
PHYSICAL REVIEW E 90, 042124 (2014)

Phase transition properties of the Bell-Lavis model
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Using Monte Carlo calculations we analyze the order and the universality class of phase transitions into
a low-density (honeycomb) phase of a triangular antiferromagnetic three-state Bell-Lavis model. The results
are obtained in a whole interval of chemical potential μ corresponding to the honeycomb phase. Our results
demonstrate that the phase transitions might be attributed to the three-state Potts universality class for all μ

values except for the edges of the honeycomb phase existence. At the honeycomb phase and the low-density gas
phase boundary the transitions become of the first order. At another, honeycomb-to-frustrated phase boundary,
we observe the approach to the crossover from the three-state Potts to the Ising model universality class. We also
obtain the Schottky anomaly in the specific heat close to this edge. We show that the intermediate planar phase,
found in a very similar antiferromagnetic triangular Blume-Capel model, does not occur in the Bell-Lavis model.
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I. INTRODUCTION

Two-dimensional supramolecular structures with a planar
honeycomb (HON) pattern on metal surfaces are very often
encountered in molecular assemblies [1,2]. Such systems are
composed of triangular- or mixed triangular and rectangular-
shaped organic molecules connected by hydrogen bonds.
Ordered HON formations are obtained in triangular-molecule-
assemblies of trimesic acid (TMA) [3–6], benzenetriben-
zoic acid [7,8], 1,3,5-tris(pyridine-4-ylethynyl)benzene [9],
melamine [10,11], and so on. Sometimes the triangular
molecules are used as nodes, while perylene tetracarboxylic
diimide [12–14], naphthalene tetracarboxylic diimide [15],
ditopic imidic linkers [16], or some other rectangular-shaped
molecules form hexagon sides during the assembly of the HON
structure.

Theoretical studies of the stability of certain structures, the
adsorption energies, the most probable occupation sites, or the
interaction parameters of H-bonded molecular structures are
usually performed by the density functional theory methods
[11,17,18]. To obtain density-temperature phase diagrams or
predict new ordering motifs, the statistical models of phase
transitions might also be used [13,19–22] as an alternative or
a supporting simulation. Since the triangular molecules are
symmetric and their layout is planar, they possess a threefold
symmetry with respect to 120◦ rotation. Thus, the HON phase
[Fig. 1(a)], organized by triangular molecules, H bonded by
their vertices (tip-to-tip bonding) on the triangular lattice,
might be considered as the three-state system. If the “leg”
of the molecule is superposed with the direction of the lattice
vector, there are just two molecular states, which differ by 60◦
degrees rotation, and the vacancy state. For such a definition of
the states, the HON phase corresponds to a phase on a tripartite
lattice with the sites of each sublattice occupied by different
occupation variables (e.g., +1, −1, and 0).

This phase is a popular ground-state structure of well-
known three-state models: the Potts model [23], the Blume-
Capel (BC) model [24,25], and the Blume-Emery-Griffiths
(BEG) model [26]. The HON phase is obtained in these models
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for the antiferromagnetic (AFM) nearest-neighbor interaction
and the certain range of a single-ion anisotropy parameter
which corresponds to a chemical potential if the lattice-gas
formalism is used (e.g., in the case of molecular ordering). In
a limiting range of the HON phase existence (for low values
of chemical potential or high molecular concentrations), the
centers of the honeycombs are to be filled and the three-state
model might be related to the triangular AFM Ising (TAFI)
model, characterized by the frustrated phase and finite entropy
at zero temperature [27,28].

Nevertheless, for a description of the tip-to-tip ordering of
triangular (e.g., TMA [20]) molecules, the mentioned three-
state models are unsuitable. The AFM Potts model cannot
be used, since it takes into account a nonzero contribution to
the energy of interacting nonequivalent states. Obviously, the
interaction of a vacancy with a molecule in any of the two
nonzero molecular states (±1) has to be neglected. The AFM
BC model is inappropriate, because only one of the two AFM
interactions {tip-to-tip [Fig. 1(b)] and side-to-side [Fig. 1(c)]}
has to be considered in a tip-to-tip ordering scheme, while
the AFM BC model (as well as more general AFM BEG
model) does not segregate between them, accounting both
as the same interaction. Moreover, the ferromagnetic (FM)
interaction of two molecules in the same state, instead of
giving no contribution to the energy (no H bond), increases
the energy.

There is one statistical lattice model which perfectly fits for
a description of the ordering of planar triangular molecules.
The model was proposed [29] in 1970 by Bell and Lavis
(BL) to consider a two-dimensional bonded fluid. This model
emphasizes the orientational property of the hydrogen bond
on the triangular lattice and therefore is often considered
[30,31] as a lattice version of the Mercedez-Benz models [32].
According to the BL model, the H-bonded pair of molecules
is created if the bonding directions of two nearest-neighbor
(NN) molecules point towards each other. Otherwise, there is
just van der Waals interaction between the NN molecules. At
lower temperature, the phase transition (“long-range sublattice
order”) occurs in the BL model between a disordered “liquid”
and a “solid” or “ice” phase. From a magnetic point of view the
BL model is clearly antiferromagnetic, since the H bond occurs
only when two molecules are in different states (molecular
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(a) (c)

(b)

FIG. 1. (Color online) Schematic representation of interactions
and ordering in the Bell-Lavis model using triangular TMA molecules
as an example: (a) a fragment of the HON phase, (b) tip-to-tip double
H-bond interaction (−εH − εvdW), and (c) side-to-side interaction
(−εvdW). The C, O, and H atoms of the TMA molecule are shown by
the black, red (gray) and white circles, respectively. In (b) and (c) the
sites of sublattices A, B, and C are shown by triangles, crosses and
squares, respectively.

orientations). Thus, the mentioned phase transition is between
the disordered paramagnetic (PM) and the HON phases.

