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The standard spectral scaling, S(f) ~ 1/f#, has been traditionally used as a correlation measure characterizing
the dynamical behavior of time series. The ubiquity of 1/f and 1/f? spectra in many processes certainly suggests
the existence of universal mechanisms, but also gives rise to the suspicion that some important features are not
included in this scaling. In this paper we argue that a complete spectral scaling, including as a main variable the
size of the series, S(f,T) ~ T"/f#, which is usually considered irrelevant, gives an insight into this problem.
Using synthetically generated series we show that, in general, the scaling exponent § is too generic, while the
exponent associated with the size, 1, gives a more specific information. Hence, we propose the use of both
exponents in a scheme to classify series into different universality classes. In this way many of the processes
appearing in the literature could be better identified, and much of the ambiguity that surrounds the standard

spectral scaling could be clarified.
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I. INTRODUCTION

Fluctuating time series are observed and analyzed in all
fields of science, from rheology and finance [1,2] to electronics
and psychology [3,4]. A first aim of such an analysis consists
of the characterization of the inherent dynamics of the process
for the sake of a subsequent model formulation. Among other
possibilities, the power spectra analysis is one of the most
important methods for the dynamical characterization of a time
series. In many cases spectra exhibit scaling as S(f) ~ 1/f#
and the exponent 8 becomes a quantifier of correlation. The ob-
servation of universal exponents with 8 ~ 1,2.. is a recurrent
fact in almost all fields of physics. It has been reported in many
experiments and observations in a surprising variety of fields,
electronics [3], music [5], condensed matter [7], atmospheric
sciences [8], medical sciences [9], astronomy [10], etc.

In the last twenty years this ubiquity has motivated a large
number of studies in order to find universal mechanisms able
to explain such a regularity. There have been interesting pro-
posals, but without a commonly accepted conclusion. While
some authors try to find such a universal mechanism [11,12],
others assume that this diversity implies that the physical
origin of the noise cannot be universal [3,13]. The discussion
continues in general with emphasis on the old questions of
how much of the explanation is universal and how much
fits into any clear theoretical picture [7]. Several possible
mechanisms have been postulated as being the origin of this
noise. Among the most well-known it is worth mentioning
the self-organizing criticality (SOC) mechanism [11], the
existence of broad distribution of relaxation times [10], linear
processes [14], correlated pulses [12], fractal renewal [15],
and linear diffusion [16]. On the other hand, authors not
favoring the idea of universality claim the need to use statistical
quantifiers distinct from the spectrum [13]. In this paper we
argue that these positions are compatible if we assume a more
complete spectral scaling. Our proposal is also to use the size
of the series, T, as a relevant variable, obtaining a different
scaling of the spectrum S(f,T) ~ T"/fP, with a different
exponent that, as shown in the paper, depends on the underlying
dynamics. The importance of this exponent in the analysis of
time series has only been recognized in a recent paper [17].
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With two relevant and independent exponents a more complete
classification of processes can be established and a better
identification of models is feasible. In this way it is possible to
continue with the idea of universal behaviors, but with a greater
variety of classes, and also to have a more precise guide for
the formulation of a theoretical model. This procedure is akin
to the generic scaling used in the growth analysis of interfaces
where the spatial behavior is accounted for by considering the
scaling of one local and one global variable [18]. This analysis
has been widely used in experiments of interface growth in
condensed matter, erosion, pattern formation in geophysics,
etc. [19]. An application of the scaling method in surfaces to
time series can be seen in [20]. The organization of the paper
is as follows. Conditions of the time series to be analyzed and
the proposal of a complete spectral scaling in terms of standard
exponents are given in Sec. II. An essential classification based
on this scaling follows in Sec. III, where the main classes
are defined. Sections IV and V are devoted to illustrating the
existence of these classes by using numerical generators of
series. Focusing on the ubiquitous 1/f series we show how
well-known numerical generators of these series belong to,
at least, four universality classes. Finally, a discussion on the
application of this analysis to experimental data concludes this

paper.

II. SPECTRAL SCALING

Let us consider a time series, Y () = {y:1,Vr2, ... Yin}>
representing some numerical or empirical process in discrete
or continuous time. Let us assume that, as result of some
experiment or simulation, we have an ensemble of series {Y'}
with a given preparation. As we have mentioned above, an
important variable in our analysis is the size of the series,
so we consider intervals of a given length T {Yr}. We
proceed by separating time mean values, Y7, and fluctuations,
87 = Y7 — Y7. The analysis of fluctuations is performed by
means of the spectral density, S7(f) = %ST(f)ST(—f), where
H means Fourier transform (discrete or continuous depending

