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Thermodynamic bounds and general properties of optimal efficiency and power in linear responses
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We study the optimal exergy efficiency and power for thermodynamic systems with an Onsager-type “current-
force” relationship describing the linear response to external influences. We derive, in analytic forms, the
maximum efficiency and optimal efficiency for maximum power for a thermodynamic machine described by
a N × N symmetric Onsager matrix with arbitrary integer N . The figure of merit is expressed in terms of the
largest eigenvalue of the “coupling matrix” which is solely determined by the Onsager matrix. Some simple
but general relationships between the power and efficiency at the conditions for (i) maximum efficiency and
(ii) optimal efficiency for maximum power are obtained. We show how the second law of thermodynamics
bounds the optimal efficiency and the Onsager matrix and relate those bounds together. The maximum power
theorem (Jacobi’s Law) is generalized to all thermodynamic machines with a symmetric Onsager matrix in the
linear-response regime. We also discuss systems with an asymmetric Onsager matrix (such as systems under
magnetic field) for a particular situation and we show that the reversible limit of efficiency can be reached at
finite output power. Cooperative effects are found to improve the figure of merit significantly in systems with
multiply cross-correlated responses. Application to example systems demonstrates that the theory is helpful in
guiding the search for high performance materials and structures in energy researches.

DOI: 10.1103/PhysRevE.90.042126 PACS number(s): 05.70.Ln

I. INTRODUCTION

Under challenges imposed by increasing demand yet
limited availability of energy resources, improving energy
efficiency becomes increasingly important in technology
developments. Historically, Carnot deduced that for a heat
engine operating between two reservoirs with temperatures Th

and Tc (Th > Tc), the energy conversion efficiency, η = W/Q

(W is the output work and Q is the heat from the hot reservoir),
has a maximum value, namely, the Carnot efficiency, ηC =
(Th − Tc)/Th [1]. The Carnot efficiency is only for ideal
machines operating in the reversible limit. Energy efficiency
of realistic machines is reduced by unavoidable irreversible
entropy production. A way to count the reduction of energy
efficiency from the value at the reversible limit is to use the
exergy efficiency (or “second-law efficiency”) [2–7],

φ ≡ Ȧout

Ȧin
, (1)

where Ȧout and Ȧin are the output and input exergy (i.e.,
the Gibbs free energy) per unit time, respectively. Exergy is
defined asA = U − T S, where U is the enthalpy (i.e., the total
energy), T is the temperature, and S is the entropy. Although
the total energy is conserved, the output exergy is reduced by
entropy production, Ṡtot, as Ȧout = Ȧin − T Ṡtot; hence, φ � 1.
Both φ � 1 and η � ηC are dictated by the second law of
thermodynamics. In fact, for a thermoelectric engine or a
refrigerator the two are related by [2,5,6,8,9]

φ = η

ηC

. (2)

For this reason, exergy efficiency is also called as “rational
efficiency” [5]. Using Onsager’s theory of irreversible ther-
modynamics and the exergy efficiency, the study of efficiency

*jianhua.jiang.phys@gmail.com

of heat engines, chemical engines, and other energy devices
can be presented in a uniform manner [2–9]. Specifically, the
efficiency of chemical engines, the output work divided by
the chemical work, is precisely Eq. (1), as the output work
is equal to the output exergy and the input chemical work
is equal to the input (consumed) exergy [3,8,9]. The exergy
efficiency becomes particularly convenient for machines with
multiple forms of input (or output) energy [7]. For example, in
a spin-thermoelectric [10] refrigerator, both electrical energy
and magnetic energy are consumed to drive the cooling (see
Sec. VI B).

A central issue in energy application is to find out the
optimal efficiency and maximum power of a machine and the
conditions that realize them [11–13]. For example, Ioffe de-
rived the optimal exergy efficiency for isotropic thermoelectric
materials in the linear-response regime as [14]

ηmax = ηC

√
ξ + 1 − 1√
ξ + 1 + 1

, ξ = σS2T

κ
. (3)

The figure of merit, ξ , is solely determined by the transport
coefficients of the material: the electrical conductivity σ , the
Seebeck coefficient S, and the thermal conductivity κ . This
property is an important guiding principle in the search of
high performance thermoelectric materials [15–17].

However, Eq. (3) was derived for isotropic systems, where,
by choosing a proper set of coordinate axes, the problem can
be reduced to correlated transport for two scalar currents: one
heat current and one electric current. Quite often in anisotropic
materials, the complete description of thermoelectric transport
must involve six scalar currents as both the electric and the
heat currents consist of three scalar components [e.g., the
electrical current �j = (jx, jy, jz) with jx , jy , and jz being
the components in the x, y, and z directions, respectively]
[15,18]. For piezoelectric energy conversion in an anisotropic
material, the full description of responses involves nine scalar
“currents”: three of them are electric displacements and the
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other six are strains [19]. The description of these cross-
correlated responses can be simplified only for certain high
symmetry structures. Recent development of technologies for
high-quality thin film growth which allows precise control
of composition, atomic arrangements, and interfaces provides
the toolbox for functional nanostructured composite materials
which can have pronounced application values not shared
by their compounds. Often these composite structures have
lower symmetry and the full description of cross-correlated re-
sponses cannot be simplified. Besides, breaking time-reversal
symmetry brings further complication to cross-correlated
responses [20–22]. Quite often Ioffe’s derivation of optimal
energy efficiency cannot be directly applied to those practical
systems. In those situations the (global) maximum efficiency
is rather difficult to find, although one can always easily find
certain optimal efficiencies under restrictions [7,15,18,19,23].

Finding the optimal exergy efficiency and power for
complex thermodynamic systems has stimulated a number
of studies [7,18,24]. It becomes increasingly important as
research reveals more cross-correlated responses and realizes
their applications [10,25,26]. Fast developing nanotechnolo-
gies and material technologies offer a large number of
materials and structures, of which complex cross-correlated
responses are enhanced and made available for practical
applications. Examples are spin-thermoelectric effect [10],
piezopotential gating [25], and piezophototronics [26], to name
just a few. Besides, biological systems are often characterized
by cross-correlated responses to density, temperature, and
electrochemical potential gradients [7,24]. A typical example
is transport across a biological membrane: Even for a single
ionic solution, transmission through the membrane must be
described by three flows, the volume flow, the solute flow,
and the electrical flow, which are often cross-correlated [24].
Cross-correlated responses enable energy conversion from one
form to another, during which the functions of a machine
are realized (a “machine” is a system which consumes input
energy to achieve a practical goal by doing work to the
external). Caplan derived the analytic expression of the optimal
exergy efficiency for machines with only one flow for energy
input but multiple flows for output or vice versa [7]. However,
general results on the optimal efficiency and power are still
absent, particularly in analytic forms.

In this work we derive analytic results for optimal efficiency
and power under general considerations that can be applied to a
broad range of thermodynamic systems. The requirements are
only that there exists an Onsager-type “current-force” relation
that describes the responses to external influences (“forces”)
[27] and that the system is operating at steady states in linear
responses. These requirements are often satisfied for physical
systems with forces not too strong [13,28]. The derived results
can be connected with realistic systems of which the output
power is consumed by a device or by a large power grid.
We obtain some simple but general relationships that connect
the optimal power and efficiency for different optimization
schemes. These results are first obtained for systems with
a symmetric Onsager response matrix and then extended to
systems with an asymmetric Onsager matrix (e.g., systems
under magnetic field). We point out that cooperative effects
can be used to improve efficiency (figure of merit) for systems
with multiple cross-correlated responses. Such improvement,

achieved via combining different input (or output) forces rather
than engineering materials, can be significant in systems with
multiple cross-correlated responses. Examples are given to
demonstrate how the theory is used to guide the search for
high performance energy applications.

