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Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence
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ETH Zürich, Department of Materials, Polymer Physics, HCI H 543, CH-8093 Zürich, Switzerland
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Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative,
or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by
energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager
and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples
of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics
without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic
structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely
antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can
arise for rare events, causing big configurational changes.
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I. INTRODUCTION

An efficient and illuminating way of formulating the
dynamics of mixed reversible and irreversible systems is given
by the evolution equation [1–3]

dA

dt
= {A,E} + [A,S], (1)

where A is an arbitrary element from an algebra of classical
observables. The energy E and the entropy S are particular
observables from the same algebra. Moreover, the algebra
of observables needs to be equipped with a Poisson bracket
{.,.} and a irreversible bracket [.,.]. A Poisson bracket is
antisymmetric, has a derivation structure (with a product rule
for each argument), and satisfies the Jacobi identity (which
expresses the time-structure invariance of this bracket [4]).
The structure and properties of Poisson brackets are very
well understood (see, for example, Refs. [5–7]). It is the goal
of the present paper to offer a thorough discussion of the
structure of irreversible brackets, which should support future
thermodynamic modeling activities.

The two terms on the right-hand side of Eq. (1) represent the
reversible contribution to dynamics generated by the energy
by means of a Poisson bracket and the irreversible contribution
generated by the entropy via a dissipative or irreversible
bracket, respectively. Equation (1) is henceforth referred
to as GENERIC (“general equation for the nonequilibrium
reversible-irreversible coupling”) and may be considered as
the fundamental evolution equation of nonequilibrium thermo-
dynamics, going far beyond linear irreversible thermodynam-
ics [8,9]. Our goal for this work can hence be reformulated as a
deeper understanding of the structure of irreversible dynamics
and the relevant thermodynamic properties.

A. Some details on GENERIC

Classical observables are functions or functionals of the
independent variables x chosen to define a nonequilibrium
thermodynamic system. The Poisson and irreversible brackets
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in the fundamental equation (1) can then be expressed in terms
of the Poisson and friction matrices L and M , respectively:

{A,B} = δA

δx
L

δB

δx
, (2)

and

[A,B] = δA

δx
M

δB

δx
, (3)

where L and M are allowed to depend on x. Because x

typically contains position-dependent fields, such as the local
mass, momentum, and energy densities of hydrodynamics,
the independent variables are usually labeled by continuous
(position) labels in addition to discrete ones (labeling the
different fields). A matrix multiplication hence implies not
only summations over discrete indices but also integrations
over continuous labels, and δ/δx typically implies functional
rather than partial derivatives. The occurrence of derivatives
leads to the derivation character of the brackets defined in
Eqs. (2) and (3). The symmetry of the brackets is contained in
the symmetry properties of the matrices L and M . Whereas L is
always antisymmetric, M is usually assumed to be symmetric.
However, much more needs to be said about the symmetry
properties of M in the following.

By applying Eq. (1) with the representations (2) and (3)
to the independent system variables as observables, we obtain
the evolution equation

dx

dt
= L

δE

δx
+ M

δS

δx
. (4)

In the GENERIC framework for isolated systems [1–3],
Eq. (4) is supplemented by the complementary degeneracy
requirements

L
δS

δx
= 0, (5)

and

M
δE

δx
= 0, (6)

which further clarify the splitting into reversible and irre-
versible dynamics. The requirement that the entropy gradient
δS/δx is in the null space of L in Eq. (5) expresses the
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reversible nature of the L contribution to the dynamics:
the functional form of the entropy is such that it cannot
be affected by any operator generating reversible dynamics.
The requirement that the energy gradient δE/δx is in the
null space of M in Eq. (6) expresses the conservation of
the total energy in a closed system by the M contribution to
the dynamics.