on the variable) and f is a time average. As the spectral
density of a single realization is too noisy, an ensemble
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average (represented by (#)) is needed to smooth its shape. In
many cases the averaged spectral density, S(f,T) = (Sr(f)),
exhibits scaling as S(f,T) = ﬁ. This is the standard spectral
scaling observed in so many situations. If we now take
series with several sizes T, we can observe a new scaling
of the spectrum amplitude as A(T) ~ T". Here it is worth
remarking how the ensemble average works. If the ensemble
is composed of series intervals extracted from only one series
of a given experiment, which can be strongly interdependent,
the shape of the averaged spectrum becomes smooth, but
the amplitude maintains a strong dependence on the original
series, producing a value n ~ 0. On the other hand, if the
ensemble is formed of statistically independent samples, for
any initial preparation the amplitude of spectra depends only
on the size of the series, and the exponent 1 gives information
of the system dynamics. This is the case we are interested in, so
we consider an averaging with independent samples and take
several sizes to have enough variation in the variable 7. Then
the sample averaged spectral density obtained in this way will
exhibit scaling in both variables f and T as S(f,T) ~ T"/f%.
Note that the complete spectral scaling can only be observed in
cases where the sampling is abundant, that is, in experiments
and simulations. Many processes of the real world are unique
and other indirect methods should be applied to find, where
possible, the complete scaling.

The aim of this paper is to show that this complete scaling
is necessary to have the essential knowledge to identify a
model and, in addition, that in many cases the exponent 7,
not used before, carries the specific dynamical information of
the time series. Before doing this it is convenient to connect the
spectral exponents 8 and n with other better known exponents
coming from the scaling of widths and correlations. The
standard scaling is usually written as 1/f2%%!, «, being the
spectral exponent which accounts for the local scaling. For
oy € (0,1/2) it coincides with the exponent of local width in
fractal curves, o)., defined by the scaling of local widths as

w(z,T) = ([Y7(t + 1) — Yr(1)])'/? ~ 7%, (1

and also with the roughness exponent, Hurt’s exponent, etc.
The global scaling is well characterized by the variance
(or squared width), W(T)? = (8r(t)%), which scales with
the size as W(T)> ~ T?*. From now on « is the global
exponent. Its connection with the original spectral exponents is
easily obtained by the Parcival identity, W(T')?> = [ S(f,THdf,
obtaining n = 2(¢ — oy) when o5 > 0 and 1 = 2o when
oy < 0. Hence, we can write for the scaling of the spectra
in terms of o and «:

2(ax—ay)

SUT)~ s @ 20, o)
TZot

S(f’T)NW’ Ols<0. (3)

Note that this complete scaling can be also formulated in
terms of local widths as

w(t,T) ~  oe A loc 4)

where we have used (1) with w(T,T) ~ W(T).
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III. AN ESSENTIAL CLASSIFICATION

The form of this spectral scaling suggests a first classifi-
cation of time series. On the one hand the spectral scaling
with oy <0 and «; > 0 are distinct, which suggests the
classification of time series into noises, with oy, < 0, and fractal
curves, with oy > 0. The pure 1/f process with oy = 0 is an
intermediated process that preserves the characteristics of both
types. On the other hand the dependence of the spectra on the
size T is another relevant fact since it implies the existence
of one or two main scales in the scaling. Series whose spectra
are independent of the size, with n = 0, possess a unique scale
characterized by the spectral exponent «. In the case of noise
(¢ =0, oy < 0) they are stationary in a strict sense, that is,
with finite variance (¢ = 0) and single spectral scaling. In the
case of fractal curves (¢ = ay > 0) they are self-affine, that
is, with the same local and global scaling (¢ = «;). Then, we
define the class of stationary noise (SN) for the former case
and the class of self-affine curves (SA) for the latter.

On the other hand, series with spectral size dependence have
two relevant scales characterized by two exponents « and o.
In this paper we are going to consider only classes concerned
with the 1/f process, so we focus our analysis on the interval
o5 € [—%, %] and, besides the two previous classes with single
scaling SN and SA, we are going to consider two other classes
with double scaling. One is the case with « = 0 and oy > 0
that we call stationary fractal class (SF) and the other is the
class of pure 1/f processes (1F), with oy = 0,0 < 0. Note that
now the stationarity is only in a weak sense, that is with finite
variance o = 0 but double spectral scaling. Most of the noise
generators existing in the literature belong to one of these four
classes. A diagram with this classification in an « versus o
plot is shown in Fig. 1.

The classes involving a single scale (SN and SA classes)
should have a trivial form in their scale transformation.
If £&.(¢) is a given process of these classes, with ¢ = «,
the scaling &.(At) ~ A°€.(t) can be obviously assumed. The
cases with ¢ = —0.5 and ¢ = 0 correspond respectively to
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FIG. 1. (Color online) Classification of time series by their com-
plete scaling spectra showing the main classes: stationary noises (SN)
and stationary fractal curves (SF), self-affine curves (SA), and pure
1/f processes (1F). Points P1-P8 correspond to examples shown in
the figures: (+, black) additive and (x, red) multiplicative processes,
(0, blue) uncorrelated and (@, brown) correlated pulses.
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stationary white (WN) and 1/f noises. The case with ¢ = 0.5
corresponds to the random walk (RW) process. In contrast,
the classes with two relevant scales should have a nontrivial
scaling. As we will see throughout the paper, simulations
of diverse time series suggest the scaling Y7 (At) ~ A*Y7(¢),
which means that, surprisingly, the exponent related with
the scale transformation, and therefore with the underlying
mechanisms, is the global exponent . The measure of such an
exponent has been traditionally ignored. In this paper we use
time series synthetically generated to illustrate our theory. We
have considered two common ways of generating time series,
by adding pulses and by simulating stochastic equations.
Samples of each ensemble are independently generated. Their
number should be enough to assure a good spectral resolution
(100 samples for additive processes and 1000 samples for
the remainder). In this way the averaged spectrum plotted in
a log-log representation is nearly a straight line, as can be
seen in the figures. However, with a more reduced sampling
(one order of magnitude less), the complete spectral scaling
is feasible, obviously with more error in the determination of
exponents. Initial conditions are arbitrary, simply they should
be adequate to measure the increase (when @ > 0) or decrease
(when o < 0) of variance with 7 in the range of analysis. Our
aim is not to study in detail generation methods but only to
explain why distinct features produce distinct classes. Hence,
we use scaling arguments, which are not mathematically
rigorous, but our results are always corroborated by numer-
ical simulations. Moreover, besides the analysis of spectra
and widths, which are essential to formulate the complete
spectral scaling, and for the sake of illustration, we also plot
single samples of the generated process to visually compare
similitudes and differences between samples of the same
class.