This paper is organized as follows. In Sec. II we establish
the basic formalism by using Onsager’s theory of irreversible
thermodynamic processes in the linear-response regime. We
derive the optimal efficiency and output power for a symmetric
Onsager matrix in Sec. III. In Sec. IV the derivation is
reinterpreted with realistic considerations where parasitic
dissipation and the response of the device accepting the output
energy are considered. We extend the study to systems with an
asymmetric Onsager matrix in Sec. V. Examples that illustrate
the usefulness of the findings are presented in Sec. VI, and we
conclude in Sec. VII.

II. BASIC FORMALISM

Under external influences (“forces”) a thermodynamic
system develops motions that deviate from their equilibrium
values. These motions (“currents”) can be described quantita-
tively by the rates of changes in thermodynamic state variables
[28,29]. The relation between the forces �F and currents �J is
generally written as [28,29]

�J = M̂ �F or Jn =
∑

k

MnkFk, (4)

where the index n (k) numerates all currents (forces) and M̂
is the Onsager matrix. When the forces are not too strong
the dependence of M̂ on the forces can be ignored. Cross-
correlated responses (e.g., thermoelectric effect) allow energy
conversion from the input forms to the output forms and realize
functions of a machine. According to the theory of irreversible
thermodynamics [27,28], there are an equal number of forces
and currents. Each force Fn has a conjugated current Jn such
that the reduction of total exergy (Gibbs free energy) is given
by

−Ȧtot = T Ṡtot =
∑

n

JnFn. (5)

The reduction of exergy −Ȧn = JnFn associated with the
current Jn for exergy input is positive, while for exergy output
it is negative. Hence, the input and output exergies are [7]

Ȧin ≡
∑
n∈I

JnFn, Ȧout ≡ −
∑
k∈O

JkFk, (6)

respectively. The sets I and O in the above refer to exergy
input and output, respectively. The output exergy is also
the output work, i.e., Ẇ = Ȧout. (Throughout this paper
“work” is associated with linear-response processes for given
thermodynamic forces; i.e., work and efficiency are functions
of thermodynamic forces.) For Ȧin > 0 the exergy efficiency
is

φ = −∑
k∈O JkFk∑

n∈I JnFn

= Ȧin − T Ṡtot

Ȧin
� 100%. (7)

Only in the reversible limit, Ṡtot = 0, does the exergy efficiency
φ reach its upper bound. The second law of thermodynamics
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requires Ṡtot � 0 for all possible values of forces. This is
satisfied only when all eigenvalues of the Onsager matrix M̂
are positive (see Appendix A). (Note that, as the reversible
limit, Ṡtot = 0, does not exist for realistic systems, we consider
only situations with positive entropy production. Zero entropy
production is the limit when the entropy production is
extremely small. In this way, all eigenvalues of the Onsager
matrix must be greater than zero.) This property is briefly
stated as that Onsager matrix is positive.

III. OPTIMIZING EFFICIENCY AND POWER FOR
SYSTEMS WITH A SYMMETRIC ONSAGER MATRIX

The maximum exergy efficiency is obtained by solving the
differential equation

∂Fk
φ = 0, ∀ k. (8)

Previous attempts of solving the above equations [7,18,24]
have ended up with very complicated calculations and dis-
cussions. This is because for a N × N Onsager matrix,
there are N (N + 1)/2 independent response coefficients (if
the Onsager matrix is symmetric). Besides, there are N − 1
coupled differential equations to solve. [From Eqs. (4) and
(7), scaling all forces by a constant does not change φ; this
property reduces the number of differential equations to be
solved by one]. Solving these equations analytically becomes a
formidable task when N � 3 (see, e.g., the rather complicated
discussions in Ref. [7]). In this work we manage to solve the
problem analytically in a particularly simple way.

We notice that the force-current relation can be rewritten as( �JO

�JI

)
=

(
M̂OO M̂OI

M̂IO M̂II

) ( �FO

�FI

)
, (9)

where the symbols O and I are used to abbreviate the indices
of forces and currents for exergy output and input, respectively;
for example, �JO is the vector of the output current and M̂OO

is the matrix relating the output force vector �FO to the output
current vector �JO . Hence,

Ȧout = − �FT
OM̂OI

�FI − �FT
OM̂OO

�FO, (10a)

Ȧin = �FT
I M̂IO

�FO + �FT
I M̂II

�FI , (10b)

where the superscript T stands for matrix (vector) transpose.
For a symmetric Onsager matrix, M̂II = M̂T

II , M̂OI =
M̂T

IO , and M̂OO = M̂T
OO .

From Eqs. (7), (8), and (9), we find that

∂ �FO
Ȧout = φmax

(
∂ �FO

Ȧin
)
, (11)

which gives

�FO = −1 + φmax

2
M̂−1

OOM̂OI
�FI . (12)

The inverse of the matrix M̂OO is justified as M̂OO is a
positive matrix. Inserting this into Eq. (1) we obtain

φmax =
1
4 (1 − φ2

max)λ

1 − 1+φmax

2 λ
, (13)

where λ ≡ max〈	̂〉 and 〈	̂〉 ≡ �gT 	̂�g, with �g being a normal-
ized vector (i.e., �gT �g = 1) defined as

�g ≡ M̂1/2
II

�FI

/√
�FT
I M̂II

�FI , (14)

and

	̂ ≡ M̂−1/2
II M̂IOM̂−1

OOM̂OIM̂−1/2
II . (15)

The inverse square root of the matrixM̂II is well defined since
M̂II is a positive matrix (see proof in Appendix A).

Equation (13) is now a quadratic equation that can be solved
analytically. The physical solution with φmax < 1 is

φmax =
√

ξ + 1 − 1√
ξ + 1 + 1

, ξ ≡ λ

1 − λ
, (16)

where ξ is the figure of merit and λ is called the “degree
of coupling” [6]. We call the matrix 	̂ as the “coupling
matrix.” Finally, �FI or the normalized vector �g must be tuned
to maximize 〈	̂〉. The maximum value is achieved when �g
equals to the eigenvector of 	̂ which corresponds to the largest
eigenvalue, which gives

λ = largest eigenvalue of 	̂. (17)

It is proven in Appendix B that λ � 1 as bounded by the second
law of thermodynamics. The λ → 1 limit can be reached only
in the reversible limit when the determinant of the Onsager
matrix is zero [30]. Equation (17) represents one of the main
results in this work which was not found in Ref. [7] despite
rather complicated treatment there.