By means of the chain rule and the degeneracy require-
ment (5), we obtain the entropy evolution equation

dS

dt
= δS

δx
M

δS

δx
= [S,S]. (7)

By assuming that the matrix M and hence the irreversible
bracket is positive semidefinite, we obtain a strong formulation
of the second law of beyond-equilibrium thermodynamics.
The friction matrix M hence characterizes the irreversible
system behavior, typically in terms of transport coefficients
and relaxation times. Only the symmetric part of the matrix M

contributes to the entropy production (7).
In view of the occurrence of energy and entropy as

generators in the fundamental evolution equations (1) and (4),
GENERIC may be referred to as a double-generator frame-
work. Also in the single-generator framework of nonequi-
librium thermodynamics [10], a dissipation bracket closely
related to the dissipative or irreversible bracket of GENERIC
occurs. The precise relationship between the single- and
double-generator frameworks has been elaborated in several
papers [11–13].

The GENERIC evolution equation (4) has been justified
by means of the projection-operator formalism [14–19]. The
resulting explicit recipe for calculating the friction matrix by
statistical mechanics is given by the Green-Kubo formula

Mjk = 1

kB

∫ τ

0
〈[QiL�k][QeiLuiL�j ]〉xdu, (8)

where L is the Liouville operator, Q is the projection
operator on the fast (or fluctuating) part of a microscopic
observable, �j is the microscopic observable corresponding
to xj , that is, 〈�j 〉x = xj , and 〈. . .〉x is the nonequilibrium
ensemble average, for example, evaluated with a generalized
microcanonical or canonical ensemble characterized by the
macroscopic averages x. The observable QiL�k may be
interpreted as the fluctuating part of the time-derivative of
�k and the Green-Kubo formula hence expresses the matrix
M as a time integral of the decaying correlation function of
such time derivatives. The Green-Kubo formula gives the only
GENERIC building block that involves dynamic properties;
the statistical mechanics expressions for E, S, and L involve
only static information. Our goal behind investigating the
structure of friction matrices can hence be rephrased as the
search for a deeper understanding of dynamic system or
material properties.

B. Applications

The GENERIC framework has been used to discuss a
variety of applications and has revealed a large number of
new insights through the thermodynamic modeling approach.
A review of these applications has recently been given in
Ref. [20]. Because the review article [20] is not easily

accessible, we summarize here the most important and some
more recent applications. The present discussion of the nature
of the irreversible bracket should facilitate future applications.

In addition to many famous applications of linear ir-
reversible thermodynamics, a number of applications of
nonlinear irreversible thermodynamics have been compiled
in Appendix E of Ref. [3]. Those advanced applications
are from the fields of complex fluids (reptation model
for entangled linear polymers [21–25], responsive particle
dynamics model for entangled melts [26], pompon model for
branched polymers [27,28], polymer blends [29–34], colloidal
suspensions [35–37], and two-phase systems [38–41]), rela-
tivistic hydrodynamics [42–46], discrete formulations of hy-
drodynamics for simulations [47–50], and thermodynamically
guided simulations [51–60] (see also the review article [61]
offering “four lessons and a caveat” for good simulations in
the context of nonequilibrium statistical mechanics).

Several basic transport phenomena have been generalized
to the nonlinear regime. For example, diffusion through
polymeric and nanocomposite membranes has been modeled
by means of the GENERIC framework [62,63]. Also, a
comprehensive discussion of the multiscale thermodynamics
and mechanics of heat flow goes beyond linear irreversible
thermodynamics [64]. Thermodynamics has also contributed
to the understanding of gas flow in the smallest of channels, as
in microfluidics, and of aerodynamics of satellites and space
stations in the outer limits of our atmosphere [65–67].

Whereas the original development of nonequilibrium ther-
modynamics has mainly been pushed in the context of complex
fluids, the general framework is by no means restricted to
fluids. Also, crystallization phenomena, including polymer
crystallization, have been better understood with the help
of the methods of modern nonequilibrium thermodynamics
and statistical mechanics [68–75]. Plasticity and viscoplastic
solids are further topics in which important issues have
been clarified by means of thermodynamics [76–82]. By
combining thermodynamics with a thoughtful characterization
of the microstructure, valuable insight into continuum damage
mechanics has been gained [83]. Structural glasses are another
challenging problem in physics and materials science for
which nonequilibrium phenomena are widely believed to play
an important role. In this context, the shear-transformation-
zone model [84,85] has been revisited [86], and promising new
ways to approach this long-standing challenge are suggested
by the GENERIC framework [87–90]. The geometric structure
of the GENERIC framework suggests a natural generalization
to describe dissipative quantum systems [91–95].

