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Approach to approximating the pair distribution function of inhomogeneous hard-sphere fluids
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We introduce an approximation for the pair distribution function of the inhomogeneous hard sphere fluid. Our
approximation makes use of our recently published averaged pair distribution function at contact, which has
been shown to accurately reproduce the averaged pair distribution function at contact for inhomogeneous density
distributions. This approach achieves greater computational efficiency than previous approaches by enabling the
use of exclusively fixed-kernel convolutions and thus allowing an implementation using fast Fourier transforms.
We compare results for our pair distribution approximation with two previously published works and Monte
Carlo simulation, showing favorable results.
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I. INTRODUCTION

The standard approach in liquid state theory is to model a
liquid as a hard-sphere reference fluid with attractive interac-
tions that are treated perturbatively [1]. Recent advances have
extended these perturbative approaches to inhomogeneous
density distributions, that is, liquid interfaces, through the
use of classical density functional theory (DFT), in which
the grand free energy is found by minimizing a free-energy
functional of the density [2–10]. The perturbation theory
treatment of intermolecular interactions relies on the pair
distribution function of the reference fluid: g

(2)
HS(r1,r2). Unlike

the radial distribution function of a homogeneous fluid, there
does not currently exist a tractable form for the pair distribution
function of an inhomogeneous hard-sphere fluid suitable for
use in constructing a density functional [2,3].

At its core, thermodynamic perturbation theory (TPT),
sometimes referred to as the high-temperature expansion, is an
expansion of the free energy in powers of a small parameter,
which is the product of a pairwise attractive interaction with
the inverse temperature β:

F = F0 + F1 + βF2 + O(β2), (1)

where the terms Fn are corrections to the free energy of order
n in the small interaction. The first and largest term in this
expansion is

F1[n(r)] = 1

2

∫∫
g

(2)
HS(r1,r2)n(r1)n(r2)�(|r1 − r2|)dr1 dr2,

(2)

where g
(2)
HS(r1,r2) is the pair distribution function of the

hard-sphere reference fluid, and �(r) is the pair potential.
Formally, this requires the pair distribution function as a
functional of the density n(r). In Sec. II we introduce existing
theoretical approaches for computing g

(2)
HS(r1,r2) given the

external potential felt by the hard spheres. In Sec. III we
introduce existing approximations for the hard-sphere pair
distribution that are expressed as a functional of the density
distribution n(r), which is a form that is more directly useful
in the construction of classical density functionals, which are
themselves expressed as a functional of the density.

In this paper, we introduce a new contact value approach
(CVA) to approximating the hard-sphere pair distribution
function which is suitable for use in the creation of classical

density functionals based on thermodynamic perturbation
theory. The resulting function is based on a fit to the radial
distribution function that is separable in a way that enables
efficient evaluation of the integral in Eq. (2).

II. PAIR DISTRIBUTION FROM THE
EXTERNAL POTENTIAL

Given the external potential V (r) felt by a hard-sphere
fluid, several approaches have been used to compute the
pair distribution function. We review these approaches here.
The classic (and earliest) approach for computing the pair
distribution function given the external potential is Percus’s
trick of treating one sphere as an additional contribution to the
external potential and to find the pair distribution function from
the resultant equilibrium density [1]. This elegant approach
lends itself to computation using DFT, and can be used to
compute and plot the pair distribution function, but requires a
full free-energy minimization for each position r1 in g(2)(r1,r2)
and hence would be prohibitively expensive as a tool in
constructing a free-energy functional.

The canonical inhomogeneous configuration for the hard-
sphere fluid is the system consisting of a hard sphere at a
hard wall. In 1986 Plischke and Henderson solved the pair
distribution function of this system using integral equation
theory under the Percus-Yevick approximation [11]. Lado
recently introduced a new and more efficient algorithm for
implementing integral equation theory for inhomogeneous
fluids, which computes g(2)(r1,r2) [12]. While this approach
is two orders of magnitude more efficient than previous
implementations, it remains a computationally expensive
approach and unsuitable for repeated evaluation within a
free-energy minimization as required by DFT.

Another inhomogeneous configuration that is of interest
is the test-particle configuration, in which one hard sphere
is fixed. Where the hard-wall is a surface with no curvature,
the test-particle configuration has a surface with curvature
at the molecular length scale. In this case, the density gives
the radial distribution function (this is just Percus’s trick),
and the pair distribution function of this inhomogeneous test-
particle system gives the triplet distribution function of the
homogeneous fluid. The triplet distribution function of the
homogeneous fluid has been computed by González et al.
using the test-particle approach with two spheres fixed [13].