The output power Ẇ = Ȧout at maximum exergy efficiency
is

Ẇ (φmax) = 1
4 (1 − φ2

max)λ
( �FT

I M̂II
�FI

)
. (18)

We now study the exergy efficiency for maximum power.
The physical concern is to optimize the output power by
tuning the output forces �FO which corresponds to adjusting
the response of the device accepting the output energy to
maximize the output power (as shown in the next section).
The output power is then optimized at ∂ �FO

Ȧout = 0 which

renders �FO = − 1
2M̂

−1
OOM̂OI

�FI . The equation for φ can be
established by inserting the above into Eq. (1), which is then
solved in a way similar to the solution of Eq. (13). After that,
we optimize φ by tuning the input forces �FI and then obtain
the optimal exergy efficiency for maximum power as

φopt(Ẇmax) = ξ

2(ξ + 2)
� 50%, (19)

where ξ is given in Eq. (16) and λ is again the largest eigenvalue
of the coupling matrix 	̂. The above expression is consistent
with the well-known result that the upper limit of the exergy
efficiency for maximum power for systems with a symmetric
Onsager matrix is 50% [2,8,9,31]. The above derivations also
provide a solid proof of the upper bound, 50%, for general
thermodynamic systems in the linear-response regime. The
maximum output power is found to be

Ẇmax = 1
4λ

( �FT
I M̂II

�FI

)
. (20)
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FIG. 1. (Color online) The ratio of optimal efficiency at maxi-

mum power to the maximum efficiency φopt(Ẇmax)
φmax

(solid curve) and
the ratio of the power at maximum efficiency to the maximum power
Ẇ (φmax)

Ẇmax
(dashed curve) as functions of the maximum efficiency φmax,

as given by Eq. (21), for thermodynamic machines with a symmetric
Onsager matrix.

Comparing the exergy efficiencies and output powers for
the two optimization schemes discussed in this section, we
find that

φopt(Ẇmax)

φmax
= 1

1 + φ2
max

, (21a)

Ẇ (φmax)

Ẇmax
= 1 − φ2

max. (21b)

Remarkably, the above two simple relationships hold for all
thermodynamic machines with a symmetric Onsager matrix
in the linear-response regime (thermodynamic systems with
an asymmetric Onsager matrix is discussed in Sec. V). The
above two relationships bear very important information on
the optimal efficiencies and powers, which is one of the
main results in the present work. Figure 1 represents them
graphically. Particularly in the reversible limit φmax = 1, the
output power at maximum efficiency vanishes [32], while the
efficiency at maximum power reaches 50%. (These properties
were proven to be general for time-reversal symmetric systems
in Ref. [9] as well.) At low efficiency limit, φmax 
 100%, the
power and efficiency at the two optimal conditions are almost
the same. Considerable differences between the two optimal
conditions appear only when φmax � 20%, ξ � 1, or λ � 0.5.

We remark that the largest eigenvalue of
M̂−1/2

II M̂IOM̂−1
OOM̂OIM̂−1/2

II is the same as the largest
eigenvalue of M̂−1/2

OO M̂OIM̂−1
II M̂IOM̂−1/2

OO (proof is given
in Appendix B). Particularly in thermoelectric energy
conversion, this means that the figures of merit for the engine,
refrigerator, and heat pump are the same. These properties
can be used to simplify the calculation of the figure of merit
when one of the two is easier to calculate.

IV. REALISTIC CONSIDERATIONS: OUTPUT TO A HUGE
RESERVOIR OR TO A FINITE DEVICE

In realistic situations the input energy may pass through
some parallel channels without entering into the system which

FIG. 2. (Color online) Schematic of realistic thermodynamic ma-
chines. A machine accepts input energy and converts it into output
energy. The output can be assigned to a huge reservoir (e.g., an
electrical power grid with huge capacity) (a) or to a finite device
(b). In realistic situations there are mechanisms that dissipate part of
input energy and prevent it from being converted into useful outputs,
as well as mechanisms that consume part of output energy and reduce
the amount of useful outputs. These mechanisms are called “parasitic
dissipation.”

reduces the amount of useful input energy. Besides, the output
energy can also be dissipated into channels parallel to the
device accepting the output power. These mechanisms are
called “parasitic dissipation.” The effect is described by the
following phenomenological equations:

�J p

I = M̂p

II
�FI , �J p

O = M̂p

OO
�FO. (22)

Here the superscript p stands for parasitic dissipation. The
currents for energy input into the operating system becomes
�JI + �J p

I , and the currents that load into the device becomes
�JO + �J p

O . The equivalent circuit is depicted in Fig. 2. Taking
into account those parasitic currents modifies the response
coefficients as

M̂II → M̂II + M̂p

II , M̂OO → M̂OO + M̂p

OO. (23)

Parasitic dissipation increases the eigenvalues of the matrices
M̂II and M̂OO because both M̂p

II and M̂p

OO are positive
matrices. As a consequence the degree of coupling λ and the
figure of merit ξ are reduced, according to Eqs. (15) and (16).
This is consistent with the physical picture that part of the
useful energy is consumed by the parasitic dissipation.

Energy from the operating system can be outputted to (i)
a huge reservoir (e.g., a power grid with huge capacity) or to
(ii) a finite device. The optimization presented in Sec. III is
for option (i) where the output current �JO does not induce
any observable effect on the huge reservoir which, in turn,
modifies the force �FO , so that �JO and �FO are uncorrelated. In
an electrical circuit analog, it is equivalent to using the output
energy to charge a huge capacitor where the charging current
�JO does not change the voltage across the capacitor �FO . For

option (ii) if the response of the device is �J L
O = M̂L

�FO ,
the Kirchhoff’s current law requires that �JO + �J L

O = 0.
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Therefore,

�FO = −(M̂OO + M̂L)−1M̂OI
�FI . (24)

The power consumed by the device is

�FT
OM̂L

�FO = �FT
I M̂IO(M̂OO + M̂L)−1M̂L

× (M̂OO + M̂L)−1M̂OI
�FI . (25)

The input exergy is

�FT
I

�JI = �FT
I [M̂II − M̂IO(M̂OO + M̂L)−1M̂OI ] �FI .

(26)

The exergy efficiency is then

φ =
�FT
OM̂L

�FO

�FT
I

�JI

. (27)

By varying M̂L of the device that receives power from the
operating system, we find that the maximum output power is
reached at

M̂L = M̂OO, (28)

whereas the maximum exergy efficiency is reached when

M̂L = √
1 − λM̂OO. (29)

At these conditions we obtain again Eqs. (16), (18), (19), and
(20). The above results reflect the importance of matching
between the response of the device M̂L and that of the
system M̂OO in optimizing the efficiency and output power
[33]. Particularly, Eq. (28) generalizes the maximum power
theorem (Jacobi’s Law for electrical circuits, i.e., “maximum
power is transferred when the internal resistance of the source
equals the resistance of the load, when the external resistance
can be varied, and the internal resistance is constant”) to all
thermodynamic machines with a symmetric Onsager matrix in
the linear-response regime.

There are two possible schemes of adjusting the input
forces, �FI , to optimize the performance of the machine. The
first scheme is to optimize the efficiency, i.e., to optimize λ.
This is discussed in Sec. III. This scheme reflects balance
between optimizing output power and efficiency, which is
relevant to some biological and ecological systems [2]. The
second scheme is to adjust �FI for further optimization of the
output power. This will lead to efficiency smaller than or equal
to that in Eq. (19). Hence, the exergy efficiency for this scheme
is also not larger than 50%. From Eqs. (15) and (20) one
finds that Ẇmax = 1

4
�FT
I M̂IOM̂−1

OOM̂OI
�FI . The above can be

optimized to be Ẇmax = 1
4ϒ( �FT

I
�FI ), with ϒ being the largest

eigenvalue of the matrix M̂IOM̂−1
OOM̂OI . It can be shown

that ϒ is positive (see Appendix B). There is no obvious upper
bound on it that is imposed by the laws of thermodynamics
(except maybe in the zero temperature limit [34]). The above
derivation is meaningful only when all input thermodynamic
forces Fn (∀ n ∈ I ) are measured in the same physical unit
and scale. This requirement is usually not satisfied for systems
with more than one type of input force (e.g., if both mechanical
and electrical forces are used for energy input). Discussion on
this scheme of performance optimization depends on specific
systems, which is of little interest for our purpose.

V. OPTIMAL EXERGY EFFICIENCY AND POWER FOR
SYSTEMS WITH AN ASYMMETRIC ONSAGER MATRIX

We now study systems with an asymmetric Onsager
matrix. We first note that �FT

I M̂II
�FI = FT

I M̂s
II

�FI and
�FT
OM̂OOFO = �FT

OM̂s
OO

�FO , whereM̂s
II = 1

2 (M̂II + M̂T
II )

and M̂s
OO = 1

2 (M̂OO + M̂T
OO). This property is due to the

symmetry of the summation over indices of forces.
It is hard to derive the optimal exergy efficiency and power

for general systems with an asymmetric Onsager matrix (see
Appendix C). Here we focus on a special situation where
M̂OI = rM̂T

IO , with r being a real number. Such a simplifi-
cation is for the convenience of treatment instead of inspired
by realistic physical systems. For this particular situation,
from Eq. (11), we find �FO = − 1+r−1φmax

2 (M̂s
OO)−1M̂OI

�FI .
Inserting this into Eq. (1) and solving the equation for φmax,
we obtain

φmax = r

√
ξ + 1 − 1√
ξ + 1 + 1

, (30)

where ξ is given by the same expression as in Eqs. (16) and
(17) but with M̂OO and M̂II replaced with their symmetric
counterparts M̂s

OO and M̂s
II . The exergy efficiency for

maximum power is given by

φopt(Ẇmax) = rξ

2(ξ + 2)
. (31)

From the second law of thermodynamics the restriction on λ

is (see Appendix B)

4r

(1 + r)2
� λ < 0, if r < 0, (32a)

0 � λ � 4r

(1 + r)2
, if r � 0. (32b)

The above restrictions give rise to ξ + 1 = 1
1−λ

� 0 and
r(

√
ξ + 1 − 1) > 0, so that the optimal exergy efficiency given

in Eq. (30) is positive and well defined.
The maximum possible, i.e., the upper bound of exergy

efficiency, is reached at λ = 4r
(1+r)2 as

φbound = r2, if |r| < 1, (33a)

φbound = 1, if |r| � 1. (33b)

The dissipation at the upper bound exergy efficiency is

T Ṡtot = (1 − r)2
(

�FT
I M̂s

II
�FI

)
, if |r| < 1, (34a)

T Ṡtot = 0, if |r| � 1. (34b)

The entropy production for |r| < 1 is always positive; hence,
the upper bound efficiency is not 100%.

The upper bound of the exergy efficiency for maximum
power is also reached at λ = 4r

(1+r)2 with

φopt(Ẇmax)|bound = r2

r2 + 1
. (35)

From the above equation the Curzon-Ahlborn limit of exergy
efficiency [8,9,12] φCA = 50% can be overcome when |r| >

1. This is first pointed out by Benenti et al. in the study of
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thermoelectric efficiency in systems with broken time-reversal
symmetry [20].

The output power at maximum exergy efficiency is

Ẇ (φmax) = 1
4

(
1 − r−2φ2

max

)
rλ

( �FT
I M̂s

II
�FI

)
. (36)

Combining the above with Eq. (33), the upper bound of
efficiency for |r| < 1 is φ = r2 so that the output power is
positive. For |r| > 1 the maximum efficiency can reach 100%
without conflicting the requirement of positive output power.
The maximum output power is

Ẇmax = 1
4 rλ

( �FT
I M̂s

II
�FI

)
. (37)

We find that

φmax

φopt(Ẇmax)
= 1 + r−2φ2

max, (38a)

Ẇ (φmax)

Ẇmax
= 1 − r−2φ2

max. (38b)

Equations (33b) and (38b) reveal that for systems with an
asymmetric Onsager matrix with |r| > 1, the output power
is nonzero even when φmax reaches the value of 100% in
the reversible limit. These results agree with the findings
of Benenti et al. on thermoelectric efficiency and power in
time-reversal symmetry broken systems [20].

It is interesting to study the optimal exergy efficiency and
power of the reversed machine (i.e., the machine with output
input reversed). The output power of the reversed machine is
− �FT

I
�JI = −Ȧin, while the input power becomes �FT

O
�JO =

−Ȧout. The reversed machine is working in the region with
ȦI < 0. The efficiency of the reversed machine is defined as

φ′ = Ȧin

Ȧout
. (39)

We find that the optimal exergy efficiency and powers are
similar but with r replaced with r−1. Therefore, for |r| > 1 the
reversed machine cannot reach the efficiency of 100%, whereas
for |r| < 1 the reversed machine can have 100% efficiency
with finite power.

To demonstrate this we plot the efficiency as a function of x

for �FO = − r+x
2r

(M̂s
OO)−1M̂OI

�FI in Fig. 3. At the limit with
λ = 4r

(1+r)2 the efficiency is

φ = r2 − x2

1 + r2 − 2x
. (40)

The output power Ẇ = r2−x2

(1+r)2 ( �FT
I M̂s

II
�FI ) is positive when

|x| < |r|. If x > (1 + r2)/2, both the input and the output
exergies are negative, which indicates that the machine is
operating at the reversed mode. The efficiency of the reversed
machine is then

φ′ = 2x − 1 − r2

x2 − r2
. (41)

The output power is Ẇ = 2x−1−r2

(1+r)2 ( �FT
I M̂s

II
�FI ).

For all values of r the reversible limit T Ṡtot = 0 is reached
at x = 1. When r = 1, 100% efficiency is reached by both
the machine and the reversed machine at x = 1, where the
input and the output exergies, as well as entropy production,
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FIG. 3. (Color online) The exergy efficiency φ (solid curves),
output power Ẇ (dashed curves), and total entropy production Ṡtot

(dotted curves) as functions of x for r = 1 (a), r = 0.6 (b), and
r = 1.2 (c). For each figure the left region with positive efficiency
is the operating region of the machine, while the right region with
positive efficiency is the operating region for the reversed machine.
The definitions of efficiency and output power are different for the
machine and the reversed machine.

vanish [see Fig. 3(a)] [32]. For |r| < 1, the machine cannot
reach to 100% efficiency, but the reversed machine can reach
100% efficiency with finite output power, because at x = 1 the
machine is operating in the reversed mode [see Fig. 3(b)]. For
|r| > 1, the output power of the machine is positive at x = 1;
thus, the machine can reach 100% efficiency with finite output
power [see Fig. 3(c)].

In systems with broken time-reversal symmetry, such as
two-dimensional electron systems under perpendicular mag-
netic field, Hall effect and Nernst-Ettingshausen effect give
rise to an asymmetric Onsager matrix [22,35]. The asymmetric
Onsager matrix can be decomposed into the symmetric part
and the antisymmetric part. Specifically,

M̂IO = M̂s
IO + M̂a

IO, M̂OI = M̂s
OI + M̂a

OI , (42)
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with M̂s
IO = (M̂s

OI )T and M̂a
IO = −(M̂a

OI )T . The symmet-
ric part, M̂s

IO , is related to entropy production and is restricted
by the second law of thermodynamics. The antisymmetric part,
M̂a

IO , however, does not contribute to dissipation and is often
related to Berry phase effects [36]. The output and input exergy
can be written as

Ȧout = Ȧs
out − �FT

OM̂a
OI

�FI ,
(43)

Ȧin = Ȧs
in − �FT

OM̂a
OI

�FI ,

where Ȧs
out and Ȧs

in are the output and input exergies for the
symmetrized Onsager matrix with

Ȧs
out = − �FT

OM̂s
OI

�FI − �FT
OM̂s

OO
�FO,

Ȧs
in = �FT

I M̂s
IO

�FO + �FT
I M̂s

II
�FI .

The additional term in Eq. (43), �FT
OM̂a

OI
�FI , does not cause

entropy production, but shifts the input and output powers by
the same magnitude. In this way the reversible limit is shifted
from the boundary between the machine and the reversed
machine into the operating region of the machine or the
reversed machine, whichever has positive output power in such
limit.

It should be emphasized here that although potential ad-
vantages of systems with an asymmetric Onsager matrix have
been predicted by Benenti et al. [20] from phenomenological
theory (and extended in this work), no realistic physical system
has been shown to have finite power at 100% efficiency
[21,22]. It is very important to study efficiency and power
of realistic physical systems with an asymmetric Onsager
matrix to clarify whether breaking time-reversal symmetry
could indeed improve the performance of a thermodynamic
machine [21,22].

VI. APPLICATION TO REALISTIC SYSTEMS

A. Example I: Thermoelectric energy conversion
in isotropic systems

Thermoelectric transport equation for an isotropic system
is given by( �j

�jq

)
=

(
σ 1̂ σST 1̂

σST 1̂ (κT + σS2T 2)1̂

)( �E
− �∇ T/T

)
, (44)

where the electric field �E includes both the external and the
induced electric fields. Here σ is the electrical conductivity,
S is the Seebeck coefficient, κ the thermal conductivity, and
1̂ is the 3 × 3 identity matrix. The efficiency, or coefficient of
performance, of a thermoelectric refrigerator is

η ≡ Q̇

Ẇ
= T

�T

�jq · �∇T/T

�j · �E = ηCφ, ηC ≡ T

�T
. (45)

For a slab of thickness �z with temperature gradient and electric
field along the direction z, which is perpendicular to the
slab plane, the temperature difference is �T = −�z

dT
dz

> 0
for dT

dz
< 0. The maximum coefficient of performance ηmax is

related to the maximum exergy efficiency by

ηmax = ηCφmax = ηC

√
ξ + 1 − 1√
ξ + 1 + 1

. (46)

The figure of merit is related to the degree of coupling which,
according to Eq. (17), is the largest eigenvalue of the following
coupling matrix:

	̂ = (σST )2

σ (κT + σS2T 2)
1̂. (47)

Since 	̂ is proportional to an identity matrix, the largest
eigenvalue is just

λ = σS2T

κ + σS2T
. (48)

Therefore, the figure of merit is

ξ = λ

1 − λ
= σS2T

κ
, (49)

which recovers the well-known thermoelectric figure of merit
as found by Ioffe.

B. Example II: Spin-thermoelectric effect

In conducting magnetic materials charge, spin, and thermal
transports are coupled together. There couplings are called
spin-thermoelectric or spin-caloric effect [10]. In isotropic ma-
terials spin-thermoelectric effect is described by the transport
equation [10]⎛
⎜⎝

�j
�js

�jq

⎞
⎟⎠ =

⎛
⎜⎝

σ 1̂ σP 1̂ σST 1̂

σP 1̂ σ 1̂ P ′σST 1̂

σST 1̂ P ′σST 1̂ κ0T 1̂

⎞
⎟⎠

⎛
⎜⎝

�E
− �∇m

− �∇ T/T

⎞
⎟⎠ ,

(50)

where �j = �j (↑) + �j (↓), �js = �j (↑) − �j (↓), with �j (↑) and �j (↓)

denoting the electrical currents of the spin-up and spin-down
electrons, respectively. �E = − �∇ μ/e with μ ≡ (μ↑ + μ↓)/2,
and m ≡ (μ↑ − μ↓)/(2e), where μ↑ and μ↓ are the elec-
trochemical potentials for spin-up and spin-down electrons,
respectively, and e is the carrier charge. σ is the electrical
conductivity, S is the Seebeck coefficient, P and P ′ are
two dimensionless quantities describing spin polarization of
carriers in different transport channels, and κ0 is the heat
conductivity at �E = �∇ m = 0. Microscopically, they are given
by

σ =
∫

dE

(
− ∂nF

∂E

)∑
s

σ (s)(E), (51a)

P = 〈sz〉, S = 〈E〉
eT

, (51b)

P ′ = 〈Esz〉
〈E〉 , κ0T = e−2σ 〈E2〉, (51c)

with σ (s)(E) (s = ↑ ,↓) being spin- and energy-dependent
conductivity. We have set the energy zero to be at the
(equilibrium) chemical potential, i.e., μ ≡ 0. sz = 1 or −1
for spin-up and -down, respectively. nF = 1/[exp( E

kBT
) + 1]

is the Fermi distribution of the carrier. The averages in the
above equations are defined as

〈O〉 ≡ σ−1
∫

dE

(
− ∂nF

∂E

) ∑
s

σ (s)(E)O. (52)
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The above equations can be viewed as Mott relations [37]
generalized to spin-dependent transport. It assumes elastic
transport (by which the energy dependent conductivity is well-
defined) and fails when inelastic transport processes become
important, as pointed out by the author and collaborators [38].

We consider refrigeration driven by both the electric field
�E and the spin-density gradient �∇m. The coefficient of
performance of the refrigerator is defined as

η ≡ Q̇

Ẇ
= T

�T

�jq · �∇T/T

�j · �E − �js · �∇m
= ηCφ, ηC = T

�T
. (53)

A schematic of spin-thermoelectric cooling is shown in
Fig. 4. Consider a slab of thickness �z, where the temper-
ature gradient, electric field, and spin-density gradient are
along the direction perpendicular to the slab plane, i.e., the
z direction. The temperature difference is �T = −�z

dT
dz

> 0
for dT

dz
< 0. The maximum coefficient of performance is again

related to the maximum exergy efficiency as given in Eq. (46).
Using Eqs. (16) and (50) we obtain

ξ = σT S2(1 − 2PP ′ + P ′2)

κ0(1 − P 2) − σT S2(1 − 2PP ′ + P ′2)
. (54)

Remarkably, one can show that the above degree of coupling is
greater than both the figure of merit for thermoelectric cooling,

ξT E = σT S2

κ0 − σT S2
, (55)

and the figure of merit for spin-Peltier cooling [10,39],

ξSP = σT S2P ′2

κ0 − σT S2P ′2 . (56)

This interesting phenomenon has a geometric origin which
is understood as follows. The electric field and the spin-density
gradient can be parametrized as

�E = �F0 cos θ, − �∇ m = �F0 sin θ, (57)

where �F0 = �ez

√
1

2e2 (| �∇ μ↑|2 + | �∇ μ↓|2), with �ez being the

transport direction. | �F0| is the total “magnitude” of the input

FIG. 4. (Color online) Spin-thermoelectric cooling. A spin-
thermoelectric (“spin-TE”) material (i.e., a conducting ferromagnetic
material) sandwiched between two ferromagnetic electrodes with
different temperature T , electrochemical potential μ ≡ (μ↑ + μ↓)/2,
and spin accumulation m ≡ (μ↑ − μ↓)/(2e), where μ↑ and μ↓ are
the electrochemical potentials for spin-up and spin-down electrons,
respectively, and e is the carrier charge. For a setup with Th > Tc,
μh > μc, and mh > mc (the subscripts h and c denoting the hot and
cold terminals, respectively), cooling (heat flowing from the cold
terminal to the hot terminal) is driven by both the charge and the spin
flows.

force. The heat current,

�jq = �jq0 + �jq1 + �jq2, (58)

consists of three parts: thermal conduction �jq0 = −κ0 �∇ T ,
Peltier cooling �jq1 = σST �E , and spin-Peltier cooling �jq2 =
−P ′σST �∇ m. The cooling is achieved when the sum of the
Peltier current �jq1 and the spin-Peltier current �jq2 exceeds the
thermal conduction current �jq0.