Most of the applications of nonequilibrium thermodynam-
ics deal with the modeling of bulk systems. To solve the
resulting bulk equations one typically needs boundary condi-
tions. The usefulness of linear irreversible thermodynamics for
obtaining boundary conditions has been shown by Waldmann
in his famous 1967 article [96]. Brenner and Ganesan [97]
asked the very deep question “Are conditions at a bound-
ary ‘boundary conditions’?” Nonequilibrium thermodynamics
actually provides the powerful language for expressing the
physics at the boundary consistently [98,99], thus going well
beyond the mathematics of boundary conditions. An illustra-
tive example is provided by the thermodynamic formulation
of wall slip [100]. Within linear irreversible thermodynamics,
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a general description of the dynamics of interfaces has been
developed by Bedeaux and coworkers [101–103]. The main
challenge is to generalize the concept of local equilibrium,
which is known to be a key ingredient to the nonequilib-
rium thermodynamics of bulk systems, to lower-dimensional
interfaces [104–106]. The analysis of the fully nonlinear
thermodynamic behavior of complex interfaces within modern
nonequilibrium thermodynamics is a very active field of
research [107–112].

II. SYMMETRIC IRREVERSIBLE BRACKETS

In view of the degeneracy requirement (6), the friction
matrix and hence the irreversible bracket has to know about
energy. More precisely, the irreversible bracket must depend on
the gradient δE/δx. A simple way of accomplishing symmetry
and degeneracy is by writing

[A,B] = ζαβ,μν

δA

δxα

δE

δxβ

δB

δxμ

δE

δxν

, (9)

where we have used Einstein’s summation convention (actu-
ally, indices occurring twice imply summations over discrete
labels and integrations over continuous labels). The antisym-
metry properties

ζαβ,μν = −ζβα,μν = −ζαβ,νμ (10)

take care of the degeneracy requirement (6), whereas the
symmetry property

ζαβ,μν = ζμν,αβ (11)

implies the symmetry of the irreversible bracket. A natural
way of implementing the symmetry properties (10) and (11)
is obtained by assuming the factorization

ζαβ,μν = 	m
αβDmn	

n
μν, (12)

with the antisymmetric matrices

	m
αβ = −	m

βα, (13)

and the symmetric matrix

Dmn = Dnm. (14)

The size of the matrix Dmn depends on the number of relevant
dissipative processes and does not need to coincide with the
size of the vector of the independent system variables xα .
The representation (9) of the irreversible bracket, with the
corresponding symmetry properties or the factorization (12),
provides an explicit functional form for the anticipated
dependence of the irreversible bracket on the energy gradient.

A. Some justifications

Of course, symmetry and degeneracy constraints alone do
not lead to an unambiguous functional form of the irreversible
bracket. However, the particularly simple functional form
proposed in Eq. (9) with the factorization (12) has been
found in a number of previous modeling attempts. Most
obvious is this structure in previous formulations of relativistic
hydrodynamics (see Eq. (5.142) of Ref. [3]) and interfacial
transport phenomena (see Eq. (35) of [107] or Eqs. (27)
and (28) of Ref. [112]).

A more formal motivation may be found in the Green-Kubo
formula (8). The two factors iL�k and iL�j represent Poisson
brackets expressing the microscopic Hamiltonian dynamics
and hence antisymmetric structures involving energy; the
antisymmetry behind these two factors is reflected in the
antisymmetry of the two factors 	 in Eq. (12). Exactly the same
kind of argument has been used to introduce dissipation into
quantum systems by formulating the quantum generalization
of the irreversible bracket as the canonical correlation of two
commutators [91,92].

B. A previous factorization

Edwards [11] observed that many friction matrices can be
factorized in the form

M = CDCT , (15)

where the matrix D contains all the dynamic system infor-
mation, whereas the matrix C is considered as a mechanical
component. If D is symmetric and positive semidefinite, these
properties are inherited by M .