IV. ADDITIVE AND MULTIPLICATIVE PROCESSES AS
GENERATORS OF SINGLE AND DOUBLE SPECTRAL
SCALING CLASSES RESPECTIVELY

Equations with additive noise or, more generally, the use of
linear transformations of single scale series produce processes
with single scaling. The simplest example is the derivative
(or integration) of series. Derivation of series in the SA class
with o = oo gives series in the SN class with o) = ojoc — 1,
o = a — ajoc = 0. Another example is the convolution. In
general we have

Ea(t) ~ f ot — e, )

with ¢’ = ¢ + 0, when the scaling of the kernel is g(At) ~
Aeg(t). Usually &.(f) is a white random noise, ¢ = —0.5,
and then a kernel with & = 0.5 is necessary to have an 1/f
noise [10]. Processes known as fractional Brownian motion
(FBM) are also generated using convolutions with white noise.
When this noise is Gaussian the generated process is also
Gaussian. To generate self-affine series with exponents in the
interval @ = oo € (0,1) we have used the Levinson algorithm
implemented in the MATLAB framework, which is, basically,
a discretization of (5). This is a standard method to get
FBM processes. In Fig. 2 the averaged spectra and widths
for series with several sizes T and value a; = oo = 0.1 are
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FIG. 2. (Color online) Spectra (upper) and local widths (lower)
of SA (P1, « = ajpc = ay = 0.1) and SN (P2, o = oo = 0, oy =
—0.1) series generated from a fractional-Brownian method as
explained in the text. The initial condition is a Gaussian with
02 = 2.14, the number of samples is 100, and the sizes of series
are T = 2°211 213,

plotted. Series in the SN class can be generated from the
derivative of series in the SA class. In our case we obtain
series with g = —0.1, o = 0 from the derivative of SA series
with ooc = @ = 0.9. It can be seen in this figure that in both
cases the spectra and widths for distinct sizes do not shift but
collapse to a unique curve. This is the sign of single scaling.
Series with this property are plotted in Fig. 3. They represent
a transition from a fractal curve (P1) to a correlated noise
(P2), the stationary 1/f process (P6) being a frontier between
them. It is worth remarking that this process is an unattainable
limit within the FBM methods. Note that we have used oo
instead of o, in some cases. This is because in the FBM
the spectral exponent collapses to oy, = 1/2 for « > 1/2 and
then the correct measure of local scaling is the local exponent
ooc- In this paper we have focused our analysis on the case
a1oc < 1/2 where the spectral and local exponent coincides, so
the spectral exponent serves to characterize the local scaling. A
more complete analysis going beyond this case will be shown
in a future paper.

On the other hand, multiplicative processes typically
produce series with a double scaling in the spectra. Let us
consider a generalized multiplicative process given by the
stochastic equation

Y(t) = (1 — ex)Y L+ E@O)Y (1), (©6)
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FIG. 3. (Color online) Plot of individual series (with T = 2!!)
showing cases with single scaling: In the SA class, Pl (o =
o, = 0.1), stationary noise, P2 (¢ = oy, = —0.1), and stationary 1 f
process, P6 (¢ = a, = 0). Fractality of P1 and (less evident) P6
can be observed by eye. P2 and P6 are displaced upwards by 5 and
10 units respectively.

with p # 1, £(¢) being a Gaussian white noise and taking
€ = 1/2 in the Ito prescription and € = 1 in the Stratonovich
prescription. With the appropriate boundary conditions the
process becomes positive and stationary with a probability
density P(Y) ~ Y. In a free evolution from an initial
condition one can see that in a region of Y the probability
density evolves as P(Y,t) ~ Y “F(¢t). If we now apply our
scaling laws, taking Y (At) ~ A*Y (¢), substituting this law into
Eq. (6), with the scaling of the white noise £(At) ~ A~1/2£(¢),
and equating powers, we obtain for the global exponent
1
0= ———-—.
21—