1539-3755/2014/90(4)/042130(7) 042130-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.042130


PAHO LURIE-GREGG, JEFF B. SCHULTE, AND DAVID ROUNDY PHYSICAL REVIEW E 90, 042130 (2014)

III. PAIR DISTRIBUTION FROM THE DENSITY

The alternative to specifying the external potential is
to specify the density distribution n(r). One may move
between these representations by either computing the external
potential corresponding to a given density of hard spheres by
taking a functional derivative of the hard-sphere free-energy
functional or by minimizing the free energy given an external
potential. However, in general it is simplest to use an approach
that makes use of the natural variables, which in the case of
classical density functional theory is the density.

The most direct and rigorous approach to find the pair
distribution function given the density is to take a second
functional derivative of the hard-sphere free energy to find the
direct correlation function. One can then solve the Ornstein-
Zernike equation numerically to find the pair distribution
function. This approach was used by Götzelmann et al. to solve
for the pair distribution function near a hard wall using an early
hard-sphere free-energy functional [14]. While this approach
is rigorous, solving the inhomogeneous Ornstein-Zernike
equation remains computationally challenging, although more
efficient approximate algorithms have been developed [15].
This approach, while appealing, remains unsuitable for use
in the construction of a classical density functional due to its
significant computational cost.

In addition to the above exact approach, there are a
number of analytic approximations for the inhomogeneous
pair distribution function, which extend the radial distribution
function to inhomogeneous scenarios. These approximations
differ both in what density to use when evaluating the radial
distribution function g(r; n) and in how to combine the radial
distribution function evaluated at these densities [16].

Early approximations to the pair distribution function used
the density at one or two positions to determine the pair
distribution function. There are three common approaches:

g(2)(r1,r2) ≈ g

(
r12; n

(
r1 + r2

2

) )
midpoint, (3)

g(2)(r1,r2) ≈ g

(
r12;

n(r1) + n(r2)

2

)
mean density, (4)

g(2)(r1,r2) ≈ g(r12; n(r1)) + g(r12; n(r2))
2

mean function.

(5)

These approaches have been successfully and widely used in
treating the surface tension of simple fluids [17–25]. The mean
density approximation has also been quoted (as a goal) by re-
cent papers that proceed to make further approximations [3,4].
However, these approximations fail dramatically when applied
to strongly inhomogeneous systems such as a dense fluid at
a solid surface. Such systems exhibit a strongly oscillatory
density distribution, with density peaks that can have local
packing fractions greater than unity, which cannot occur in the
bulk reference system that defines g(r; n). The above papers
restrict themselves to the liquid-vapor interface, which does
not exhibit this pathology.

Nonpathological approaches use an average of the density
over some volume. Fischer and Methfessel introduce the

approximation [26,27]

g(2)(r1,r2) ≈ g
(
r12; n3

(
1
2 [r1 + r2

)
]
)
, (6)

where n3 is an integral of the density over a spherical volume
that is now used as one of the fundamental measures in
Fundamental Measure Theory (FMT) [28]:

n3(r) =
∫

n(r′)�
(

1
2σ − |r − r′|) dr′. (7)

Equation (6) is computationally awkward because it treats
as special the midpoint 1

2 (r1 + r2). Moreover, the approach
of Fischer and Methfessel is intended to approximate the
pair distribution function only at contact, when the distance
between r1 and r2 is the hard-sphere diameter. Tang et al.
employed an approximation for the pair distribution function
that is similar to that of Fischer and Methfessel, but with a
self-consistent weighted density computed with a weighting
function that is itself dependent on the weighted density [29].
This weighted density was computed using the hard-sphere
weighted density of Tarazona, which was developed using the
direct correlation function of the homogeneous hard-sphere
fluid [30].