The factorization (15) plays a central role in establishing
the relationship between GENERIC and linear irreversible
thermodynamics, as has been elaborated in Sec. 3.1.1 of
Ref. [3]. It can moreover be used to introduce the concept
of force-flux pairs even in the nonlinear domain. Similar
to a diagonalization, Eq. (15) brings out the essence of a
friction matrix; D might actually be diagonal with transport
coefficients and relaxation times as diagonal elements, but it
could also contain off-diagonal elements describing physical
cross effects. As pointed out before, the size of the quadratic
matrix D is given by the number of dissipative processes
in a system (on which linear irreversible thermodynamics is
focused), whereas the size of the quadratic friction matrix
M matches the length of the vector x (which is central to
GENERIC). The matrix C describes how the the various
system variables in the list x participate in the various
dissipative processes.

Equation (15) is an immediate consequence of our more
explicit assumption (12). We actually have

Cαm = 	m
αβ

δE

δxβ

, (16)

that is, similar to reversible dynamics, the columns of the
matrix C are generated by antisymmetric matrices from the
energy gradient. The matrices C have been given for a number
of transport and relaxation processes in Secs. 2.3.2, 3.1.2, and
4.2.3 of Ref. [3]. In all cases it can be verified that they can
be expressed in the form (16) where, when present, the label
m represents a spatial index or a pair of spatial indices. The
freedom of using forms of the matrix C more general than the
one proposed in Eq. (16), for example, nonlinear in the energy
gradient, indeed does not seem to be required in applications.
We thus obtain a further strong justification of our fundamental
assumption (9) with the factorization assumption (12) through
many physically relevant examples.

The considerations of Sec. 3.1.1 of Ref. [3] combined
with Eq. (16) imply that the thermodynamic driving forces
Xn associated with the dissipative processes n can be
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expressed as

Xn = 	n
αβ

δE

δxα

δS

δxβ

. (17)

Whereas the thermodynamic forces Xn are usually intro-
duced within the framework of linear irreversible thermo-
dynamics, the elegant formula (17) holds within the more
general GENERIC framework and hence also for nonlinear
applications.

III. ANTISYMMETRIC IRREVERSIBLE BRACKETS

We have so far focused on symmetric irreversible brackets.
This symmetry is a generalization of the Onsager symmetry of
linear irreversible thermodynamics [8] to nonlinear problems.
In his celebrated papers, Onsager derived the symmetry from
microscopic time-reversal behavior [113,114]. Casimir [115]
later showed that also antisymmetric behavior can occur,
depending on the time-reversal properties of the various
independent variables. Also in the nonlinear generalization
provided by GENERIC, the symmetry properties of friction
matrices have been inferred from microscopic time-reversal
behavior, based on the Green-Kubo formula (8) (see, for
example, Sec. 3.2.1 of Ref. [3] and references therein).

According to Eq. (7), antisymmetric friction matrices or the
corresponding irreversible brackets do not contribute to the
entropy production. Entropy production is a sufficient but not
a necessary condition for irreversibility. The term “friction”
may hence be misleading for irreversible processes without
entropy production (dissipation). This is actually the reason
why we switched from the usual term “dissipative bracket”
to the more general term “irreversible bracket” throughout
this paper. It might actually be even more appropriate to
refer to it as the “Grmela bracket.” In the summer of 1983,
Miroslav Grmela first introduced the idea of such brackets to
formulate irreversible dynamics at a research conference in
the mathematical sciences on fluids and plasmas in Boulder,
Colorado, USA [116]. In the following year, three seminal
papers on his idea appeared in Phys. Lett. A [117–119].

Switching from symmetric to antisymmetric irreversible
brackets is possible by introducing a minus sign into Eqs. (11)
and (14). However, there is an even simpler representation of
antisymmetric irreversible brackets, requiring only one factor
of δE/δx instead of the two factors in (9):

[A,B] = ξαβγ

δA

δxα

δB

δxβ

δE

δxγ

, (18)

where ξαβγ is a completely antisymmetric function of its
three indices. The complete antisymmetry of ξαβγ implies
both degeneracy and antisymmetry of the bracket (18). The
corresponding irreversible contribution to the time evolution
is given by (

dxα

dt

)
irr

= ξαβγ

δS

δxβ

δE

δxγ

. (19)

Experience should tell us whether the representation (9),
with a minus sign in Eqs. (11) and (14), or the representa-
tion (18) is more appropriate in the antisymmetric case. In
view of the bilinear versus linear dependence on the energy
gradient and the associated difference in index structure, these

representations are fundamentally different. Because the rep-
resentation (18) is not associated with a Green-Kubo formula,
the calculation of the coefficients ξαβγ characterizing the
nondissipative irreversible behavior from statistical mechanics
is an open problem deserving further investigation.