This important result means that the global scaling of stochas-
tic equations driven by multiplicative white noise only depends
on the multiplicative power . The local exponent o cannot
be deduced from scaling arguments but it can be obtained
from geometrical considerations. On the one hand it can
be seen that the local exponent is limited to values in the
interval [—0.5,0.5], becoming saturated at the extreme values.
On the other hand it is also observed that when the local
scaling is not saturated, —0.5 < oy < 0.5, the shape of the
probability density ~Y ~* and the exponents o and «; are
mutually dependent. Hence, it can be expected that critical
changes in this shape, which occur forx = 1 and « = 3, would
define the limits between classes which occur for & = «; and
o, = 0. One simple formula that accounts for these conditions
would be o, = (35—")01. Substituting « by (7) the formula for
the spectral exponent then reads

3—«
Oy = ————»
41 — )
and coincides with the formula obtained in [21] by a direct
calculation of the spectra of series with correlated pulses. It is
worth remarking that in general (excepting the case k = 1) a

multiplicative process will exhibit a double scaling spectrum.
The role played by the exponents «, o, and « is also important

(7

(®)
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FIG. 4. (Color online) Spectra (upper) and local widths (lower)
with their respective collapses (insets) of a multiplicative process
(P3, a =1, ajoc = a5 = 0.5) generated as the ¢ =2 power of a
random walk (RW). The initial condition is Gaussian with o = 1, the
number of samples is 1000, and the sizes of series are T = 2°,2!!,213,

to remark. While « depends exclusively on the multiplicative
exponent W, o, and k seem to be more dependent on
details. Our simulations corroborate these results. The simplest
example is a pure multiplicative process in the Stratonovich
prescription, k = u, that can be numerically obtained as the
q power of a positive RW process. Another multiplicative
process with wu =1—-1/g and k = pu=1—-1/q is then
obviously generated. In this case the algorithm is easy to
implement and numerically stable for any ¢ and . We simply
usethemap Y; 1 = Y; + &;, & being a Gaussian normal process
(Y is a Wiener process) and then we take |Y|?7. We have
obtained the predicted values of oy = 2‘]4—+1 forg € [-3/2,1/2]
and o = g /2 in the complete range of validity (dashed red line
in Fig. 1). Note that the case with ¢ = 0, that would produce
stationary processes (series in the SF and SN classes), is an
unattainable limit (u — —oo) for a multiplicative process.
For ¢ > 1/2 «, saturates to 1/2 but ¢ = ¢/2 as given by
(7). In Fig. 4 we show a spectral analysis and an analysis
with local widths for the case ¢ = 2 (s = 1/2, o = 1). The
shift with the size, observed in both figures, is the sign of
double scaling. The local exponent «;, or ajoc in each case,
is calculated from the slope of the corresponding curves. As
expected, we have oy = a0 = 1/2. To get the global exponent
a we plot S(f,T)T ~2@=%) against f and w(z,T)T ~@ %)
against t respectively. According to the scaling formulas (3)
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FIG. 5. (Color online) Spectra and collapses (insets) of two mul-
tiplicative processes generated as the g power of a RW with oy = 1 as
initial condition. Upper withg = 0.1 (P4, a = 0.05, oy = 0.3)inthe
limit of the SF class. Lower withg = —1/2 (PS5, o = —1/4, oy, = 0)
in the 1F class. As in the previous figure 7 = 2°,2!'' 2! with 1000
samples.

and (4) curves of distinct size should be coincident in this
plot. Then we take oy = e = 1/2 with varying o until
we obtain the best possible collapse of curves with distinct
size. This situation is observed for « = 1 as expected. We
show this collapse in the inset of both figures. This method
will be followed throughout the paper where, for the sake
of conciseness, only the spectral analysis will be presented.
In Fig. 5 we show the spectral analysis in two interesting
situations: First (upper) in the limit to the SF class withg = 0.1
(o = 0.05) and second (lower) a new way of generating 1/f
processes, withg = —1/2 (a;, =0, a = —1/4).

V. SERIES OF UNCORRELATED AND
CORRELATED PULSES

Time series in the case of uncorrelated pulses can be written
as Y (1) = >, h(t — 1,,0,), h(z,0) being the shape of the pulse
or relaxation process centered in T = 0, # the times where the
pulse takes place, and 6 a parameter quantifying the shape of
the pulse. The spectral density can be directly calculated as

1 ~ ~
Sr(H) =7 ZGXP [—if (6 — ) (f.0Dh(= f,0m).  (9)

I,m

Here we have only treated short ranged pulses whose finite
Fourier transform is not dependent on the position # and
integration range 7. Considering point processes, where the
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FIG. 6. (Color online) Spectra and collapse (inset) of series of
uncorrelated pulses. Upper, a typical example of stationary 1F noise
(P6, o = ay = 0) generated from exponential pulses with a uniform
distribution of widths and a Poissonian renewal time. Lower, an
example of the SF class (P7, o« =0, oy = 1/4) generated from
exponential pulses with the same width than their renewal time, which
is power law distributed. The same sizes and number of samples as
in the previous figures.

renewal times, 7, = ;41 — #;, are uncorrelated, so as the shape
parameters 6;, and ignoring the off diagonal (I # m) terms,
assuming that the coefficient exp[—if(f; —t,)] acts as a
random phase [17], we have