Sokolowski and Fischer addressed the shortcomings of the
theory of Fischer and Methfessel by modifying this approach
to use density averages centered on the two points r1 and r2:

g(2)(r1,r2) ≈ g
(
r12; 1

2 [n̄(r1) + n̄(r2)]
)
, (8)

where their averaged density n̄(r) given by

n̄(r) ≡ 3

4π (0.8σ )3

∫
n(r′)�(0.8σ − |r − r′|) dr′ (9)

is the density averaged over a sphere with diameter 0.8σ [31].
The value 0.8 in this formula was arrived at by fitting to Monte
Carlo simulation. Although Eq. (8) has the advantage of only
involving density averages at the points at which the pair
distribution function is desired, it remains sufficiently compu-
tationally cumbersome that it has been used in only two papers
studying the one-dimensional liquid vapor interface [32,33].
Because it cannot be written as a single-site convolution,
this approach is particularly computationally demanding when
applied to systems featuring inhomogeneity in more than one
dimension.

In a previous paper [34], we introduced a functional that
gives a good approximation for the pair distribution function
averaged over positions r2 that are in contact with r1, defined
as

gσ (r1) ≡
∫

g(2)(r1,r2)δ(σ − |r1 − r2|)n(r2) dr2

ñ(r1)
, (10)

where the weighted density ñ(r1) is defined by

ñ(r) ≡
∫

n(r′)δ(σ − |r − r′|) dr′. (11)

In Ref. [34] we use the contact-value theorem to derive the
exact formula:

gσ (r) = 1

2

1

kBT n(r)ñ(r)

δFHS

δσ (r)
, (12)
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where σ (r) is the diameter of hard spheres located at position
r, and FHS is the Helmholtz free energy of the hard-sphere
fluid. The functional derivative of the free energy with respect
to the hard-sphere diameter in Eq. (12) requires that we be able
to evaluate the change in free energy resulting from a change in
the diameter of specifically the hard spheres located at position
r. This somewhat unusual construction is mathematically
straightforward within FMT [28]. We employ the White
Bear variation of the FMT free-energy functional [35], which
provides an excellent approximation for this averaged value
of the pair distribution function at contact for a variety of
interfaces and over a wide range of densities.

IV. CONTACT VALUE APPROACH

In the approaches for the pair distribution function men-
tioned above, the radial distribution function used in the
approximation was dependent upon the density averaged over
some volume. We seek to achieve greater accuracy by making
use of a function dependent upon our averaged gσ (r) discussed
above, which holds more information about an inhomogeneous
system than does a simple convolution of the density. We
construct the CVA with the average of two radial distribution
functions, evaluated at the distance between the two points,
that are themselves functions of the averaged pair distribution
function at contact gσ (r) evaluated at the two points:

g(2)(r1,r2) = g(r12; gσ (r1)) + g(r12; gσ (r2))
2

. (13)

This CVA for g(2)(r1,r2) is constructed to reproduce the exact
value for the integral:

F contact
1 =1

2

∫∫
g

(2)
HS(r1,r2)n(r1)n(r2)δ(|r1 − r2| − σ )

× dr1 dr2, (14)

which is the mean-field correction to the free energy [see
Eq. (2)] for a purely contact interaction.

The CVA requires the radial distribution function expressed
as a function of r and gσ . We construct a functional form for
g(r,gσ ) that allows for improved computational efficiency. We
introduce the general form that allows for this efficiency in
Sec. V, and we detail our specific approximation for g(r,gσ )
that uses this general form in Sec. VI.

V. MAKING THE CVA EFFICIENT

The existing approaches to approximating the pair distri-
bution function outlined in Sec. III have not been widely
used in the construction of density functionals based on
thermodynamic perturbation theory, largely due to their
computational complexity. While our CVA provides only an
incremental improvement in accuracy, its construction enables
significant gains in computational efficiency, allowing for
practical application in density functionals. We achieve this
gain by developing a separable fit to the radial distribution
function of the hard-sphere fluid (see Sec. VI for details). This
separable fit is of the form

g(r; gσ ) =
∑

i

ai(r)bi(gσ ), (15)

where the notable aspect is that the radial distribution function
is written as a sum of terms that are each a simple product of a
function of radius with a function of gσ . This enables us to write
integrals, such as Eq. (2), that are linear in the pair distribution
function as a summation of fixed-kernel convolutions, which
may be efficiently computed using fast Fourier transforms
(FFTs).