A. Slip

In modeling the flow behavior of polymer solutions
and melts by rheological constitutive equations, convected
time derivatives play an important role. A very general
form of a convected derivative is known as the Gordon-
Schowalter derivative [see, for example, Eq. (5.8) of Ref. [120],
Eqs. (6.3–49) of Ref. [121], or Eq. (2.93) of Ref. [3] ]:

Dc
Dt

= ∂c
∂t

+ v · ∂c
∂ r

− κ · c − c · κT + ξ

2
(c · γ̇ + γ̇ · c),

(20)

where c = c(r,t) is a time-dependent tensor field, v is the
convecting velocity field, the components of the velocity
gradient tensor κ are given by κjk = ∂vj/∂rk , γ̇ = κ + κT

is the symmetrized velocity gradient tensor, and ξ is known
as the slip parameter. In addition to the partial time derivative,
we have the spatial translation of the tensor with the flow
field and the full or partial deformation rate tensor mixing
the various tensor components of c. The parameters ξ = 0
and ξ = 2 correspond to upper and lower convected behavior,
respectively, which can be understood as reversible dynamics.
For any intermediate slip parameter ξ , the Gordon-Schowalter
derivative cannot be represented by Hamiltonian dynamics
(the natural candidate for a Poisson bracket does not satisfy
the Jacobi identity).

It seems natural to think of “slip” as an irreversible
phenomenon that does not lead to entropy production. A
representation of slip in terms of an antisymmetric friction
matrix has indeed been given in Eq. (4.68) of Ref. [3]. We
here show that this antisymmetric friction matrix is of the
simple form given in Eq. (18).

We focus on the independent variables involved in slip phe-
nomena, x = (M(r),ε(r),c(r)), where M(r) is the momentum
density, ε(r) is the nonconfigurational internal energy density,
and c(r) is our tensorial structural variable characterizing the
state of a polymeric liquid. The energy and entropy gradients
are given by

δE

δx
=

⎛
⎝ v

1
∂εc/∂c

⎞
⎠ , (21)

and

δS

δx
=

⎛
⎝ 0

1/T

∂sc/∂c

⎞
⎠ , (22)

where εc and sc are the configurational contributions to the
internal energy and entropy densities. The friction matrix
contains six nonzero entries which are all obtained by
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permutations of the single element

ξMj (r),ε(r ′),ckl (r ′′)

= ξT (r ′)
2

δ(r ′ − r ′′)
∂δ(r − r ′)

∂r ′
n

× [cjl(r ′)δkn + δjlckn(r ′) + ckj (r ′)δnl + δkj cnl(r ′)],

(23)

with the proper minus signs for odd permutations. The δ

functions express the locality of the slip effect; the derivative
is required to produce velocity gradient tensors. In view of the
complicated index structure, it here is actually more convenient
to label ξ by xα, xβ, xγ rather than α, β, γ . We still need to
verify the expression (23). In evaluating Eq. (19) for the tensor
variable, only one term contributes to the time evolution and
we obtain (

dc
dt

)
irr

= −ξ

2
(c · γ̇ + γ̇ · c), (24)

which is consistent with the slip contribution in the def-
inition (20) of the Gordon-Schowalter derivative. For the
time evolution of the momentum density, we obtain two
contributions which can be combined into(

d M
dt

)
irr

= − ∂

∂ r
· 2ξ c ·

(
∂εc

∂c
− T

∂sc

∂c

)
. (25)

We hence recover the known contribution to the stress tensor
associated with slip.

A more detailed comparison shows that we cannot only
reproduce the known contribution to the evolution equations
associated with slip [122,123], but the entire friction matrix
given in Eq. (4.68) of Ref. [3]. We hence have a first example
in favor of the representation (18) of antisymmetric dissipation
brackets.