S(fT) ~ @(Ih(ﬁ@)ﬂ (10)
N(T) is the mean number of pulses in the interval T'. If the
mean renewal time T is well defined and finite, N(T) = % and
the size T is irrelevant in the spectra. Thus we have a case
with single scaling whose spectral exponent is determined
by the shape and distribution of pulses. For instance, if the
shapes of pulses scale as |h(f,0)| ~ 6 “g(f/0) and they
are distributed as a power law with P(z6) ~ z7? P(0), the
spectral exponent becomes oy = a 4+ b/2 — 1. The generation
of a stationary 1/f process (¢ = a; = 0) with exponential
pulses, h(t,0) = *exp(—0|t|) (a = 1), then requires a uniform
distribution P(0) = cte (b = 0). In Fig. 6 we show the spectral
analysis of such a case using a Poissonian distribution of
renewal times, with P(t) = exp(—7), a random amplitude of
pulses with value 1 and an uniform probability, P(0) = 1,
0 e(/T,1/T 4+ 1). This is an old way of simulating an
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FIG. 7. (Color online) Plot of individual series (with T = 2'")
showing samples nearly of the SF class (o ~ 0, o, > 0) with distinct
spectral exponents: oy = 0.25 (P7), oy = 0.3 (P4), a0y = 0(P6). P4
and P7 have closed exponents but their shape is very different. P4
and P6 are displaced upwards by five and ten units respectively. P4
is amplified by a factor of 5.

effective stationary 1/f process with (¢ = oy = 0) for series
of finite size [22]. On the other hand if the mean renewal time
is dependent on 7" we have a case of double scaling in the
spectra. As an example we can consider the case with a power
law in the probability of waiting times P(r) = (d — 1)t ¢
withl <d < 2,7 € (1,00), whereT = %(Tz‘d — 1). Inthis
case, comparing (3) with (10), we have 2(«¢ — o) = d — 2,and
if, in addition, the process is stationary (o = 0) the spectral
scaling would read

d-2

T
S(f,T) = =2
This is a good example of the SF class with o = 0,0 = 1 —
d/2 € (0,1/2). It has been used for studies of 1/f noise in [17]
using flat pulses with value £1. In Fig. 6 we show the spectral
scaling of a similar case, now with exponential pulses with the
same width that their renewal time, (¢, ;) = £exp(—| r% |), and
a value of d = 1.5. In Fig. 7 a plot of this generated series is
shown (P7), and can be compared with a series generated with
a pure multiplicative process (P4). Although both examples
have closed exponents the visual differences are appreciable
since, as already mentioned in the latter section, multiplicative
processes are critical in o ~ 0.

Series of correlated pulses are often used as generators
of 1/f processes. In a series of correlated pulses the shape
of the pulses becomes irrelevant at long times (see Fig. 8)
and the scaling of spectra is only determined by the process
of the interpulse time {7;}. When this process comes from a
multiplicative process with parameters p and « it is easy to
see [21] that series of flat pulses with amplitude rk_l are in fact
multiplicative processes with ' =5/2 —  and k' =3 — k
(in the Ito prescription). This analogy of correlated pulses
with multiplicative processes allows us to calculate the scaling
exponents. Hence, if we use pure multiplicative processes in
the Ito prescription (1 = «/2) for the generation of interpulse
times, and we want to generate 1/f series, thatis o, = 0,«’ =

(1)

PHYSICAL REVIEW E 90, 042122 (2014)
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FIG. 8. (Color online) Spectra of series of correlated pulses as
examples of the 1F class (P8, = —1/3,a, = 0). Upper, with
a positive Wiener process with oy = 1 for the interevent times
and distinct shapes of pulses: flat (black), exponential (red), and
Lorentzian (blue). Lower, for series of exponential pulses with distinct
sizes, from top to bottom T = 2°,2!! 213 The inset shows the collapse
of spectra with @ = —1/3. In all cases each spectrum is an average
of 1000 samples.

3, we wouldrequire u = k = 0, thatis, aRW as time generator.
The value of &’ is obtained substituting u’ = 5/2 in (3) to get
o’ = —1/3. In Fig. 8 we corroborate this result. We use a
Wiener process, Tp+1 = T + & (& being a Gaussian process),
as generator of interpulse times, {|7x|}, and exponential pulses
exp(—|¢|) with uniformly distributed amplitude in (0,1). This
is a good example of a series in the 1F class that is often used
because of the perfect 1/f shape obtained. In Fig. 9 several
series with a perfect 1/f shape are plotted. It is illustrative
to see how a pure multiplicative process (P5) seems to be
formed of correlated pulses as in P8. However, they are not
stationary (a¢ < 0) as P6 is (¢ = 0). Note that this property
cannot be detected by visual inspection. To have stationarity
an Oerstein-Uhlenbeck process as 734 = (1 — %)tk + & is
currently used in the generation of correlated pulses [23], but
then, at times where the process becomes stationary, 7 > Ty,
the spectrum saturates to a WN with oy = —0.5, o = 0.