Computation of the free-energy correction from Eq. (2)
for a periodic system by direct integration requires a nested
integration over the volume of the system Vcell and the volume
over which the interaction is nonzero V�. Thus the cost of
computation scales as O(VcellV�

�V 2 ) where �V is the volume
resolution of the computational grid. Direct integration is the
most efficient algorithm when using the existing functionals
for g(2)(r1,r2) described in Sec. III. The one exception is
the “mean-function” approximation [Eq. (5)], which could in
principle be made more efficient using the same technique we
describe here. Because the CVA allows the integral in Eq. (2)
to be written as a sum of fixed-kernel convolutions, it can be
computed without a nested integral, at the cost of performing
a few FFTs. This approach scales as O(Vcell

�V
log Vcell

�V
), as do
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FIG. 1. (Color online) Plot of the hard-sphere radial distribution
function of the homogeneous fluid at several values for packing
fraction η. The blue lines show our separable fit, the black dots
show the true radial distribution function g(r) as found from Monte
Carlo simulation, and the dashed lines are results of the Gil-Villegas
fit [36]. The dotted extension of each fitted curve indicates the value
of the function outside of the fitted region.
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TABLE I. The fitted κij matrix.

κ =

⎛
⎜⎜⎝

−1.754 0.027 0.838 −0.178
−2.243 4.403 −2.48 0.363

0.207 0.712 −1.952 1.046
−0.002 −0.164 0.324 −0.162

⎞
⎟⎟⎠

most widely used DFT functionals such as FMT [28,35]. With
this scaling, when examining systems with long interaction
distances or high resolution, which is often necessary when
working with hard-sphere functionals, the CVA has the
potential to be far more efficient than existing methods.

To see how we obtain this improved scaling, we examine
the lowest-order correction in TPT, given by Eq. (2). The two
terms that are averaged in Eq. (13) give equal contributions to
the integral

F CVA
1 = 1

2

∫∫
g(r12; gσ (r2))n(r1)n(r2)�(|r1 − r2|) dr1 dr2.

(16)

When we introduce the separable form for g(r12; gσ ) we can
further simplify this integral as

F CVA
1 =

∑
i

1

2

∫
n(r1)

∫
ai(r12)�(r12)bi[gσ (r2)]n(r2) dr2 dr1,

(17)

where the functional is written as a summation of integrals of
simple convolutions in three dimensions. Thus, each of these
integrals may be computed in O(N log N ) time, where N is
the number of grid points in the computational cell. This is
the same scaling as is required to compute the fundamental
measures such as n3 which are used in FMT.

VI. A SEPARABLE FIT FOR THE RADIAL
DISTRIBUTION FUNCTION

Having settled on the basic structure of our function, we
further refine it by performing a separable fit to the radial
distribution function from Monte Carlo simulation. We focus
our fit on the range of distances r12 � 4R. This range is
relevant to the widely used [37–39] Statistical Associating
Fluid Theory of Variable Range (SAFT-VR) free energy with
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FIG. 2. (Color online) The pair distribution function near a hard wall, with packing fractions of 0.1 and 0.3 and r1 in contact with the hard
wall. On the left are two-dimensional (2D) plots of g(2)(r1,r2) as r2 varies. The top halves of these figures show the results of Monte Carlo
simulations, while the bottom halves show the CVA, truncated beyond the range of the fit. On the right are plots of g(2)(r1,r2) on the paths
illustrated in the figures to the left. These plots compare the CVA (blue solid line), Monte Carlo results (black circles), the results of Sokolowski
and Fischer (red dashed line) [31], and those of Fischer and Methfessel (green dot-dashed line) [26]. The latter is plotted only at contact, where
it is defined.
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square-well dispersive attraction developed by Gil-Villegas
et al. [36]. Although we consider this range of radii particularly
interesting, this is not a fundamental limit of the approach, as
one could readily extend the fit to larger radii by including
additional fitting parameters. For comparison, in Fig. 1 we plot
our fit, Monte Carlo data, and the radial distribution function
of Gil-Villegas et al., which we have extracted from their
approximation for the first term in the dispersion free energy
given by Eq. (2).

For ease of implementation and future extension to larger
radii, we fit the radial distribution function using a fourth-
order polynomial. We constrain our functional form such that
g(r; gσ ) reduces to gσ at contact and approaches g(r) = 1 in
the low-density limit. Incorporating these constraints we have
the functional form

g(r; gσ ) = gσ +
4∑

i=1

4∑
j=1

κij (gσ − 1)i
(

r

σ
− 1

)j

, (18)

where the matrix κij is determined from a least-squares fit to
Monte Carlo data for the radial distribution function, over the
range 2R � r � 4R, and for packing fractions η � 0.45. The
resulting parameters are displayed in Table I. The maximum

error in g(r) within this range is 0.2, which occurs at η = 0.45
and r = 3.7R. Figure 1 displays our approximation at just
under half of the densities that were included in the fit.

VII. RESULTS

A. Pair distribution function

We begin by examining the pair distribution function near
a hard wall, with a focus on the case where one of the
two spheres is in contact with the hard wall. Figures 2(a)
and 2(c) compare the results of the CVA with Monte Carlo
simulations at packing fractions of 0.1 and 0.3, respectively.
We see reasonable agreement at the lower density, with a flatter
angular dependence when the two spheres are in contact. At the
higher density, we see significant structure developing in the
simulation results that is not reflected in our approximation.

Figures 2(b) and 2(d) show the pair distribution function
as plotted along paths illustrated in Figs. 2(a) and 2(c). These
plots compare the CVA with Monte Carlo results, as well as
the approximations of Sokolowski and Fischer [31] and of
Fischer and Methfessel [26] at the same packing fractions of
0.1 and 0.3. The approach of Fischer and Methfessel is defined
only when the two spheres are in contact and is therefore only
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FIG. 3. (Color online) The triplet distribution function g(3)(r1,r2,r3) at packing fraction 0.3, plotted when r1 and r2 are in contact (a, b)
and when r1 and r2 are separated by a distance 2.1σ (c, d). On the left are 2D plots of g(3)(r1,r2,r3) as r3 varies. The top halves of these figures
show the results of Monte Carlo simulations, while the bottom halves show the CVA, truncated beyond the range of the fit. On the right are
plots of g(3)(r1,r2,r3) on the paths illustrated in the figures to the left. We also plot these curves along a left-right mirror image of this path. The
data for the right-hand paths (as shown in the 2D images) are marked with right-pointing triangles, while the left-hand paths are marked with
left-pointing triangles.
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plotted on that segment of the path. As an input to the previous
approximations we use the hard sphere radial distribution
function found with Monte Carlo simulation, interpolated as
necessary. We find that both previous approximations to the
pair distribution function predict stronger angular dependence
of the pair distribution function at contact than this work.
The previous approximations each have a systematic error at
contact, either too high or too low. In contrast, our errors at
contact have a tendency to cancel when used in a perturbation
expansion. At higher densities, the approximation of Fischer
and Methfessel requires evaluating the radial distribution
function at densities significantly higher than the freezing
density, which poses numerical difficulties when using the
radial distribution function from simulation. When the two
points r1 and r2 are both more than a radius away from
contact, we find that any of these approaches gives a reasonable
prediction.

B. Triplet distribution function

Just as the radial distribution function of a homogeneous
fluid may be computed from the density of an inhomogeneous
one using Percus’s test-particle trick, the triplet distribution
function of a homogeneous system can be computed using an
approximation of the pair distribution for an inhomogeneous
fluid, such as we have developed. The triplet distribution
function of a homogeneous fluid with density n is given by

g(3)(r1,r2,r3) = nTP(r1)(r2)nTP(r1)(r3)

n2
g

(2)

TP(r1)
(r2,r3),

(19)

where the TP(r1) subscript indicates quantities computed for
the inhomogeneous density configuration in which one sphere
(the “test particle”) is fixed at position r1. This method treats
one of the three positions, the location of the test particle,
differently from the other two, which means that a poor
approximation to the pair distribution function may break the
symmetry between r1 and r2 which is present in the true triplet
distribution function.

Figures 3(a) and 3(c) compare the triplet distribution
function at a packing fraction of 0.3 computed using the CVA
with results from Monte Carlo simulations. In Fig. 3(a) the
spheres at r1 and r2 are in contact; in Fig. 3(c) they are spaced
so that a third sphere can just fit between them; and in both
figures r3 is varied. The test-particle position for the CVA in
each case is r1, which is on the left-hand side of the figure.
As before, we see reasonable agreement with simulation. Also,
the Monte Carlo results have the expected left-right symmetry,
while the CVA has a small asymmetry introduced with the test
particle due to errors in the pair distribution function.

Figures 3(b) and 3(d) show the triplet distribution function
as plotted along the paths illustrated in Figs. 3(a) and 3(c).
We also plot the results along a left-right mirror image
path, corresponding to swapping r1 and r2. The two mirror-
image paths are distinguished by arrows (triangles) along the
curves, with right-facing arrows indicating the paths shown
in Figs. 3(a) and 3(c), and left-facing arrows indicating the
mirror image path. As the work of Fischer and Methfessel is
only defined when r2 and r3 are in contact, we plot it only along
the central portion of the path, which is in contact with r2, and
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FIG. 4. (Color online) Plot of dF1
dz

near a hard wall, with arbitrary
vertical scale. (a) A sticky hard-sphere fluid defined by a pair
potential δ(σ − r + δ), where σ is the hard-sphere diameter and δ

is an infinitesimal distance; (b) a square well fluid defined by a pair
potential �(1.79σ − r).

arrows are omitted. All methods tested perform similarly over
their range of validity.

VIII. ACCURACY IN THERMODYNAMIC
PERTURBATION THEORY

A particularly relevant quantitative test of a pair distribution
function is how well it predicts the interaction energy due to
a pair potential. To this end, we have computed the error in
the first term in a high-temperature perturbation expansion F1

for two typical pair potentials. In order to focus on effects
at the interface, we have defined a position-dependent pair
interaction energy as

dF1

dz
= 1

2

∫
g

(2)
HS(r,r′)n(r)n(r′)�(|r − r′|) dr′ dx dy, (20)

which gives the contribution to the mean-field free energy due
to molecules located in a plane of fixed z.

We plot this quantity for two representative pair potentials
near a hard wall in Fig. 4. We have chosen to illustrate a δ

function interaction at contact (i.e., “sticky hard spheres”),
and a hard-core square-well fluid, with the length-scale of
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interaction taken from the optimal SAFT model for water
found by Clark et al. [8]. These pair potentials represent both a
very short-range interaction and a medium-range interaction.

Figure 4(a) shows the results for the sticky hard-sphere
fluid. The CVA is constructed to produce this result exactly,
provided the averaged pair distribution function at contact
from Ref. [34] is exact. As expected, we see excellent
agreement with the Monte Carlo simulation results, while
the approximations of Fischer and Sokolowski each show
deviations near the interface. Figure 4(b) shows the same
curve from Eq. (20) for the square-well fluid. In this case
both the CVA and Sokolowski’s approximation give excellent
agreement with simulation.

IX. CONCLUSION

We have introduced and tested the contact value ap-
proach for the pair distribution function g(2)(r1,r2) of the

inhomogeneous hard-sphere fluid. The pair distribution func-
tion plays a key role in thermodynamic perturbation theory,
which is widely used in the construction of classical density
functionals. The CVA, unlike existing approximations, is
suitable for use in classical density functionals based on
perturbation theory, as it may be efficiently computed using
exclusively fixed-kernel convolutions. We have tested this
function at a hard wall and near a single fixed hard sphere,
and find that it gives excellent agreement with simulation.
Tests of the pair distribution function in integrals that arise in
thermodynamic perturbation theory suggest that the CVA is
accurate for attractions up to the distance to which the radial
distribution function is fit and is a significant improvement over
existing approximations near contact. But most importantly,
the computational cost of using the CVA in a classical density
functional scales much more favorably than existing methods
in high-resolution computations.

[1] J. Hansen and I. McDonald, Theory of Simple Liquids (Elsevier
Science, London, 2006).

[2] S. Jain, A. Dominik, and W. G. Chapman, J. Chem. Phys. 127,
244904 (2007).

[3] G. J. Gloor, G. Jackson, F. Blas, E. M. Del Rio, and E. De
Miguel, J. Phys. Chem. C 111, 15513 (2007).

[4] J. Gross, J. Chem. Phys. 131, 204705 (2009).
[5] H. Kahl and J. Winkelmann, Fluid Phase Equilibria 270, 50

(2008).
[6] J. Hughes, E. J. Krebs, and D. Roundy, J. Chem. Phys. 138,

024509 (2013).
[7] P. Bryk, S. Sokołowski, and O. Pizio, J. Chem. Phys. 125,

024909 (2006).
[8] G. Clark, A. Haslam, A. Galindo, and G. Jackson, Mol. Phys.

104, 3561 (2006).
[9] R. Sundararaman, K. Letchworth-Weaver, and T. Arias, J. Chem.

Phys. 137, 044107 (2012).
[10] B. D. Marshall and W. G. Chapman, J. Chem. Phys. 138, 044901

(2013).
[11] M. Plischke and D. Henderson, Proc. R. Soc. Lond. A 404, 323

(1986).
[12] F. Lado, Mol. Phys. 107, 301 (2009).
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