B. Turbulence

Three-dimensional turbulence is one of the most chal-
lenging problems in classical physics. Key issues are the
theoretical understanding of the energy-cascade mechanism
and of deviations from the classical Kolmogorov theory [124].
In particular, there exists a whole spectrum of anomalous
scaling exponents for different correlation functions which
are not predicted by the Kolmogorov theory (intermittency of
the energy cascade; see Ref. [125] and references therein).
We are hence faced with two reasons for trying to find a
reduced set of equations that can reproduce the energy-cascade
mechanism of the Navier-Stokes equation: (i) Solving the full
Navier-Stokes equation at very large Reynolds numbers is an
extremely demanding numerical problem so that simulations
over a wide range of scales and the calculation of scaling
exponents are difficult and would benefit enormously from
simplified numerics. (ii) Finding a smaller set of equations
exhibiting the same features as the full Navier-Stokes equation
would bring out the essence of the energy cascade and hence
provide understanding in a very deep way.

A promising idea for a reduced description of the energy
cascade in turbulent flows is given by shell models. The most
popular shell model is the so-called GOY model going back to

Glezder, Ohkitani, and Yamada [126,127]. This model is based
on a number of velocity modes un as independent variables,

x = (u0,u1, . . . ,uN ), (26)

where each un is a complex number and the corresponding
wave numbers kn are chosen in geometric progression,

kn = k0λ
n, (27)

with a shell spacing parameter or intershell ratio λ, usually
taken as 2. The idea is to drive only the lowest, large-scale
modes, say u0, by an external force and to observe the energy
cascade resulting from the coupling of only a few successive
modes.

Because energy irreversibly cascades down from larger to
smaller scales, but entropy is not produced until the very small
scales are reached, we make an attempt to implement the
coupling of the velocity modes by an antisymmetric friction
matrix. In other words, turbulence provides an important
intuitive example of an irreversible process without entropy
production. In accordance with an observation by M. Mungan
sketched in Sec. II of Ref. [128], we use an irreversible bracket
of the form (18) with

ξnn+1 n+2 = �n for n = 0, . . . ,N − 2. (28)

Each term couples three successive modes and represents
six contributions to the irreversible bracket corresponding to
the permutations of n, n + 1, and n + 2. To complete the
construction of the coupled evolution equations, we need to
define energy and entropy. The usual expression for the energy
in shell models is

E = 1

2

N∑
n=0

|un|2, (29)

where |un|2 = unu
∗
n and the asterisk indicates complex con-

jugation. For simplicity, we choose also the entropy as a
quadratic function,

S =
N∑

n=0

sn|un|2, (30)

where we expect the parameters |sn| to increase with n because
higher-wave-number oscillations should lead to a bigger loss
of entropy. We can now write out the evolution equations (19)
to obtain(

dun

dt

)
irr

= �̃n

(
1 − sn+1

sn+2

)
u∗

n+1u
∗
n+2

− �̃n−1

(
1 − sn−1

sn+1

)
u∗

n−1u
∗
n+1

+ �̃n−2

(
sn−1

sn

− sn−2

sn

)
u∗

n−1u
∗
n−2, (31)

where we have introduced �̃n = �nsn+2/2 (if the subscript of
a variable u∗ is outside the range 0, . . . ,N , the corresponding
term is absent). These equations become particularly simple
if we make the natural choice sn = s0q

−n with |q| < 1. With
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�̂n = (1 − q)�̃n, we finally arrive at(
dun

dt

)
irr

= �̂nu
∗
n+1u

∗
n+2 − (1 + q)�̂n−1u

∗
n−1u

∗
n+1

+ q�̂n−2u
∗
n−1u

∗
n−2. (32)

By choosing �̂n = ikn we recover the usual form of the
coupling terms of the GOY model. A viscous term −νk2

nun

with dynamic viscosity ν, which leads to significant entropy
production only at small scales, needs to be added to
Eq. (32). This term could be incorporated into the GENERIC
formulation by including the internal energy into the list of
independent system variables.

Shell models with positive and negative ratio q have been
considered in the literature (see discussion on p. 448 of
Ref. [125] and references therein). For an entropy, it is natural
to expect all terms in Eq. (30) to be of the same sign, that is q >

0 (actually with s0 < 0). However, the usual interpretation of
the two quadratic invariants of the evolution equation (32), that
is, in the absence of viscous dissipation and external forcing,
is as energy and helicity rather than as energy and entropy.
For our thermodynamic formulation of the energy cascade as
an irreversible mechanism within the GENERIC framework,
the interpretation as entropy is more natural. For keeping the
essential features of the energy-cascade mechanism of the full
Navier-Stokes equation, however, helicity is very important.
It is hence desirable to keep the proper roles of both entropy
and helicity. However, the alternating sign between even and
odd modes is not really a natural way of implementing helicity.
More appropriately, shell models have been constructed on the
basis of a helical decomposition of the Navier-Stokes equation
in Fourier space in Ref. [129], where two shell variables u±

n

carrying positive and negative helicity for each wave number
kn have been introduced. Moreover, a connection between a
positive second invariant and enstrophy in two-dimensional
turbulence has been made in Ref. [129]. The setting with two
shell variables hence seems to be promising for implementing
both entropy and helicity as invariants.

Because shell models arise from significant coarse graining
of the Navier-Stokes equation, the thermodynamic modeling
approach suggests new forms of entropy and irreversibility
emerging in shell models, having no counterparts on the
full hydrodynamic level. Deeper understanding of turbulence
through coarse graining may actually be identified with the
search for the proper forms of the emerging entropy and
irreversible bracket contributions (in the same way as entropy,
entropy production, and transport coefficients emerge from the
coarse graining of molecular dynamics). It is natural to expect
that the new type of entropy should favor smooth velocity fields
by imposing a price to pay for large-wave-number modes or
vorticity. One should not hesitate to refer to such unusual
terms as new forms of entropy rather than to invent new
terms like enstrophy; the defining characteristic of entropy
in nonequilibrium thermodynamics is its role in generating
irreversible dynamics. The new form of irreversibility arising
in the passage from the Navier-Stokes equation to shell
models is associated with the energy cascade; whereas the
viscous damping is inherited from the Navier-Stokes equation,
the contribution (32) emerges from further coarse graining.
Its antisymmetric character leads to irreversibility without

entropy production as a hallmark of the energy cascade.
Making full use of such thermodynamic concepts and ideas
should be helpful in the further development of shell models.

IV. NONSYMMETRIC IRREVERSIBLE BRACKETS

In the preceding sections, we considered the symmetric and
antisymmetric irreversible brackets corresponding to Onsager
and Casimir symmetry. Let us now briefly address the question
whether there can be irreversible brackets that are neither
symmetric nor antisymmetric. The answer to this question is
“yes.” The existence of nonsymmetric irreversible brackets
may be surprising because Onsager or Casimir symmetry
are commonly believed to be the only alternatives allowed
by microscopic time-reversal properties. For the entropy
production, only the symmetric part matters.

A nonsymmetric irreversible bracket has actually been
found in the context of Boltzmann’s equation for rarified
gases. A first intuitive investigation of the GENERIC structure
of Boltzmann’s equation had led to the identification of
a symmetric friction matrix [130], based on the desired
equation of motion. When later the friction matrix was
calculated in a straightforward manner by means of statistical
mechanics [131] (see also Sec. 7.2.4 of Ref. [3]), it turned out
that there exists a more natural nonsymmetric friction matrix.

Coupled chemical reactions have recently been identified
as another situation in which we should expect nonsymmetric
irreversible brackets or friction matrices [132] (the problem
arises in guaranteeing positive-definiteness in the nonlinear
case, based on bilinear rather than quadratic forms). However, a
direct calculation of this nonsymmetric bracket from statistical
mechanics has not been achieved yet. Such an explicit
calculation would be important because, as we have learned
from the example of Boltzmann’s equation, the identification
of friction matrices from evolution equations does not lead
to unique answers (for a discussion of the nonuniqueness of
phenomenological building blocks of GENERIC, see p. 85 of
Ref. [3]; on the other hand, statistical mechanics can provide
unique building blocks).

What is the cause of the loss of Onsager-Casimir symmetry?
There are two fundamentally different situations in which we
obtain the slow variables that nonequilibrium thermodynamics
deals with: many small events or rare big events. On the one
hand, many independent small kicks accumulating according
to the central limit theorem are typical of diffusion processes.
On the other hand, the collisions between particles in rarified
gases are rare events and these collisions lead to big changes
of the particle momenta; the duration of a collision is very
short compared to the time between collisions. Or, chemical
reactions result when a system escapes from one local
minimum of energy to another one by passing an energy
barrier; the escape time, which was discussed in a classical
paper by Kramers [133], can be very large, but the actual
escape process happens in a short time. In both examples,
nothing happens for a long time and eventually a big change
happens within a short time. This seems to be the situation
in which nonsymmetric irreversible brackets arise. One then
also needs to reconsider the fluctuation-dissipation theorem
(see, for example, Secs. 1.2.5 and 6.3.3 of Ref. [3]) because
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fluctuations are expected to be governed by Poissonian rather
than Gaussian behavior.

A convenient reformulation of the Green-Kubo formula (8)
for the case of rare big events is given by

Mjk = 1

kB
〈[QiL�k]eiLτ�j 〉x, (33)

in which the time integration has been carried out. The result
looks less symmetric than in Eq. (8), but the two versions of the
Green-Kubo formula are actually equivalent. The intermediate
timescale τ should be large compared to the duration of a
collision or transition, but small compared to the time between
such big events. For the case of Boltzmann’s equation, the
actual calculation of a nonsymmetric friction matrix in Ref. [3]
has indeed been based on Eq. (33).

Note that also Eq. (8) is less symmetric than it might
appear at first sight. This is a consequence of the fact that the
evolution operator changes the nonequilibrium ensemble used
for performing the average. Equilibrium ensembles depend on
conserved variables only, whereas nonequilibrium ensembles
depend on slow variables and hence evolve slowly. Formally,
this effect is expected to be negligible for a small ratio of fast
to slow timescales but, in the case of rare big events, such a
formal argument could be invalid because the changes on the
fast timescale (duration of a big event) are the same as on the
slow timescale (time between big events).

V. SUMMARY AND CONCLUSIONS

We have discussed the structure of the irreversible brackets
and the equivalent friction matrices which play an important
role in describing irreversible time evolution in nonequilibrium
thermodynamics. For symmetric irreversible brackets, the
representation (9) with the factorization (12) and the proper

symmetry properties should be very useful in thermodynamic
modeling efforts. For antisymmetric irreversible brackets,
which imply irreversibility without entropy production, the
examples of slip and turbulence suggest that we should not
just change the symmetries in the representation (9), (12), but
rather rely on the simpler representation (18). Moreover, we
suggest that irreversible brackets that are neither symmetric nor
antisymmetric may arise in situations of rare events causing
big configurational changes.

Going beyond phenomenological modeling efforts, the
proposed representations might also be useful when evaluating
friction matrices from the Green-Kubo formula; that is, by
statistical mechanics. For the symmetric case, one could focus
on evaluating the factors in Eq. (12). For the antisymmetric
case, the calculation of slip coefficients, the parameters of
shell models for the turbulent energy cascade, and similar irre-
versible (but not dissipative) material properties by statistical
mechanics still needs to be elaborated.

Our results for symmetric irreversible brackets could also
have an impact on modeling irreversible time evolution in
terms of dissipation potentials (see Refs. [134,135] and refer-
ences therein; for a detailed comparison between symmetric
irreversible brackets and dissipation potentials, see Ref. [136]).
Finally, the further development of shell models for the
turbulent energy cascade might benefit from a thermodynamic
framework for modeling irreversible dynamics in the antisym-
metric case where irreversibility is not accompanied by entropy
production.
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[21] H. C. Öttinger and A. N. Beris, J. Chem. Phys. 110, 6593

(1999).
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[34] A. Jelić, P. Ilg, and H. C. Öttinger, Phys. Rev. E 81, 011131

(2010).
[35] N. J. Wagner, J. Non-Newtonian Fluid Mech. 96, 177 (2001).
[36] M. Grmela, A. Aı̈t-Kadi, and P. G. Lafleur, J. Chem. Phys. 109,

6973 (1998).
[37] M. Keshtkar, M.-C. Heuzey, P. J. Carreau, M. Rajabian, and

C. Dubois, J. Rheol. (Melville, NY, U. S.) 54, 197 (2010).
[38] M. Hütter, Phys. Rev. E 64, 011209 (2001).
[39] M. