the direct correlation
function (35) becomes

c(R1,R2) = −
∞∑

n′=0

d∑
i0=0

i0!κi0 vi0 (B1∩2)

×
∑

N0,N1, . . . ,Nd−1 � 0
dN0 + (d − 1)N1 + · · · + 1Nd−1 = i0

ñ
N0
0 ñ

N1
1 · · · ñNd−1

d−1

×
∑
Nd�0

δN0+···+Nd,n′
n′!

N0!N1! · · · Nd !
ηNd

= −
d∑

i0=0

vi0 (B1∩2)
i0∑

k=0

c
[k]
i0

(ñ0, . . . ,ñd−1) χk+2(η),

(38)

where we used that the number of combinations of ij for
0 � i � n′ that lead to the same Nα factors ñα for 0 � α � d

is given by n′!/(N0! · · · Nd !) and we defined

c
[k]
i0

= i0!κi0

∑
N0,N1, . . . ,Nd−1 � 0

N0 + N1 + · · · + Nd−1 = k

dN0 + (d − 1)N1 + · · · + 1Nd−1 = i0

ñ
N0
0

N0!
· · · ñ

Nd−1
d−1

Nd−1!
.

Note that the latter sum contains only very few terms for low
d (at most one for d = 2,3).

Now we will compare to available expressions from differ-
ent theories and simulation results for the direct correlation
function to assess the accuracy of the functional. The virial
series up to first order in density for general shapes and general
d reads

cexact(R1,R2) = fM (R1,R2) + + · · · ,
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where denotes

fM (R1,R2)
∫
V

dR3 ρ(R3) fM (R2,R3)fM (R3,R1).

We see that the lowest order is satisfied by the FMMT approx-
imation for c(R1,R2) as fM (R1,R2) = −χ (B(R1) ∩ B(R2))
and c

[0]
0 = 1. In order to consider the first order in density,

we have to connect the integrals in to geometry. It is

relatively easy to see (e.g., Ref. [46] and Eq. (46) in Ref. [45])
that B(Ri) − RB(0)

s is the region excluded for the center of
RB(0)

s by B(Ri), where A − B = {a − b | a ∈ A and b ∈ B}
for two bodies A and B. Therefore, the positional integral in

− , whose integrand is nonzero if R3B(0)
s + r3 overlaps

with both B(R1) and B(R2), can be written as the volume of
(B(R1) − R3B(0)

s ) ∩ (B(R2) − R3B(0)
s ) [47]. The geometry of

this region differs from the excluded region ofR3B(0)
s andB1∩2,

which is the corresponding result from FMMT, due to lost
cases. As a result, no amount of rescaling can fix this difference
once and for all for general (mixtures of) shapes. Nevertheless,
for particular shapes (see Sec. VII C), the difference may be
small or indeed zero.

In order to make this difference in geometries more explicit
and examine effects of higher densities, we turn to the
bulk hard sphere fluid and compare to the Percus-Yevick
(PY) direct correlation function [48]. The FMMT c(R1,R2)
was calculated using Eq. (38) and the intrinsic volumes
vi(B1∩2) of the intersection of two spheres using Eq. (37) and
vi(B1∩2) = limε→0 vi((B1∩2)ε), see Eq. (25) for the definition
of the parallel body (·)ε and Refs. [16,17] for a similar
procedure. For hard spheres, all vi(B1∩2) are polynomials in
the distance r between the centers of B(R1) and B(R2) except
for v1(B1∩2), which is proportional to the mean half width or
the integrated mean curvature and contains a term proportional
to arcsin(r/σ )

√
σ − r2, where σ is the hard sphere diameter.

However, the first-order exact contribution − is the volume

of the intersection between two spheres with diameter 2σ

at a center-to-center distance r , which is a polynomial in r

only. So we again see that rescaling will not make the FMMT
and exact first-order contributions in c(r,η) agree for all r

and η. Nevertheless, the difference between the exact and the
FMMT approach might still be numerically small in practice.
To access this difference, we compare the direct correlation
function from FMMT to the ones from PY and simulations in
Fig. 5. We see that the deviation of FMMT from the simulation
results [49] is larger than for PY; however, the FMMT direct
correlation function never performs more than an order of
magnitude worse than the PY c(R1,R2). We also show the
three direct correlation functions as a function of η at r = 0
(where lost cases do not contribute to the triangle diagram)

to show that the lost cases in are not the only cause for

the difference between the PY and FMMT predictions for
c(r,η).

We will now review the methods that have been used in the
literature to overcome these difficulties for hard spheres.

(a) (b)

FIG. 5. (Color online) (a) The direct correlation function from
FMMT, see Eq. (38), at 6η/π = 0.8 compared to the Percus-Yevick
c(r,η) (PY) and simulation results by Groot, Eerden, and Faber [49].
(b) The behavior of the FMMT direct correlation function with
varying η at r = 0, where lost cases do not contribute to first order
in η, is compared with the Percus-Yevick result. As the lost cases do
not contribute here, the first order in η of the FMMT c(r,η) is exact
(as is the first-order PY result).

C. Expansion and rescaling

First, the equation of state (EOS) for the homogeneous
fluid from the functional from Sec. VII is not very accurate.
Because of the neglected lost cases, the density expansion
of the FMT free energy is already inexact at the third virial
order. This is especially pronounced for thin rods, where a
significant contribution of the exact triangle diagram is due
to lost cases where the three particles are nearly coplanar and
the three regions of pairwise intersection are well separated.
This effect of lost cases becomes especially problematic in two
dimensions, where any FMT-like functional would incorrectly
predict a vanishing third virial coefficient for infinitely thin
needles. This same problem would also occur in a highly
ordered uniaxial nematic phase of biaxial platelets (when the
particle is very thin along one of its axes) [50]. On the other
hand, the FMMT functional for hard parallel cubes, which
is equal to Cuesta’s functional [20], is exact at the third
virial order because there are no lost cases for hard cubes.
In fact, this also holds independently of the edge lengths for
(mixtures of) other single-orientation parallelepipeds and their
d-dimensional generalizations with 2d facets, provided that
each facet of each species is perpendicular to one of d linearly
independent directions ui [51].

In Ref. [4], as well as in the original derivation of FMT by
Rosenfeld [3], the �

[3]
3 term in the functional for hard spheres

was rescaled to obtain the exact third virial coefficient. For
anisotropic particles, the prefactor of �

[3]
3 is either kept equal

to that of spheres [11] or it is modified [14] such that the correct
third virial coefficient for anisotropic particles is obtained
(the third virial coefficient has to be calculated numerically
in general).

Second, the generalized weighted densities n
[k]
0 contain k

integrals over the particles’ coordinates, such that calculating
these directly is computationally involved for k > 1 and d > 2
[52]. An efficient functional can be obtained if the generalized
weighted densities for k � 2 are expanded in products of k

single-particle weight functions. Using a similar calculation
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FIG. 6. (Color online) The geometrical consideration behind the
approximation (39) for the third term in the three-dimensional FMT
functional.

as Wertheim’s deconvolution of the Mayer bond [26], the
n[2] weighted density in three dimensions can be expanded
in either tensor weighted densities (that is, weighted densities
that transform as tensors under a rotation of the basis vectors)
or weighted densities that transform as the spherical harmonics
under a rotation of the basis vectors.

For the kernel of the third term, Q
[3]
3 , Tarazona and

Rosenfeld’s approximation [4] for hard spheres can be
reinterpreted as the geometrical approximation shown in
Fig. 6. In this approximation, we first write the area of the
spherical triangle spanned by three normal vectors ni at a point
p on a triple surface intersection as three times the volume
of the corresponding section of a unit ball. Subsequently,
we replace the volume of this section of the unit ball by
the volume of a tetrahedron that has the normal vectors as
three of its edges, 1

6 |n1 · (n2×n3)|. The final form for the
approximation then reads σ2(N+(Stn,p)) 
 1

2 |n1 · (n2×n3)|,
such that the kernel becomes

Q
[3]
3 
 1

48π
[n1 · (n2×n3)]2 (39)

for general shapes. This approximation is exact in the limit
that the density profile goes to a single infinitely sharp peak
centered around some position and orientation.

Approximations for n[k] have to be formulated with some
care, because otherwise some of the important properties of
the generalized weight function might be lost. For instance,
the exact Q

[k]
d for k � 2 vanishes if one of the particles i is

moved on top of another particle j , limRi→Rj
Q

[k]
d (Rk,r) = 0,

due to the prefactor [n1, . . . ,nk] and, at least for k = d = 3, it
is important [4,5] that the approximation for Q

[3]
3 also vanishes

in this limit. Failing to take this condition into account causes
a negative divergence in the zero-dimensional limit for hard
spheres [10] and causes the crystal to be unstable with respect
to the fluid for the whole density range.

After the expansion was performed for hard spheres, the
third term in the functional for d = 3 was rescaled to obtain the
correct third virial coefficient for hard spheres [4], which leads
to the PY equation of state (via the compressibility route). The
kernel Q

[3]
3 has also been modified by Tarazona [5] to obtain

the exact triangle diagram in the direct correlation function for
the homogeneous fluid of hard spheres. The latter calculation
results, without further modifications, in the Percus-Yevick
direct correlation function for spheres [48].

Finally, we have made approximations beyond just neglect-
ing the lost cases: We ignored all Ree-Hoover diagrams other
than (∅)n. These can be taken into account approximately

for the homogeneous fluid by adapting the functional to fit
some EOS, which is then an input for the theory rather than
a result. The modifications proposed by Roth et al. [6,7],
multiplying each term �

[k]
d by a certain function of nd (r)

only, lead to the so-called White Bear II functional, which
is still accurate for the crystal and results by construction in
the highly accurate Carnahan Starling equation of state for
the homogeneous fluid of spheres. Note that semiempirical
modifications that improve the EOS of the fluid for specific
shapes do not necessarily improve the results for strongly
inhomogeneous and/or anisotropic density profiles and that
the White Bear II functional is only accurate for moderately
nonspherical shapes even in the homogeneous case [47,53].

VIII. SUMMARY AND DISCUSSION

We have derived a density functional from an approximated
and resummed virial expansion for hard particles with arbitrary
convex shapes in 1 � d � 3 dimensions. While all Mayer
diagrams were considered, we approximated each diagram
by neglecting those configurations for which the intersection
between all particles was empty. This is the only approxima-
tion in our derivation. All approximated n-particle diagrams
become proportional to the same integral, while the sum of
the prefactors could be obtained by comparing to Ree and
Hoover’s resummation of the Mayer diagrams [25]. Using
the geometry of the n-particle intersection, we wrote the
approximated Mayer diagrams in terms of generalized, k-body
weight functions and resummed the series to a closed form
containing d terms in 1 � d � 3 spatial dimensions. The re-
sulting functional equals the fundamental measure functional
(0D-FMT) that was earlier derived from consideration of an
extremely confined geometry (the “zero-dimensional limit”),
which tells us that the virial series is actually contained,
in an approximate sense, in the previously proposed FMT
functionals.

The geometric formulation of the resulting functional has
the advantage whereby results from integral geometry can be
directly transfered to 0D-FMT, which we used to calculate
the direct correlation function for constant densities. We
showed that the direct correlation function thus obtained has a
different geometrical origin than the exact virial expansion for
general shapes already at the ∝ρ term. A similar fundamental
difference in form is also found when comparing the 0D-FMT
result to the established PY result for hard spheres at finite
density, although, in practice, the accuracy of 0D-FMT turns
out to be mostly comparable to that of PY for the direct
correlation function at high densities.

The generalized weight functions in 0D-FMT contain inte-
grals over the coordinates of 1 � k � d particles. To simplify
the generalized weight functions, they can be expanded into
one-body weight functions. We briefly reviewed the possibili-
ties to perform this expansion as proposed in Refs. [4,5,11,26]
and reiterated the conditions for this expansion to yield a
functional for a given d that correctly reduces to the functional
for d ′ < d when applied to a system under strong confine-
ment. Correct behavior under such dimensional reduction has
turned out to be important for the crystal of hard spheres
[5,10].

042131-12



DERIVING FUNDAMENTAL MEASURE THEORY FROM THE . . . PHYSICAL REVIEW E 90, 042131 (2014)

The success of FMT for spheres is perhaps unexpected
considering the severity of our approximation and the ones that
were made afterwards [4,5]. The effect of our approximation
becomes more clear if Ree and Hoover’s resummation of the
Mayer diagrams into a sum of other types of diagrams [25] is
considered. We showed that neglecting all configurations with
an empty Stn in the n-particle Mayer diagrams is equivalent
to the following two approximations on the Ree-Hoover
diagrams: First, we neglect all n-particle Ree-Hoover diagrams
but (∅)n, the Ree-Hoover diagram where each particle is
required to overlap with all other particles. Subsequently,
the (∅)n diagram is approximated by neglecting the “lost
cases” [4], which are configurations for which each particle
overlaps with all other particles, but there is no common region
of overlap (Stn = ∅). The former approximation would lead
to an overestimation of the free energy, at least for the bulk
fluid of hard spheres [25,31], as the neglected eRH -bonded
Ree-Hoover diagrams sum up to a net negative contribution.
The latter approximation, neglecting the lost cases, leads to
an underestimation of the (∅)n diagram [both the exact and
approximated (∅)n diagrams are positive if the combinatorial
prefactors are included] even after rescaling to obtain the
correct third-order diagram; therefore, the approximation
lowers the free energy. The effect of these two approximations
cancels partially for hard spheres and probably also for other
shapes, which might explain FMT’s success. As mentioned in
Sec. VII C, particles like hard cubes have no lost cases, such
that no partial cancellation occurs. Nevertheless, the phase
behavior of hard parallel cubes is described reasonably well
by Cuesta and Martı́nez-Ratón’s FMT functional [54,55].

We note that our functional for d = 1 agrees with the
exact functional for inhomogeneous hard-rod mixtures that
was derived by Vanderlick, Davis, and Percus [56]. In d = 1 di-
mensions, there are no lost cases for hard rods [57], so the (∅n)
diagram is exactly contained in our functional. Therefore, we
have proven that only the (∅n) Ree-Hoover diagrams contribute
for hard rods for d = 1 for any density profile, which was
shown before for homogeneous systems and conjectured to be
true for inhomogeneous density profiles [25]. As mentioned
before, the success of a functional for crystallization is highly
dependent on the behavior under dimensional reduction. As
our functional and the other modern FMT functionals for d > 1
by construction reduce to the d = 1 case under confinement
in the narrowest possible (straight) channel, this might also
explain some of the successes of the functional.

Finally, one of the requirements that allowed Rosenfeld to
derive FMT is that FMT obeys the scaled particle relation, i.e.,
the excess chemical potential for adding a large particle to the
mixture becomes equal to work against pressure required to
clear a region of the size of the particle in the limit when the
particle becomes macroscopically large. The version from the
zero-dimensional limit and the other versions of FMT exhibit
the correct scaled particle limit, which probably also adds to
the accuracy of the functional.

Now we are able to discuss possible improvements beyond
the current functional. The first and most obvious improvement
would be to include the “lost cases.” Wertheim has shown
how , the lowest-order Mayer diagram that suffers from
lost cases, can be written in terms of two-center weighted

FIG. 7. (Color online) The next diagrams in the Ree-Hoover
resummation if the diagrams are added in order of increasing number
of eRH bonds (dashed lines) or, equivalently, decreasing number of
fM bonds (solid lines). The sign and combinatorial prefactor [25] are
contained in the diagram.

densities, that is, generalized weighted densities that depend on
two positions. Future improvements should probably include
these two-center weighted densities, as the lost cases cannot
be recovered for a general density profile if only one-center
weighted densities are used.

Second, other Ree-Hoover diagrams might be added to
the functional and (after suitable approximation) be written
in terms of two-center weighted densities. For hard spheres,
for example, Ree and Hoover [31] noted that the n-particle
diagrams in the virial expansion for the homogeneous fluid
could be approximated reasonably well for n � 7 by including
only the (∅)n diagram and the diagram with two eRH bonds,
see Fig. 7. After suitable labeling, the integrand in the latter
diagram is nonzero if all pairs overlap except (1,3) and (2,4).
In Ref. [39], several functionals containing multiple-center
weighted densities are derived from the Ree-Hoover diagrams.

Finally, we could consider adding the Mayer ring diagrams,
in which each particle i is only connected by a Mayer bond
to two other particles, for example, and are the ring
diagrams with three and four particles, respectively. Due to the
loose connectivity, this diagram can be evaluated with relative
ease for the homogeneous fluid [58] and can be expressed
in terms of Wertheim’s two-center weighted densities [26]. It
would be interesting to consider replacing our approximations
for the ring diagrams (and similar loosely connected diagrams)
by their exact values and see if this leads to an improvement
of the functional.
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APPENDIX: INTERSECTIONS OF δ SHELLS

In this section, we will derive Eq. (26), which is a
generalization of the results for k = 2 [11] and k = 3 [22]

042131-13



MATTHIEU MARECHAL, STEPHAN KORDEN, AND KLAUS MECKE PHYSICAL REVIEW E 90, 042131 (2014)

in d = 3 dimensions. Consider the parallel body of the
intersection between k surfaces ∂Bi , (�k)ε ≡ (∂B1 ∩ · · · ∩
∂Bk)ε and let N (p) be the k-dimensional subspace spanned
by the normal vectors of the intersecting surface at p. The
integrand on the right-hand side of Eq. (26) is zero if r �∈
(�k)ε for some ε, such that the right-hand side of Eq. (26)
becomes ∫

(�k )ε

dr h(r)
k∏

i=1

wd−1(Bi ,r),

where h(r) = f (r)[n1, . . . ,nk]. Also, if ε is small enough, we
can locally approximate (�k)ε as the parallel body of a flat d −
k-dimensional plane, which allows us to approximate (�k)ε
as {p + x|p ∈ �k, x ∈ Eε(p)}, where Eε(p) consists of those
elements r of N (p) such that |r| < ε. With this approximation
(which is exact in the limit ε → 0), we can write the right-hand

side of Eq. (26) as

lim
ε→0

∫
�k

dd−kp
∫
Eε (p)

dx h(p + x)
k∏

i=1

δ(x · ni(p)),

where we locally approximated �k as the intersection of k

flat surfaces with normal vectors ni(p). Now we parametrize
x = ∑k

i=1 xieN
i , where the eN

i form an orthonormal basis of
N (p) and perform the variable transformation (x1, . . . ,xk) →
t, where ti = x · ni(p) is the argument of the ith δ function in
the expression above for 1 � i � k. The Jacobian matrix of
the inverse transformation t → (x1, . . . ,xk) has components
Mij = ∂ti/∂xj = ni(p) · eN

j , such that the Jacobian determi-
nant of (x1, . . . ,xk) → t equals 1/|det(M)| = 1/[n1, . . . ,nk].
After performing the variable substitution (x1, . . . ,xk) → t
and the integrals over the ti , we obtain the left-hand side of
Eq. (26), which completes the proof.
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[36] M. Moszyńska, Selected Topics in Convex Geometry
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