The thermodynamic properties of the BL model were
studied in some detail using mean-field [29], renormalization
group [33], cluster variation [34], recursive approach to the
Bethe lattice [30], and Monte Carlo [20,31,35] methods. It
was shown [30,33] that the BL model can be mapped into
the AFM BEG model if an anisotropic interaction is added
to the BEG model Hamiltonian. Thus, though the properties
and resulting phase diagrams might have some similarities,
there are some important differences between the BEG and
BL models (see Ref. [30] for more detail).

At least two important problems of the BL model were
not thoroughly studied in previous papers. The first deals with
a recent finding [36] of the Berezinskii-Kosterlitz-Thouless-
(BKT) type phase between the disordered and long-range
ordered (HON) phase in the AFM BC model. This frustrated
phase does not cease to exist even in the AFM BC model with
exclusions [37]. In the absence of van der Waals interactions,
the BL model has the same edges of the single-ion anisotropy
(chemical potential) for the HON phase existence as the AFM
BC model. With an increase of molecular density, both the BL
and AFM BC models approach the two-state (TAFI) model
limit. Moreover, the two peaks are observed in the temperature
dependence of the specific heat of the BL model at higher
molecular densities—the same finding as for the AFM BC
model. The following question then arises: How similar are
the phase transitions of those two models? Do the peaks of the
specific heat frame the planar phase or does their origin differ?

It should be noted that the relation between the frustrated
phase of the TAFI model and the planar type of ordering is
well known. The magnetic field (chemical potential) breaks
the ground-state degeneracy of the TAFI model and stimulates
the occurrence of the

√
3 × √

3 structure at low values of
temperature [38]. The system splits into three sublattices with
ferrimagnetic spin magnetizations mA = mB �= mC (A, B, and
C are the three sublattices of the triangular lattice). The phase

transition to this phase is shown [39] to belong to the three-state
Potts universality class. The mapping of the TAFI model in a
field to the solid-on-solid model [40] leads to a prediction of
the BKT phase transition point [41] at T = 0.

With the added next-nearest-neighbor (NNN) FM interac-
tion, both the three-state AFM Potts model [42] and the TAFI
model [43–46] are known to have BKT-type phase transitions
in the same universality class as the six-state clock model
[47–49]. Under simple transformation the six-state clock
model is mapped to the TAFI model [46]. The six-state model
can exhibit a first-order transition, two BKT-type transitions,
or successive Ising, three-state Potts, or Ashkin-Teller-type
transitions [50]. The competition of the NN AFM interactions
and NNN FM interactions in the TAFI model leads to a
two-peaked temperature dependence of a specific heat [43]
framing the planar phase in a similar manner as for the q-state
clock models [51].

The second unsolved problem of the BL model is related
to the order and the universality class of the phase transition
from the disordered to the HON phase. The previous results
are rather controversial. The first-order phase transition was
initially obtained [29] using a mean-field approximation. Later,
the calculation based on the renormalization group approach
for partial BL model had predicted [33] the transition being
in the FM rather than the AFM three-state Potts universality
class [28] [note that a (weak) first-order phase transition was
later determined [52] for the three-state AFM Potts model].
The authors [33] of this prediction even assumed that the
second-order phase transition found in their work might be
a consequence of the low dimensionality of the BL model.
In Refs. [30,34] the BL model was solved by the cluster
variation method and a weak first-order phase transition was
again obtained. Later Fiore et al. [31] performed Monte Carlo
(MC) calculations and attributed the transition to the Ising
universality class, claiming that the first-order phase transition
obtained in previous papers was the artifact arising due to the
Bethe-like (cluster) methods used for calculation.

Here we thoroughly study these two problems using MC
simulation and finite-size scaling. We found that despite many
similarities (e.g., the same ground-state HON structure and the
same limits of the HON phase and proximity of the frustrated
phase edge) the BKT-type planar phase does not occur in the
BL model. The low-temperature peak of the specific heat is
shown to be caused by the Schottky anomaly. The obtained
critical exponents clearly demonstrate that the transition to the
HON phase belongs to the three-state Potts universality class.

II. MODEL AND DETAILS OF SIMULATION

The BL model is based on the assumption that each
molecule has three bonding directions at a120◦ angle to each
other. The molecule has three states: two orientational states
and a vacancy state. In each of orientational states the molecule
has bonding directions pointing towards three of the six NN
sites of the triangular lattice. The H bond is formed if two NN
molecules point towards each other. The interaction energy of
a pair of molecules at NN sites is −εH − εvdW and −εvdW

for H-bonded and H-unbonded pairs, respectively, and the
subscripts H and vdW denote H-bond and van der Waals
interactions, respectively (see Fig. 1).
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Several alternative representations of the BL model Hamil-
tonian are known. The spin-1 variables and mapping scheme
to the BEG model were suggested by Young and Lavis [33].
This scheme was later employed by Barbosa et al. [30], who
used convenient lattice-gas variables to separately describe
occupational and orientational ordering (see also Ref. [31]).
In Ref. [20] the description in terms of bond vectors and
corresponding energy functionals was used. Gorbunov et al.
[53] employed Kronecker variables to express the Hamiltonian
of the BL model. Here we use the lattice-gas Hamiltonian
suggested by Barbosa et al. [30] in the following form:

H = −
∑
i,j

ninj

(
εvdW + εH τ

ij

i τ
ji

j

) + μ
∑

i

ni, (1)

where the occupation variable ni is 1 if the site i is filled by the
molecule and 0 if the site is empty. This variable is related as
ni = s2

i to the spin-1 model variable (si = ±1 and 0) further
used to characterize the order parameter. Another variable τ

ij

i

is responsible for the orientational ordering: it corresponds to
the presence (τ ij

i = 1) or absence (τ ij

i = 0) of the H bonding
in the direction from site i to site j . Here μ stands for the
chemical potential which we write here with a plus sign as in
the BEG model. The first sum is performed over all pairs of
nearest neighbors i and j .

Further, the temperature, chemical potential, and van der
Waals interaction are normalized to the H-bond interaction,
εH : kBT /εH , μ/εH , and ξ = εvdW/εH .

The MC simulation was performed using the Metropolis
algorithm and Glauber dynamics, i.e., the calculations were
carried out with fixed chemical potential μ and varying
molecular coverage. A single-flip algorithm was chosen,
because of a poor performance [54] of traditional cluster
algorithms when applied to frustrated systems. To check, if
the simple single-flip technique is appropriate to study such
partly frustrated systems as the BL model at μ → 0, we also
performed some calculations using Wang-Landau sampling
[55], which is considered more reliable to address the frustrated
systems. The test calculations of specific-heat temperature
dependence at μ/εH = 0.1 demonstrated a perfect agreement
between the single-flip and Wang-Landau methods.

We used the triangular lattices with periodic boundary
conditions of sizes L × L with L = 24,48,72,96,120, and 144
for thermal averaging MC calculations and finite-size scaling.
We discarded 105–106 MC steps (MCS) for thermalization and
collected averages of (3 − 4) × 106 MCS (for the edges of the
HON phase existence we used to take up to 1.4 × 107 MCS).
Our simulations were performed starting from higher tem-
perature in the PM phase and using a random initial particle
configuration. Then the temperature was gradually decreased
in small steps with simulations at a new temperature starting
from the final configuration of the previous temperature.

We estimated the thermalization period by observing the
time evolution of the order parameters and energy at different
temperatures. Before gathering statistics for thermal averag-
ing, we also made additional checks at multiple temperatures
near phase transition points to be sure that the sample is
in the equilibrium. The thermalization time did not exceed
2 × 105 MCS for lattice size L = 144.

In order to estimate statistical errors, we used the data
from n ≈ 5 independent simulation runs starting from different
initial states. The observation xi of each run was used to
obtain a mean value 〈x〉 at that particular temperature. The
error bar of 〈x〉 can be obtained from σ = s/

√
n − 1 and

s2 = 1
n

∑n
i=1(xi − 〈x〉)2. In the figures the errors roughly

correspond to the size of a data point symbol.
To find the phase transition order and detail the thermal

averaging results, we also performed energy and magnetization
histogram calculations using a single-histogram reweighting
technique [56]. For these calculations we used larger lattice
sizes (up to L = 192) than for the thermal averaging and
collected entries from 2 × 107 MCS for each histogram.
In our simulations of thermodynamic parameters the phase
transition point was first located by the thermal averaging
and then recalculated by the histogram method. The results
were considered reliable if the data obtained by both methods
matched.

We also performed the analysis of the autocorrelation time
of energy at Tc and some values of μ. The integrated autocorre-
lation time ranges from τ ∼ 103–104 MCS at 0 < μ/εH < 1.4
(L = 144) to τ ∼ 106 MCS at the first-order phase transitions
close to the gas phase, μ/εH = 1.48 (L = 72).

We used two AFM order parameters to study the PM-
to-HON phase transition properties. One of them was the
staggered magnetization (average difference of sublattice
occupancy by nonzero variables) suggested for studies of the
HON phase in the AFM BC model [36]

ms = 〈Ms〉/L2

= 3

2L2

〈
max

( ∑
i∈A

si,
∑
j∈B

sj ,
∑
k∈C

sk

)

−min

(∑
i∈A

si,
∑
j∈B

sj ,
∑
k∈C

sk

)〉
. (2)

Here A, B, and C correspond to three sublattices of the
triangular lattice. For some calculations we also used another
order parameter which was simply the difference

m10 = 3〈M10〉/L2 = 〈ρ±1 − ρ0〉, (3)

where ρ±1 denotes the sublattice occupancy by the dominating
nonzero (either +1 or −1) variable and ρ0 the sublattice
occupancy by the dominating zero variable.

We calculated temperature dependencies of the specific heat
Cv = (〈H2〉 − 〈H〉2)/L2kBT 2, susceptibility χx = (〈M2

x 〉 −
〈Mx〉2)/L2kBT , logarithmic derivatives of 〈Ms〉 and 〈M2

s 〉,

D1s = ∂ ln〈Ms〉
∂β

= 〈MsH〉
〈 Ms〉 − 〈H〉,

(4)

D2s = ∂ ln
〈
M2

s

〉
∂β

=
〈
M2

s H
〉

〈
M2

s

〉 − 〈H〉,

and Binder order parameter and energy cumulants, Um
B =

1 − 〈M4
s 〉/3〈M2

s 〉2 and UE
B = 1 − 〈H4〉/3〈H2〉2, respectively.

Here the subscript x corresponds to s and 10.
Close to the second-order phase transition point Tc and for

sufficiently large L, the order parameter, susceptibility, and
specific heat can be expressed by the scaling functions X, Y ,
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and Z in the following way:

mx = L−β/νX(tL1/ν),

χx = Lγ/νY (tL1/ν), (5)

Cv − Cv0 = Lα/νZ(tL1/ν),

where α, β, γ , and ν are the critical exponents of specific
heat, magnetization, susceptibility, and correlation length,
respectively, and Cv0 is the background contribution to the
specific heat. The maxima of Cv and χx at Tc should scale
as ∼Lα/ν and ∼Lγ/ν , respectively. Further, in order to obtain
α/ν and γ /ν values, we combine the scaling of the functions
(5) close to Tc with calculation of these critical exponents by
scaling the maximum of Cv and χx at Tc. The extrema of
functions D1s and D2s scale as ∼L1/ν [57].

At the first-order phase transition point, the extrema of
all these functions scale as ∼Ld [58], where d is the
dimensionality of the system.

In the case of the BKT-type phase transitions, the correlation
length diverges as ξ = ξ0 exp{a[(TBKT − T )/TBKT]−1/2} and
the spin-correlation function decays as 〈sisj 〉 ∼ r

−η

ij , where η

is the critical exponent of the correlation function [41]. The
order parameter at the BKT-type phase transition point scales
as mx(L) ∼ L−η/2.

III. RESULTS

Ground-state calculations demonstrate that the ordered low-
density structure (HON phase) is obtained between the values
of chemical potential μ/εH = 6ξ (frustrated phase-HON
phase boundary) and 3

2 (1 + ξ ) (HON-gas phase boundary).
If the van der Waals interactions are neglected (ξ = 0), the
limits of the HON phase are between 0 and 3/2, and this
range coincides with the range the HON phase occupies in a
similar triangular AFM BC model [25]. The AFM BC model
demonstrates [36] two consecutive phase transitions: from the
disordered (PM) to the BKT-type phase and from the BKT-type
phase to the HON phase.

In Figs. 2(a) and 2(b) we present temperature dependencies
of the specific heat of the BL model for ξ = 0 and different
values of chemical potential μ. At higher values of μ,
one peak of specific heat related to the disordered-to-HON
phase transition at Tc is observed. The magnitude of the
peak decreases with decrease of μ. The second peak at
low temperature starts to emerge for μ/εH � 0.5 [see Cv(T )
at μ/εH = 0.3 and 0.1 in Fig. 2(a)]. This low-temperature
anomaly exists at some higher μ values as well, but it cannot
be seen due to its relative smallness and proximity to the peak
at Tc. The temperature dependence of the high-temperature
Cv peak depends on L as shown in inset of Fig. 2(a), but the
low-temperature anomaly is clearly L independent.

The low-temperature peak is due to the Schottky anomaly. It
appears at μ → 0 because of the scarcity of spin configurations
and the proximity of the ground state and exited energy levels.
The situation is analogous to that seen in the one-dimensional
(1D) Ising model at finite temperature. The occurrence of
the Schottky peak in the BL model at low T might be
described by a simple two-level energy model. Below the
phase transition point Tc, the two sublattices become occupied
by the molecules in the +1 and −1 states, respectively. The

(a) (b)

FIG. 2. (Color online) Temperature dependence of the specific
heat at ξ = 0 and L = 120 and different values of chemical potential:
(a) μ/εH = −0.1,0.1 and 0.3 and (b) 0.5, 0.7, 0.9, 1.15, and 1.4. Inset
in (a): Cv(T ) dependence at μ/εH = 0.3 for different values of L. The
points are obtained by thermal averaging and the curves are obtained
by the reweighted energy histogram method. The black curves used
to fit the low-temperature peaks at μ/εH = 0.1 and 0.3 in (a) are the
results of the two-level model (see text).

third sublattice is partly occupied by molecules at T < Tc,
but it gradually empties with a decrease of temperature [see
Fig. 3(a) and series of snapshots in Fig. 4]. The coverage of
this sublattice depends on μ and is higher at small μ/εH � 0.5
(note that at large μ the coverage of the third sublattice is low
and it empties almost immediately at Tc). The peak of the
Schottky anomaly coincides with the absence of molecules
in a third sublattice and establishment of a “perfect” HON
phase [HON0 in the phase diagram of Fig. 3(b)]. Thus, above
this peak there are roughly two levels of local energy only:
0 (if the center of the hexagon, formed of alternating ±1

(a) (b)

FIG. 3. (Color online) The BL model at ξ = 0 and L = 120:
(a) Occupancy of the A (B) sublattice by +1 (−1) states (higher
branch) and −1 (+1) states (lower branch) for μ/εH = 0.9, 0.7, 0.5,
0.3, 0.1, 0.02, 0, and −0.02. (b) Phase diagram obtained from the
temperature dependence of the specific heat. The solid circles are Tc

points, red crosses denote points of the Schottky anomaly, and the
triangle denotes the tricritical point. The denotation HON corresponds
to sublattice occupancies ρA = ρB , ρC > 0, and HON0 (“perfect”
HON phase) corresponds to ρA = ρB ≈ 1, ρC ≈ 0.
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(a) (b) (c)

FIG. 4. (Color online) Snapshots of the HON structure fragment
at μ/εH = 0.3 and below the Tc point: (a) kBT /εH = 0.35, (b) 0.2,
and (c) 0.06. The sublattices A and B are almost occupied by the
+1 (blue tripod-shaped symbol) and −1 (gray tripod-shaped symbol)
states, respectively, and the system undergoes gradual emptying of
sublattice C with a decrease of temperature.

variables in other two sublattices, is empty) and μ/εH (if the
center of the hexagon is filled). Note that the energy does
not depend on a state of a nonzero variable in the hexagon
center. The specific heat of the two-level system is equal
to Cv/kB = δ2 exp(−δ)/[1 + exp(−δ)]2, where δ = �/kBT

and � corresponds to the difference between two energy levels.
We tried to fit the Cv(T ) dependence of the BL model in the
vicinity of the low-temperature peak by the two-level model
and obtained a very reasonable agreement at low values of
μ [see Fig. 2(a)]. Our curves for μ/εH = 0.1 and 0.3 are
described by the two-level model formula with �/εH = 0.095
and 0.29, respectively (to fit the peak heights we multiplied
the specific heat of the two-level model by 0.6).

(a)

(b)

(d) (c)

FIG. 5. (Color online) Temperature dependencies of order pa-
rameters at ξ = 0 and L = 120: (a) ms at μ/εH = −0.1 − 0.9 and
m10 at μ/εH = 0.7, (b) ms and (c) m10 at μ/εH = 0.7 and different
values of L, and (d) temperature dependencies of exponents ηs and
η10 obtained at μ/εH = 0.7 using order parameters ms and m10,
respectively. In (a)–(c) the points are the results of thermal averaging
and curves are obtained from reweighted magnetization histograms.

(a)

(b)

(d)
(c)

FIG. 6. (Color online) Temperature dependencies of susceptibil-
ity at ξ = 0 and L = 120: (a) χs at μ/εH = 0.9,0.7,0.5, and 0.3 and
χ10 at μ/εH = 0.7 close to Tc, (b) χs(T ) and (c) χ10(T ) at μ/εH = 0.7
and different values of L, and (d) χ10 at μ/εH = 0.7,0.3 and 0.1 close
to Schottky anomaly point TS [χ10(TS) � χ10(Tc)]. The points are the
results of thermal averaging and the curves are obtained by reweighted
magnetization histograms.

In Figs. 5(a) and 6(a) the temperature dependencies of
order parameters ms (2) and m10 (3) and their corresponding
susceptibilities are presented at different values of μ. It is
seen that ms(T ) dependence steepens and the peak of the
susceptibility χs(Tc) becomes sharper and decreases in height
with increase of μ. In Fig. 6(a) we limit ourselves by the value
of chemical potential μ/εH � 0.9. With a further increase
of μ, the peak height decreases up to μc/εH ≈ 1.1 and then
starts to increase again. Here μc marks the value of chemical
potential at the top of the (T ,μ) phase diagram [Fig. 3(b)], and
Tc starts to decrease at μ > μc. The peaks of χs(Tc) and Cv(Tc)
are very sharp and high at μ > μc [see the peak at μ/εH = 1.4
in Fig. 2(b)]. The reason is that the phase transitions in the
interval of chemical potential above μ > μc are close to the
tricritical region. The L dependencies of ms and χs close to
Tc are presented in Figs. 5(b) and 6(b), respectively. They are
further used for the finite-size analysis.

In order to check if the BKT-type phase exists between two
anomalies of the specific heat, we performed the calculation of
the critical exponent of the correlation function, η. To obtain
ηs , the slopes of ln ms(L) versus ln L at different temperatures
around the Tc point were calculated. It should be noted that
the order parameter identical to ms (2) was used to obtain
the BKT-type critical line for the AFM BC model [36,37].
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(a) (b) (c)

FIG. 7. (Color online) Finite-size scaling of (a) specific heat, (b) both susceptibilities, and (c) order parameter ms at μ/εH = 0.7 The results
are fitted using formulas (5), t = (Tc − T )/Tc, and the background of Cv is assumed to be zero. Large symbols correspond to the results of
thermal averaging; lines correspond to the results obtained close to Tc by the reweighted histogram method.

As is seen from ηs(T ) dependence at μ/εH = 0.7 [Fig. 5(d)],
there is no plateau which would indicate the existence of the
critical line of the BKT-type points in the BL model. We
calculated η for μ/εH = 0.3 as well, but the result was the
same. In comparison, in the AFM BC model the plateau of
η(T ) dependence, corresponding to the BKT-type transitions,
was found [36] for η between 0.12 and 0.29. The limits of the
planar phase for a classical planar rotator model with sixfold
symmetry-breaking fields [47] were in between 1/9 and 1/4.

The order parameter ms (2) does not show the Schottky
anomaly at low temperature, since ms is constructed of nonzero
variables. At the same time, the order parameter m10 (3), which
accounts for the emptying of the “zero” sublattice, is quite
sensitive to the low-temperature anomaly at small values of μ.
Its susceptibility, χ10, demonstrates [Fig. 6(d)] either a small
peak (at μ/εH < 0.5) or some kind of “shoulder” (at higher
μ/εH ), both of them being around two orders of magnitude
smaller than the main peak at Tc [cf. Figs. 6(a) and 6(d)].
Both m10(T ) and χ10(T ) do not depend on L in the vicinity of
the Schottky anomaly, contrary to their behavior close to Tc

[Figs. 5(c) and 6(c)].
Consider the m10(T ) dependence at μ/εH = 0.7 [Fig. 5(a)]

in more detail. Such a behavior of m10(T ) contributes to two
anomalies of its susceptibility: the peak at Tc [the same point
as given by the order parameter ms , see Fig. 6(a)] and the small
shoulder at the Schottky anomaly point, kBT /εH � 0.2 [shown
in Fig. 6(d)]. Roughly, at this temperature point the m10(T )
curve saturates in Fig. 5(a), indicating perfect emptying of the
C sublattice.

We performed the calculation of the critical exponent of the
correlation function, η10, using temperature and L dependence
of the order parameter m10 [Fig. 5(c)]. And, again, as for the
order parameter ms(T ), no plateau of the BKT-type transitions
was found in the η10(T ) dependence [Fig. 5(d)].

Further, to determine the universality class of the
disordered-to-HON transition, using formulas (5) we
performed the finite-size scaling of thermodynamic parameters
at Tc. The scaled curves of specific heat, susceptibility χs , and

magnetization ms for μ/εH = 0.7 are shown in Figs. 7(a)–7(c),
respectively. The data used were obtained from both thermal
averaging and histograms reweighting. The values of critical
exponents of model (1) for different values of μ are presented
in a Table I. We have found that the transition has to be
attributed to the three-state FM Potts universality class in a

TABLE I. The critical exponents of the BL model. The exponents
α, γ , and β were obtained by scaling (5) of the functions Cv , χs , and
ms , respectively, close to Tc. The 1/ν [Cv] is obtained from scaling of
the Cv(T ). To adjust the values of α and γ , we performed the scaling
of the maxima of Cv and χs , respectively. The 1/ν[D1s] and 1/ν[D2s]
were obtained by scaling of the extrema of functions D1s and D2s .

ξ μ/εH α γ β 1/ν[D1s] 1/ν[D2s] 1/ν[Cv ]

±0.01 ±0.02 ±0.005 ±0.02 ±0.02 ±0.02
0 0.05 0.11 0.99 1.06 1.00

0.10 0.16 1.67 0.119 1.10 1.09 1.11
0.30 0.29 1.58 0.112 1.20 1.20 1.20
0.50 0.33 1.53 0.112 1.20 1.21 1.21
0.70 0.34 1.51 0.108 1.22 1.22 1.19
0.70a 1.47 0.11 1.18 1.19
0.90 0.35 1.47 0.111 1.18 1.18 1.20
1.15 0.40 1.47 0.109 1.24 1.24 1.20
1.40 0.47 1.34 0.108 1.22 1.23 1.20
1.45 0.57 1.15 1.38 1.41 1.35
1.48b 1.79ν 2.12ν 2.11 2.18 2.00

0.1 0.70 0.18 1.64 0.116 1.11 1.09
0.90 0.30 1.51 0.106 1.22 1.21
1.10 0.33 1.48 0.108 1.20 1.20
1.30 0.35 1.47 0.106 1.22 1.23
1.40 0.35 1.49 0.106 1.18 1.18

Ising 0 7/4 1/8 1
Potts 1/3 13/9 1/9 6/5

aThe scaling of χ10, D1s , and D2s was performed using order
parameter m10.
bThe exponents have no sense for the first-order phase transition, and
here we present their ratios.
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(a) (b)

FIG. 8. (Color online) (a) The log-log dependencies of X =
χs,χ10,D1s , D2s ,Cv vs L at Tc; (b) temperature dependence of
the Binder cumulant of magnetization ms at Tc. The parameters
μ/εH = 0.7 and L = 120.

whole range of μ values, except for the boundaries of the
HON phase.

Our conclusion is mostly based on values of α/ν and
1/ν, because the difference between the three-state Potts
(α = 1/3, ν = 5/6, β = 1/9, and γ = 13/9 [28]) and Ising
(α = 0, ν = 1, β = 1/8, and γ = 7/4) values for other ratios
of critical exponents is of the order of the calculation error (cf.
γ /ν = 1.733 and 1.75 in Potts and Ising universality class,
respectively). The scaling of the Cv maximum gives the value
of the exponents ratio α/ν either equal [see Fig. 8(a)] or rather
close to the Potts value, 0.4. The finite-size scaling of Cv using
formula (5) gives the exponent α close to 1/3 in the range
0.3 � μ/εH � 1 (see Table I), i.e., almost up to the top of
phase diagram in Fig. 3(b). No tendency towards the Ising
value, α → 0, is noticed in this range. The scaling of the χs

maximum at Tc gives a nice linear ln χs vs ln L dependencies
[Fig. 8(a)]: the susceptibility exponent γs , obtained using order
parameter ms , shows some deviation from Ising-Potts values,
especially close to the HON-frustrated phase boundary (see
also Table I); the ratio γ10/ν = 1.74, obtained from the order
parameter m10 at μ/εH = 0.7, does not allow us to differentiate

between the Ising and Potts values. However, the scaling of
both χs and χ10 [Fig. 7(b)] clearly shows that the exponent
1/ν has to be close to the Potts value, 1.2. This result is
corroborated by the scaling of the specific heat [Figs. 7(a) and
8(a)], magnetization ms [Fig. 7(c)], and parameters D1s and
D2s [Table I and Fig. 8(a)]. All these parameters steadily scale
with the value of 1/ν ≈ 1.2 in the range 0.3 < μ/εH < 1.4.

The scaling of the order parameter ms is not accurate
enough to unambiguously discriminate between the values
of β characteristic to the Potts and Ising universality class.
Nevertheless, the scaling with the Potts model pair of ratios
(1/ν = 1.2, β/ν = 0.133) is much better than that with the
corresponding Ising model pair (1/ν = 1, β/ν = 0.125) for
all values of μ. For μ/εH = 0.7 the exponent ratios are equal
to 1/ν = 1.2, β/ν = 0.130 [Fig. 7(c)]. A slight deviation of
our results from the generic relation for critical exponents
(2 − α = 2β + γ ) is mostly due to a systematic deviation of
exponent γs .

In Fig. 8(b) we present Binder magnetization cumulant,
Um

B at Tc. The crossing of this cumulant at Um
B ≈ 0.61

was considered [31] as the indication of the Ising behavior.
However, the crossing of Um

B in the three-state Potts model also
occurs at approximately the same value (see, e.g., Refs. [59]).
We obtained the crossing at Um

B = 0.615 ± 0.005.
The values of the critical exponents start to vary close

to both edges of the HON phase. While approaching the
disordered-to-HON edge (μ/εH → 3/2), we observe an in-
crease of the exponent ratios α/ν, 1/ν, and γ /ν towards
the value close to 2 (see Table I at μ/εH = 1.48). This
clearly indicates the first-order phase transition. In order to
determine the behavior at the tricritical region, we calculated
the energy histograms presented in Fig. 9. The histogram
at μ/εH = 0.3 [Fig. 9(a)] shows a peak which moves with
T along the phase transition region. Such a behavior of the
histograms is characteristic for almost all range of chosen μ

values. It evidences a typical second-order phase transition.
However, close to the disordered-to-HON edge (μ/εH >

1.4), the histograms are two peaked with a high saddle
point. At μ/εH = 1.45 [Fig. 9(b)] the two-peaked histogram
transits into the one-peaked histogram with an increase of

(a) (b) (c)

FIG. 9. (Color online) Energy histograms: (a) at μ/εH = 0.3 and L = 120 close to the phase transition (kBTc/εH = 0.3728) temperature,
(b) at μ/εH = 1.45, and (c) 1.48 for different lattice sizes at Tc. Insets in (b): Lattice size dependence of interface tension and latent heat at
μ/εH = 1.45.
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(a) (c)

(d)

(e)
(b)

FIG. 10. (Color online) Finite-size scaling of (a) specific heat at
μ/εH = 0.1 and 0.05 and (b) susceptibility χs at μ/εH = 0.1. The
log-log dependencies of Cv (c), χs (d), and D1s , D2s (e) vs L at Tc.
The results are fitted using formulas (5), t = (Tc − T )/Tc and the
background of Cv is assumed to be zero. Large symbols correspond
to the results of thermal averaging; lines correspond to the results
obtained close to Tc by the reweighted histogram method.

L: The latent heat �E and interface tension 2σ approach
zero, and the transition is still of the second order. Here
�E = |E+ − E−|, where E+(L) and E−(L) are the energies at
right and left peaks of the energy distribution, respectively, and
2σ = ln[Pmax(L)/Pmin(L)]/L, where Pmax(L) and Pmin(L) are
the probability density of energy at the maximum and saddle
point, respectively. However, at μ/εH = 1.48 [Fig. 9(c)] the
histograms clearly indicate that the transition is of the first
order. We believe that the tricritical point is around μ/εH =
1.47. The tricritical points of this model were already found at
ξ = 0.1 and 0.25 [30,31]. The location of the tricritical point
and behavior of the BL model at ξ = 0 at the disordered-to-
HON boundary, in general, is analogous to that of the AFM
BC model [36,37] at the same boundary.

An interesting situation is observed at another edge. At
ξ = 0, the ground-state boundary between the HON and frus-
trated phase is at μ = 0. This value also marks the termination
of the three-state model (1), because the third (vacant or partly
vacant) sublattice becomes completely occupied at μ < 0. The
phase existing at μ � 0 is only partly frustrated, since it retains
some preference of +1(−1) states at sublattices A (B).

As shown in Table I and Fig. 10, the critical exponents α

and 1/ν (the latter obtained both from fitting of specific heat

and parameters D1s , D2s) demonstrate a systematic approach
to the Ising model values starting from μ/εH = 0.3 and all
the way down towards μ = 0. The α decreases from 1/3 at
μ/εH � 0.5 to 0.29 (μ/εH = 0.3), 0.16 (0.1), and 0.11 (0.05),
and the 1/ν decreases from 1.2 at μ/εH � 0.5 to 1 at lower
values of μ. However, the peaks at Tc are too small and very
large lattice sizes are needed to perform a reliable scaling
analysis for μ/εH < 0.05. The critical index γ is less reliable
at this edge, since the susceptibility fits rather badly starting
from μ/εH � 0.05. Nevertheless, our results for α and 1/ν

obtained at 0.05 < μ/εH < 0.3 (see Table and Fig. 10) imply
that close to the HON-to-frustrated phase boundary the phase
transition demonstrates the approach to crossover from the
three-state Potts to the Ising universality class.

Note also that the Tc point exists for some very small μ < 0
values. The HON phase is still intact at finite temperature,
though the ground state belongs to the frustrated phase (see
Figs. 3(a) and 3(b) for ξ = 0 and μ/εH = −0.02; also the
phase diagrams for ξ = 0.1 and 0.25 in Refs. [30,31]). The
existence of the HON phase at very low negative μ < 0
is neither spurious, nor a finite-size effect. It is seen by
comparing the ms(T ) function at μ/εH = −0.02 (reentrance)
and μ/εH = −0.1 (frustrated phase) at low temperature and
different values of L. At the bump of ms(T ) dependence
[Fig. 5(a)], where a certain HON order is established at finite
temperature, there is no finite-size dependence for μ/εH =
−0.02, but the dependence is obvious for μ/εH = −0.1.

In order to determine if the van der Waals interaction might
affect the values of the critical exponents, we performed some
calculations for other values of ξ . We did not find any important
differences to compare with the ξ = 0 case. As seen from the
values of the critical exponents given in Table I, the transitions
to the HON phase at ξ �= 0 also belong to the three-state Potts
universality class.

IV. CONCLUSIONS

Two peaks in the Cv(T ) dependencies of the BL model
at low values of chemical potential might imply that there
is some intermediate phase separating the disordered (PM)
and HON phases. The intermediate planar phase was found
in a similar triangular AFM BC model [36] and the planar
rotator (p-state clock) model [47,51] at not very large values
of p. Our analysis of the BL model demonstrates that the
high-temperature peak of Cv represents the second-order phase
transition in the three-state Potts universality class and the
low-temperature peak is due to the Schottky anomaly.

In the work of Lapili et al. [51] a distinction of phase
transitions, characteristic to the Ising-Potts systems, on the
one hand, and the systems with planar phases, on the other, is
given based on the form of the order parameters. Let us analyze
the form of temperature dependencies of the order parameters
in all mentioned models. In Fig. 11 we present the temperature
dependencies of the BL model order parameters, ms and m10,
as well as those of the triangular AFM BC model (planar
phase at intermediate temperatures) and a typical dependence
for the planar phase existing all the way down from T0 = T2

(the PM-planar phase transition point) to T = 0. The ms(T )
demonstrates a typical Ising-Potts dependence. At the same

042124-8



PHASE TRANSITION PROPERTIES OF THE BELL-LAVIS . . . PHYSICAL REVIEW E 90, 042124 (2014)

FIG. 11. (Color online) Temperature dependence of order pa-
rameters of the BL model (1 and 2), AFM BC model (3) and p-state
planar rotator model for p = 128 (4). The curves 1–3 are obtained
for μ/εH = 0.7 and L = 120 and the curve 4 for L = 72 [51].

time, the m10(T ) might look similar to a planar phase order
parameter. Under scrutiny, the differences are seen.

For a system which has the planar phase between the HON
phase at low T and the PM phase at high T , the m10(T )
should behave in an intricate way similarly to that of the AFM
BC model (curve 3 in Fig. 11). Along with the BKT-type
transition from the PM to the frustrated phase at T0 = T2 (high

T ), it has to have the frustrated-to-HON transition at T1 (low
T ) and correspondingly demonstrate concaveness of the order
parameter at low T . We do not find such features in a behavior
of the parameter m10. At first glance, the m10(T ) dependence
might look more alike the planar phase order parameter (curve
4) which has the planar phase from T2 down to T = 0. But,
differently from the behavior of this order parameter, the
m10(T ) straightly saturates at the Schottky peak point TS .

We did not find the BKT-type phase transition at Tc and
further studied the universality class of this transition. In the
ground-state phase diagram the HON phase is confined (0 <

μ/εH < 3/2 at ξ = 0) between the frustrated phase (similar
to that found in the TAFI model) at high particle densities and
disordered gas phase at low densities. In contrast to a previous
MC calculation [31], which claimed the transition being in
the Ising universality class, our calculations demonstrate that
the transition at 0.3 < μ/εH < 1.2 belongs to the three-state
Potts universality class. We determined that the universality
of the phase transition changes by approaching both edges
of the HON phase. At high densities the critical exponents
α and 1/ν systematically decrease from the three-state Potts
values (0.33 and 1.2) at μ/εH = 0.5 towards 0.11 and close to
1, respectively, at μ/εH = 0.05. Such a behavior implies the
approach to crossover from the three-state Potts to the Ising
universality class. At another boundary of the HON phase,
the critical exponents start to deviate from those of the Potts
model at μ/εH > 1.0 − 1.1, i.e., closer to the top of the (T ,μ)
phase diagram in Fig. 3(b). At very low particle densities,
the transition at Tc is found to be of the first order with the
tricritical point being at μ/εH ≈ 1.47. Close to this edge, the
behavior is very similar to that found in the triangular AFM
BC model.
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