Tuning the angle θ changes the relative amplitude of the
Peltier and spin-Peltier heat currents, �jq1 and �jq2. These
two currents can be of the same sign, or the opposite sign,
depending on θ . When �jq1 and �jq2 have the same sign, the
cooling is enhanced, leading to higher efficiency. However,
when �jq1 and �jq2 have opposite sign, the cooling is suppressed
and the efficiency is reduced. This is explicitly shown in
Fig. 5. The underlying physics is more complicated when the
input work Ẇ is taken into consideration as well. However,
this simplified picture gives a snapshot that the two cooling
mechanisms can have cooperative effects.

We also calculated the figure of merit for spin-Peltier
cooling ξSP as a function of P ′ according to Eq. (56), as shown
in Fig. 6(a) for σS2T/κ0 = 0.1. For the same parameter, we
plot the enhancement factor ξ/max(ξT E,ξSP ) as function of P

and P ′ in Fig. 6(b). Significant enhancement of figure of merit
due to cooperative effect is attainable when P ′ deviates from
P markedly.

Efficient spin-thermoelectric cooling demands a large See-
beck coefficient. According to the literature, a large Seebeck
coefficient ranging from 100 to 45 000 μV/K can be attained
in magnetic or strongly correlated semiconductors [40] and
magnetic tunnel junctions [41]. A sizable figure of merit,
ξ ∼ 1, however, is still to be achieved [40].

The figure of merit at fixed θ is found as

ξ (θ ) = σS2T (P ′ sin θ + cos θ )2(1 + 2P sin θ cos θ )

κ0 − σS2T (P ′ sin θ + cos θ )2(1 + 2P sin θ cos θ )
.

(59)
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FIG. 5. (Color online) Polar plot of ξ vs θ . The parameters
are P = 0.2, P ′ = 0.8, S = 50 μV/K, and T = 300 K. The heat
conductivity is κ0 = σLT with the Lorenz number of L = 2.5 ×
10−8 W � K−2. The arrows indicate the relative direction between
�jq1 (red arrows) and �jq2 (green arrows). The red dots represent the
thermoelectric figure of merit ξT E , the green triangles represent the
spin-Peltier figure of merit ξSP , and the blue squares denote the figure
of merit ξ of combined thermoelectric and spin-Peltier cooling.
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FIG. 6. (Color online) (a) The ratio of the figure of merit of spin-
Peltier cooling ξSP to that of thermoelectric cooling ξT E as a function
of P ′. (b) The enhancement of figure of merit due to cooperative
effect, ξ/max(ξT E, ξSP ), as a function of P and P ′. The parameters
are S = 50 μV/K and T = 300 K. The heat conductivity is κ0 =
σLT with the Lorenz number of L = 2.5 × 10−8 W � K−2. The
white region in (b) near P = 1 is forbidden by the second law of
thermodynamics.

The maximum exergy efficiency is achieved at θ = θM with

tan θM = P ′ − P

1 − P ′P
. (60)

The figure of merit at θ = θM is exactly the same as that
given in Eq. (54), which is greater than the figures of merit for
thermoelectric and spin-Peltier cooling, ξT E and ξSP , unless
P = P ′. Such cooperative effect prevails in systems with
multiple cross-correlated responses, which can be exploited
to improve the efficiency. The discussions here can also
be applied to the efficiency and figure of merit of spin-
thermoelectric power generators [42].

C. Example III: Piezoelectric, piezomagnetic,
and magnetoelectric effects

Piezoelectric energy harvest has been studied extensively
and made into useful devices [43]. There is also the piezomag-
netic effect where elastic strain induces a magnetization or
vice versa [44]. These two effects are common in ferroelectric
and ferromagnetic insulators [44]. Materials with simultaneous
ferroelectric and ferromagnetic properties, or more generally
multiple spontaneous electric and magnetic orders [44–46],
are called multiferroics. An important technological property
of multiferroics is the magnetoelectric effect, which offers
efficient conversion between electric and magnetic energy
in the radio frequency regime [44]. Wood and Austin [47]
suggested many possible applications of the magnetoelectric
effect, among which there are transducers which convert
the microwave magnetic field into microwave electric field,
attenuators which are used to improve impedance matching
in circuits, and ultrasensitive magnetic field sensors [44].
Multiferroics with strong magnetoelectric response have been
the aim of extensive studies [44]. Recently, a strong mag-
netoelectric response was found in both crystalline (such
as CaMn7O12 [48], TbMnO3 [49], and HoMnO3 [50]) and
nanocomposite (such as BiFeO3 thin film heterostructures
[51] and BaTiO3-CoFe2O4 nanostructures [52]) materials. In
many of these materials the interplay of piezoelectric and

piezomagnetic responses play an important role. In fact, mul-
tiferroics can be made from nanocomposites of ferroelectric
and ferromagnetic compounds where elastic strain at interfaces
mediates coupling between electric and magnetic polarizations
[46,53].

In these materials a full description of responses to external
mechanical, electric, and magnetic forces are given by [44,53]⎛

⎜⎝
Ŝ

�D
�B

⎞
⎟⎠ =

⎛
⎜⎝

ŝ d̂ q̂

d̂T ε̂ α̂

q̂T α̂T μ̂m

⎞
⎟⎠

⎛
⎜⎝

T̂

�E
�H

⎞
⎟⎠ , (61)

where the forces are stress T̂ , electric field �E, and magnetic
field �H and the currents are strain Ŝ, electric displacement
�D, and magnetic induction �B. Here �D and �B stand for the

values that deviate from the equilibrium ones (which could
be nonzero in materials with spontaneous polarization and
magnetization). The response matrix has the dimension of
12 × 12. Specifically, ŝ is the 6 × 6 compliance tensor, ε̂ is the
3 × 3 dielectric tensor, μ̂m is the (3 × 3) permeability tensor,
d̂ describes piezoelectric response, q̂ describes piezomagnetic
response, and α̂ gives magnetoelectric response.