VI. CONCLUSIONS AND DISCUSSION

A more complete spectral scaling is here proposed for the
analysis of time series. Two independent exponents associated
to a local and a global scaling allow a classification of time
series in different universality classes. For the illustration of the
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FIG. 9. (Color online) Plot of individual series showing samples
in the 1F class (o; = 0) with distinct global exponent: o« = —0.25
(PS), o = —0.33 (P8), and o = 0 (P6). Despite the distinct nature
of the generating process PS5 and P8 look similar. P6 and P8 are
displaced upwards by 10 and 20 units respectively. P8 is amplified
by a factor of 5.

theory we use synthetically generated time series. Concerning
research on 1/f noise, series in four main universality
classes, with single and double scaling, are generated and
analyzed with our complete spectral scaling to support our
findings.

The application of the complete scaling analysis to empir-
ical series certainly would significantly improve the current
situation achieved by the standard method. It is clear that the
existence of one more independent exponent and of several
universality classes provides a better description of the possible
underlying mechanism acting on the system dynamics and
clarifies the true ambiguity occurring in many of the fluctuation
analyses appearing in the References.

When the empirical time series to be analyzed is unique,
which occurs frequently in natural processes, the global
scaling cannot be directly measured by the exponent « since
the extracted pieces of series of size T can be strongly
correlated. This is not a limitation of this method but a
kind of statistical indetermination which is intrinsic in series
with strong correlation. So, no other direct method exists to
deal with this scaling. Then another kind of analysis, which
indirectly provides information about it, should be applied.
For instance, if the series comes from a multiplicative process
it is possible to measure the exponent o which, if the noise
is white, is directly related to the exponent « (7). If it is a
series of pulses the interpulse statistics gives an indirect way
of estimation of the global scaling. Other cases have to be
specifically studied.

Note that our concept of class is more generic than the
concept of mechanism, although in some cases both coincide.
For instance, linear mechanisms of any kind, coming from
space or time processes [14,16], can be always associated
to single scaling classes since, in essence, they come from
convolutions with noise. In contrast, SOC type mechanisms,
coming from the existence of internal or external thresholds,
produce, in general, correlated [24] or uncorrelated [25]
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relaxation processes, and therefore they generate series in
single or double scaling classes. So, a class represents a
more essential concept since it is associated to a more evident
symmetry.

Ambiguity occurs since the underlying mechanism cannot
be deduced by the value of the spectral exponent only. As
shown in the paper, it is just the global exponent which best
informs us about the system dynamics. Hence, in many cases
the choice of model is more a consequence of intuition than
of information. There are many examples in the literature
where the same processes are related to distinct mechanisms,
that is, possibly to the distinct universal classes in our
theory. Without being exhaustive we mention here some
examples. Earthquakes are modeled either by SOC models
with uncorrelated [26] (SN class) or correlated [24] (1F class)
relaxation times. Musical series exhibiting 1/f fluctuations
have been modeled by analogical devices [5], numerical
algorithms [27], and also as a process of correlated pulses (1F
class) [6]. Stock market activity (volatility) has been seen as a
FBM process (SA class) [2], a kind of SOC model (probably
in the SN class) [28], and also as a process of correlated pulses
(1F class) [29,30]. Physical systems exhibiting intermittency
have been associated to a multiplicative process (1F class) [31]
and also to a renewal process (SF class) [17].

Finally, we would like to remark that, using this method,
not only is a better classification possible, but also a more
precise estimation of the underlying mechanism is feasible.
As a representative example we take the model of correlated
pulses with a RW interpulse process [12], which is very often
used [6,23,29,30], probably by the perfect 1/f shape obtained.
As we show in the paper this is a specific case of the 1F
class with o = —1/3, that is, with a strong correlation in
the interpulse process. We guess that, in general, empirical
series of this class have to exhibit more or less correlation,
that can be quantified by the exponent «. A more detailed
model could be so formulated once the exponent « is known.
Note that this exponent is more robust and therefore more
essential for the dynamics than «, which is the common
fitted exponent. A paper showing these ideas is now in
preparation.

Not only in these cases, but in general is it clear that a better
analysis of the empirical series such as the one proposed in
this paper will determine the true class. Therefore it provides
a more precise model of the investigated phenomena. So,
we conclude by encouraging experimentalists to use this
method when the necessary sample preparation is feasible and
theoreticians to develop methods for the cases of empirical
series without sampling.

ACKNOWLEDGMENTS

The author is especially grateful to A. Balankin for fruitful
discussions about the possibility of applying techniques of
surface growth to time series analysis. He also acknowledges
the advice of J. M. Lépez, R. Cuerno, and H. Wio, and the
help of T. Owen and S. Herrera for providing him technical
support.

042122-7



MIGUEL A. RODRIGUEZ

[1] H. E. Hurst, Nature (London) 180, 494 (1957).

[2] B. B. Mandelbrot, Multifractals and 1/fnoise: Wild Self-Affinity
in Physics (Springer, New York, 1999).

[3] P. Dutta and P. W. Horn, Rev. Mod. Phys. 53, 497 (1981).

[4] D. L. Gilden, Psychol. Rev. 108, 33 (2001).

[5] R. FE. Voss and J. Clarke, Nature (London) 258, 317 (1975);
J. Acoust. Soc. Am 63, 258 (1978).

[6] D. J. Levitin, P. Chordia, and V. Menon, Proc. Natl. Acad. Sci.
USA 109, 3716 (2012).

[7] M. B. Weissman, Rev. Mod. Phys. 60, 537 (1988).

[8] O. Peters, C. Hertlein, and K. Christensen, Phys. Rev. Lett. 88,
018701 (2001).

[9] P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M.
G. Rosenblum, H. E. Stanley, and Z. R. Struzik, Chaos 11, 641
(2001).

[10] W. H. Press, Comments Astrophys. Space Phys. 7, 103 (1978).

[11] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987); P. De Los Rios and Y. C. Zhang, ibid. 82, 472 (1999).

[12] B. Kaulakys, Microelectron. Reliab. 40, 1787 (2000).

[13] R. F. Voss, Phys. Rev. Lett. 40, 913 (1978).

[14] E. Milotti, Phys. Rev. E 51, 3087 (1995).

[15] S. B. Lowen and M. C. Teich, Phys. Rev. E 47, 992 (1993).

[16] H. J. Jensen, Phys. Scr. 43, 593 (1991).

PHYSICAL REVIEW E 90, 042122 (2014)

[17] M. Niemann, H. Kantz, and E. Barkai, Phys. Rev. Lett. 110,
140603 (2013).

[18] J. J. Ramasco, J. M. Lopez, and M. A. Rodriguez, Phys. Rev.
Lett. 84, 2199 (2000).

[19] H. S. Wio, R. R. Deza, and J. M. Lépez, An Introduction to
Stochastic Processes and Nonequilibrium Statistical Physics
(World Scientific, Singapore, 2012).

[20] A. S. Balankin, Phys. Rev. E 76, 056120 (2007).

[21] B. Kaulakys and J. Ruseckas, Phys. Rev. E 70, 020101(R)
(2004).

[22] J. Bernamont, Ann. Phys. (Leipzig) 7, 71 (1937).

[23] B. Kaulakys and G. Vektaris, Phys. Rev. E 52, 2091 (1995).

[24] J. Davidsen and H. G. Schuster, Phys. Rev. E 62, 6111 (2000);
65, 026120 (2002).

[25] S. Maslov, M. Paczuski, and P. Bak, Phys. Rev. Lett. 73, 2162
(1994).

[26] Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. Lett.
68, 1244 (1992).

[27] M. Gardner, Sci. Am.(4) 238, 16 (1978).

[28] A. H. Sato and H. Takayasu, Physica A 250, 231 (1998).

[29] M. Takayasu and H. Takayasu, Physica A 324, 101 (2003).

[30] V. Gontis and B. Kaulakys, Physica A 382, 114 (2007).

[31] I Procaccia and H. Schuster, Phys. Rev. A 28, 1210 (1983).

042122-8


http://dx.doi.org/10.1038/180494a0
http://dx.doi.org/10.1038/180494a0
http://dx.doi.org/10.1038/180494a0
http://dx.doi.org/10.1038/180494a0
http://dx.doi.org/10.1103/RevModPhys.53.497
http://dx.doi.org/10.1103/RevModPhys.53.497
http://dx.doi.org/10.1103/RevModPhys.53.497
http://dx.doi.org/10.1103/RevModPhys.53.497
http://dx.doi.org/10.1037/0033-295X.108.1.33
http://dx.doi.org/10.1037/0033-295X.108.1.33
http://dx.doi.org/10.1037/0033-295X.108.1.33
http://dx.doi.org/10.1037/0033-295X.108.1.33
http://dx.doi.org/10.1038/258317a0
http://dx.doi.org/10.1038/258317a0
http://dx.doi.org/10.1038/258317a0
http://dx.doi.org/10.1038/258317a0
http://dx.doi.org/10.1121/1.381721
http://dx.doi.org/10.1121/1.381721
http://dx.doi.org/10.1121/1.381721
http://dx.doi.org/10.1121/1.381721
http://dx.doi.org/10.1073/pnas.1113828109
http://dx.doi.org/10.1073/pnas.1113828109
http://dx.doi.org/10.1073/pnas.1113828109
http://dx.doi.org/10.1073/pnas.1113828109
http://dx.doi.org/10.1103/RevModPhys.60.537
http://dx.doi.org/10.1103/RevModPhys.60.537
http://dx.doi.org/10.1103/RevModPhys.60.537
http://dx.doi.org/10.1103/RevModPhys.60.537
http://dx.doi.org/10.1103/PhysRevLett.88.018701
http://dx.doi.org/10.1103/PhysRevLett.88.018701
http://dx.doi.org/10.1103/PhysRevLett.88.018701
http://dx.doi.org/10.1103/PhysRevLett.88.018701
http://dx.doi.org/10.1063/1.1395631
http://dx.doi.org/10.1063/1.1395631
http://dx.doi.org/10.1063/1.1395631
http://dx.doi.org/10.1063/1.1395631
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1103/PhysRevLett.59.381
http://dx.doi.org/10.1103/PhysRevLett.82.472
http://dx.doi.org/10.1103/PhysRevLett.82.472
http://dx.doi.org/10.1103/PhysRevLett.82.472
http://dx.doi.org/10.1103/PhysRevLett.82.472
http://dx.doi.org/10.1016/S0026-2714(00)00055-X
http://dx.doi.org/10.1016/S0026-2714(00)00055-X
http://dx.doi.org/10.1016/S0026-2714(00)00055-X
http://dx.doi.org/10.1016/S0026-2714(00)00055-X
http://dx.doi.org/10.1103/PhysRevLett.40.913
http://dx.doi.org/10.1103/PhysRevLett.40.913
http://dx.doi.org/10.1103/PhysRevLett.40.913
http://dx.doi.org/10.1103/PhysRevLett.40.913
http://dx.doi.org/10.1103/PhysRevE.51.3087
http://dx.doi.org/10.1103/PhysRevE.51.3087
http://dx.doi.org/10.1103/PhysRevE.51.3087
http://dx.doi.org/10.1103/PhysRevE.51.3087
http://dx.doi.org/10.1103/PhysRevE.47.992
http://dx.doi.org/10.1103/PhysRevE.47.992
http://dx.doi.org/10.1103/PhysRevE.47.992
http://dx.doi.org/10.1103/PhysRevE.47.992
http://dx.doi.org/10.1088/0031-8949/43/6/009
http://dx.doi.org/10.1088/0031-8949/43/6/009
http://dx.doi.org/10.1088/0031-8949/43/6/009
http://dx.doi.org/10.1088/0031-8949/43/6/009
http://dx.doi.org/10.1103/PhysRevLett.110.140603
http://dx.doi.org/10.1103/PhysRevLett.110.140603
http://dx.doi.org/10.1103/PhysRevLett.110.140603
http://dx.doi.org/10.1103/PhysRevLett.110.140603
http://dx.doi.org/10.1103/PhysRevLett.84.2199
http://dx.doi.org/10.1103/PhysRevLett.84.2199
http://dx.doi.org/10.1103/PhysRevLett.84.2199
http://dx.doi.org/10.1103/PhysRevLett.84.2199
http://dx.doi.org/10.1103/PhysRevE.76.056120
http://dx.doi.org/10.1103/PhysRevE.76.056120
http://dx.doi.org/10.1103/PhysRevE.76.056120
http://dx.doi.org/10.1103/PhysRevE.76.056120
http://dx.doi.org/10.1103/PhysRevE.70.020101
http://dx.doi.org/10.1103/PhysRevE.70.020101
http://dx.doi.org/10.1103/PhysRevE.70.020101
http://dx.doi.org/10.1103/PhysRevE.70.020101
http://dx.doi.org/10.1103/PhysRevE.52.2091
http://dx.doi.org/10.1103/PhysRevE.52.2091
http://dx.doi.org/10.1103/PhysRevE.52.2091
http://dx.doi.org/10.1103/PhysRevE.52.2091
http://dx.doi.org/10.1103/PhysRevE.62.6111
http://dx.doi.org/10.1103/PhysRevE.62.6111
http://dx.doi.org/10.1103/PhysRevE.62.6111
http://dx.doi.org/10.1103/PhysRevE.62.6111
http://dx.doi.org/10.1103/PhysRevE.65.026120
http://dx.doi.org/10.1103/PhysRevE.65.026120
http://dx.doi.org/10.1103/PhysRevE.65.026120
http://dx.doi.org/10.1103/PhysRevLett.73.2162
http://dx.doi.org/10.1103/PhysRevLett.73.2162
http://dx.doi.org/10.1103/PhysRevLett.73.2162
http://dx.doi.org/10.1103/PhysRevLett.73.2162
http://dx.doi.org/10.1103/PhysRevLett.68.1244
http://dx.doi.org/10.1103/PhysRevLett.68.1244
http://dx.doi.org/10.1103/PhysRevLett.68.1244
http://dx.doi.org/10.1103/PhysRevLett.68.1244
http://dx.doi.org/10.1038/scientificamerican0278-16
http://dx.doi.org/10.1038/scientificamerican0278-16
http://dx.doi.org/10.1038/scientificamerican0278-16
http://dx.doi.org/10.1038/scientificamerican0278-16
http://dx.doi.org/10.1016/S0378-4371(97)00569-4
http://dx.doi.org/10.1016/S0378-4371(97)00569-4
http://dx.doi.org/10.1016/S0378-4371(97)00569-4
http://dx.doi.org/10.1016/S0378-4371(97)00569-4
http://dx.doi.org/10.1016/S0378-4371(03)00003-7
http://dx.doi.org/10.1016/S0378-4371(03)00003-7
http://dx.doi.org/10.1016/S0378-4371(03)00003-7
http://dx.doi.org/10.1016/S0378-4371(03)00003-7
http://dx.doi.org/10.1016/j.physa.2007.02.012
http://dx.doi.org/10.1016/j.physa.2007.02.012
http://dx.doi.org/10.1016/j.physa.2007.02.012
http://dx.doi.org/10.1016/j.physa.2007.02.012
http://dx.doi.org/10.1103/PhysRevA.28.1210
http://dx.doi.org/10.1103/PhysRevA.28.1210
http://dx.doi.org/10.1103/PhysRevA.28.1210
http://dx.doi.org/10.1103/PhysRevA.28.1210