In general, the response matrix is frequency dependent. Ex-
periments have shown resonance behavior in magnetoelectric
response [54]. Without further complication of specific circuits
set up for energy conversion at finite frequencies [55,56], here
we consider the low-frequency limit which is sufficient to
demonstrate the underlying principles. Extension of study to
finite frequency regimes will be achieved in future works. First,
the coupling matrix for piezoelectric energy conversion is

	̂pe = ε̂−1/2d̂T ŝ−1d̂ ε̂−1/2, (62)

which coincides with the “electromechanical coupling tensor”
introduced in Ref. [57]. The largest electromechanical cou-
pling factor of a material is given by the largest eigenvalue
of the coupling matrix 	̂pe. The piezoelectric effect allows
harvest of mechanical energy to power portable and isolated
electrical systems, as well as small motors which have already
found applications [43]. Existing materials have already
shown large electromechanical coupling factors, reaching to
�0.5 [55,58], which allows efficient piezoelectric energy
conversion. In realistic systems, additional mechanical and
electrical damping reduces the efficiency [55,56]. Although
further complication must be considered for a finite frequency
setup with a mechanical oscillator, the efficiency is still an
increasing function of the electromechanical coupling factor
[55,56]. Piezomagnetic effect can be used for magnetic field
sensing, stress sensing, and mechanical generation of spin
waves [44]. The coupling matrix for piezomagnetic energy
conversion is

	̂pm = μ̂−1/2
m q̂T ŝ−1q̂μ̂−1/2

m . (63)

The largest piezomagnetic coupling factor is the largest
eigenvalue of the above matrix. Piezomagnetic coupling factor
can be as large as 0.5 as well [59]. The coupling matrix for
magnetoelectric energy conversion is

	̂em = μ̂−1/2
m α̂T ε̂−1α̂μ̂−1/2

m . (64)

Experiments on laminated composites of rare-earth-iron alloys
(Terfenol-D) and lead-zirconate-titanate (PZT) achieved a
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magnetoelectric coefficient along the stacking direction as high
as αE = α/ε = 10 V cm−1 Oe−1 [58]. Along this direction
the relative dielectric constant is about 1000 [58] and the
relative permeability is about 4 [60]. According to these
parameters, the magnetoelectric coupling factor along the
stacking direction is around 0.1. The largest magnetoelectric
coupling factor is given by the largest eigenvalue of the
matrix 	̂em.

The system also allows multiple input or output energy
forms. For example, magnetic energy can be generated by
simultaneously inputting electric and mechanical energy. This
yields the coupling matrix of

	̂m−pe = μ̂−1/2
m q̂T

peĥ
−1
pe q̂peμ̂

−1/2
m , (65)

where

q̂pe =
(

q̂

α̂

)
, ĥpe =

(
ŝ d̂

d̂T ε̂

)
. (66)

Similar to the results in Sec. VI B, a cooperative effect will
lead to larger degree of coupling from the above coupling
matrix. That is, the exergy efficiency is no less than those of
piezomagnetic effect and magnetoelectric effect. Significant
improvement of efficiency could be possible by the synergetic
effect in systems with cross-correlated piezo-electric-magnetic
effect.

D. Example IV: Biological energy conversion

Biological processes are driven by various energies: the
internal energy produced by oxidation and external energy
from environments. Understanding of bioenergetics is one
of the most important and challenging tasks in biology.
Many of the processes can be described by Onsager’s linear-
response theory (although many others cannot) [6,7,61–63].
One example is transport across a membrane. The flows of
various ions, such as Na+, Ca2+, and H+, as well as other
materials, such as phosphorylation, oxygen, and sugars are
all driven by their density gradients, chemical reaction, and
other forces [24]. If, e.g., some of these materials involve a
chemical reaction, flows of those materials will be correlated.
Synergetic effects will appear as multiple flows take place in
cooperative ways. Biological systems may also utilize the cross
correlation of those flows to optimize energy efficiency. There
have been a lot of studies of bioenergetics using irreversible
thermodynamics [6,7,61–63]. However, none of them have
reached a simple analytic result as obtained in this work.

To demonstrate the usefulness of the theory, we consider a
toy model describes the reaction of

A + B ↔ C + energy, Q + energy + E ↔ P (67)

in a reaction center surrounded by a membrane. We assume
that the reactions are reversible with the help of enzymes. In
the former reaction A and B are consumed to produce C,
while some energy is generated which is absorbed by Q and
E to form P (energy stored in P ). We assume that all energy
generated in the former reaction is absorbed by the latter one.
To describe such a reaction, we use six flows, JA, JB , JQ,
and JE to describe the rate of consumption of A, B, Q, and
E and −JC and −JP to describe the rate of production of
C and P . The flow and reaction is illustrated in Fig. 7. The

FIG. 7. (Color online) Energy conversion in biological reaction.
Biological reactions, A + B ↔ C + energy and Q + energy + E ↔
P , take place in the reaction center. The first reaction produces energy
which is stored in material P via the second reaction. At steady
states there are continuous flows of materials across the membrane of
the reaction center to facilitate continuous reactions. The membrane
keeps a density (chemical potential) difference between the reaction
center and the outside to control reaction rates. Arrows in the figure
indicate possible flows of materials when energy is produced and
stored in P .

reaction is described by Eq. (9) in the linear-response regime
with

�JI = (JA,JB,JQ,JE)T , �JO = (JC,JP )T , (68a)

�FI = (FA,FB,FQ,FE)T , �FO = (FC,FP )T . (68b)

The forces can be written as Fi = δμi + ai , where δμi =
μout

i − μin
i , where μout

i and μin
i are the chemical potential

of i outside and inside the reaction center, respectively, and
ai is the affinity of material i for the reaction which is the
free energy of i per mole (if Ji is measured in unit of mole
per second). Biological systems can control those flows and
their correlations through chemical reaction processes (e.g.,
via enzymes), as well as selective and tunable transmission
of materials through the membrane. The efficiency of the
biological reaction is φ = − �FT

O
�JO/( �FT

I
�JI ). The optimal

efficiency is then given by Eq. (16), where the degree of
coupling is given by the largest eigenvalue of the coupling
matrix 	̂ given by Eq. (15). This result is much simpler than
that discussed in Ref. [7].

VII. CONCLUSION AND DISCUSSIONS

We examined the important question of “what is the
maximum efficiency of a thermodynamic machine when its
linear responses to the external is given?” This question
has been answered in simple limits with two thermody-
namic currents. It becomes rather difficult to answer for a
thermodynamic machine with arbitrarily complex responses.
Efforts on the problem in the literature failed to yield general
and analytic results that are useful for material and structure
engineering in advanced energy technologies. Pushed by
fast developing nanotechnology and material technologies,
complex systems with advanced functions play more and
more important roles. It becomes increasingly necessary to
extend the known, simple results on efficiency optimization
with two thermodynamic currents to those complex sys-
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tems which is characterized by a N × N Onsager matrix
(N > 2).

We derived the optimal efficiency and powers for general
thermodynamic machines with arbitrary linear-response coef-
ficients. The results are written in simple and analytic forms.
Based on those results we establish two general relationships
between the optimal efficiency and powers for two realistic
optimization schemes: (i) maximum efficiency and (ii) optimal
efficiency for maximum power. We proved that the upper
bound efficiency at maximum output power is 50% for all
thermodynamic systems with a symmetric Onsager response
matrix. The results are confirmed by considering realistic
energy systems where the output power is consumed by a
device of which the response coefficients can be varied. We
proved that the maximum output power is reached when the
response matrix of the device receiving the power, M̂L, is
equal to that of the power-supplying machine in the output
sector, M̂OO . This proof generalizes the maximum power
theorem (Jacobi’s Law) to all thermodynamic machines with
a symmetric Onsager matrix in the linear-response regime.
We also extend the studies to systems with an asymmetric
Onsager matrix (for a particular class of systems), where
the efficiency at maximum output power can exceed 50%.
Besides, in such systems the second law of thermodynamics
does not forbid the reversible limit of efficiency, 100%,
to be reached at finite output power. This phenomenon is
caused by redistribution of free energy between the input
and the output channels induced by dissipationless responses
(e.g., by magnetic field, geometric phases, etc.). We also
show that such limit can only be reached in a machine
by its normal mode or reversed mode, but not by both of
them.

Several examples are presented to demonstrate applications
of the theory. First for isotropic thermoelectric systems, we
recover Ioffe’s well-known results. We then consider refriger-
ation in spin-thermoelectric systems. It is shown that driving
cooling by both electrochemical potential and spin-density
gradients yield maximum efficiency considerably higher than
when only one of the two gradients (forces) is applied to
the system. Such enhancement of maximum efficiency due to
cooperative effects between different forces can be significant
in certain parameter regimes. We remark that such cooperative
effects prevail in systems with multiple cross-correlated
responses and can be used to improve energy efficiency for
realistic machines. We also apply the theory to discussions of
piezoelectric, piezomagnetic, and magnetoelectric energy con-
version and their cooperative effects as well as biological
energy conversion. Studies in this work shed light on general
properties of optimization in energy applications and are
helpful in guiding the search for high performance energy
materials and systems.
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APPENDIX A: POSITIVENESS OF ONSAGER MATRIX
AND DEFINITION OF INVERSE SQUARE ROOT OF

MATRICES

The second law of thermodynamics requires Ṡtot � 0 for all
possible values of forces. That is,

T Ṡ =
∑
nk

FnMnkFk � 0, ∀ �F ,

=
∑
nk

FnMs
nkFk � 0, ∀ �F, (A1)

where Ms
nk = 1

2 (Mnk + Mkn). Since M̂s is a real symmetric
matrix with dimension N × N , it has N (real) eigenvectors
and eigenvalues. For any vector �F can be decomposed into the
eigenvectors,

�F =
N∑

i=1

fi �ei, (A2)

with �ei corresponding to the eigenvalue mi , then

T Ṡ =
∑

i

mif
2
i . (A3)

The above is positive definite only when mi � 0 for all i.
That is, all eigenvalues of the matrix M̂s must be positive.
(In this work we take the situation with mi = 0 as the limit
that is approached from the mi > 0 side, which has never been
reached in realistic systems.)

When M̂II is a real symmetric matrix there always
exist an orthogonal matrix �̂I such that M̂II = �̂T

I D̂�̂I ,
where D̂ is a diagonal matrix. According to the second law
of thermodynamics all the eigenvalues of matrix M̂II are
positive. Therefore, all the elements of the diagonal matrix D̂

are positive. We can then define the inverse square root of M̂II

as

M̂−1/2
II ≡ �̂T

I D̂−1/2�̂I . (A4)

The inverse square root of M̂OO is defined similarly,

M̂−1/2
OO ≡ �̂T

OB̂−1/2�̂O, (A5)

where M̂OO = �̂T
OB̂�̂O , �̂O is orthogonal, and B̂ is diagonal

and positive.

APPENDIX B: PROVE THAT �̂ IS A POSITIVE MATRIX,
λ � 1, AND OTHERS

To simplify the proof, we perform an orthogonal trans-
formation �̂O ⊗ �̂I on the forces. To keep the currents
conjugated with forces, the same transformation must be
exerted on the currents. The transformation diagonalizes the
matrix M̂II and M̂OO . As both of them are positive matrices
we can further perform the following transformation:

Fn → Fn

√
Mnn, Jn → Jn/

√
Mnn. (B1)
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This leads to

Mnk → Mnk√
MnnMkk

. (B2)

After the above transformation, the matrices M̂II and M̂OO

become identity matrices. Now for the real matrix M̂IO there
always exists a decompositionM̂IO = ω̂T

I Ĉω̂O , where ω̂I and
ω̂O are orthogonal matrices and Ĉ is a diagonal matrix (but
not necessarily a square matrix) (see Ref. [64]). Performing the
orthogonal transformation ω̂O ⊗ ω̂I on the forces and currents
and using Eq. (15), we obtain

	̂ = M̂IOM̂T
IO = ĈĈT . (B3)

Now 	̂ is a diagonal matrix with all diagonal elements greater
than or equal to zero. We thus proved that the coupling matrix
	 is a positive matrix. The largest eigenvalue of the coupling
matrix 	̂ is also positive; i.e., λ � 0. Labeling the diagonal
elements of Ĉ as yn (n = 1, . . . N is integer if the dimension
of the matrix Ĉ is N × N ′ with, say, N � N ′), the Onsager
matrix now becomes

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 y1 0 0
. . .

. . .
. . .

0 1 0 yN 0
y1 0 1 0 0

. . .
. . .

. . .
0 yN 0 1 0

. . .
. . .

. . .
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

It follows from Eqs. (B3) and (17) that

λ = max
{
y2

n

}
. (B5)

According to the second law of thermodynamics, all eigenval-
ues of the Onsager matrix are positive, i.e.,

1 + yn � 0, 1 − yn � 0, ∀ n, (B6)

according to Eq. (B4). Therefore, 0 � λ � 1 and the figure of
merit ξ = λ/(1 − λ) is positive definite.

At this point one can also show when a machine is operating
in a reverse way, i.e., the output channels become input
channels and vice versa. The matrix 	̂ becomes 	̂ = ĈT Ĉ

which has the same largest eigenvalue as before. In this way
we proved that when a machine is operated in a reverse way
the degree of coupling λ and the figure of merit do not change.

Finally, from Eq. (B4) one can also directly show that
M̂IOM̂−1

OOM̂OI = ĈĈT is positive matrix (i.e., all its eigen-
values are positive). Therefore, the largest eigenvalue of
M̂IOM̂−1

OOM̂OI is positive, i.e., ϒ > 0.

APPENDIX C: THERMODYNAMIC BOUNDS FOR
SYSTEMS WITH AN ASYMMETRIC ONSAGER MATRIX

We focus on the situation considered in the main text
where M̂OI = rM̂T

IO . For this situation one can perform
the same transformation as in previous section: Symmetric
matrices Ms

II and Ms
OO can be diagonalized by orthogonal

transformations; after that, performing the transformation

(B1) and another orthogonal transformation, Ms
II and Ms

OO

become identity matrices and MIO → Ĉ, MOI → rĈT . The
second law of thermodynamics requires that all eigenvalues of
M̂s are greater than or equal to zero. Therefore,

1 − 1
2 (1 + r)yn � 0, 1 + 1

2 (1 + r)yn � 0, ∀ n. (C1)

The degree of coupling is given by

λ = rmax
{
y2

n

}
. (C2)

Therefore,

0 � λ
(1 + r)2

4r
� 1. (C3)

The discussions in Sec. V can be generalized to the situation
when MOI is not proportional to MIO but they can still be
diagonalized simultaneously by an orthogonal transformation.
The diagonal form of M̂IO is diag{yn}, while that of M̂OI is
diag{rnyn}. The optimal exergy efficiency is given by

φmax = max

{
rn

√
ξn + 1 − 1√
ξn + 1 + 1

}
, (C4)

where

ξn ≡ λn

1 − λn

, λn ≡ rny
2
n. (C5)

The output power at maximum exergy efficiency is

Ẇ (φmax) = 1
4

(
1 − r−2

n φ2
max

)
rnλn

( �FT
I M̂II

�FI

)
(C6)

for the n that maximizes the efficiency. The maximum output
power is

Ẇmax = 1
4 max{rnλn}

( �FT
I M̂II

�FI

)
. (C7)

The optimal exergy efficiency for maximum power is given by

φopt(Ẇmax) = rn′ξn′

2(ξn′ + 2)
(C8)

for the n′ that maximizes the output power (which may be
different from that which maximizes the efficiency). As n

can be different from n′, the relationship between the two
optimal efficiencies and powers can be more complicated than
we discussed in the main text.
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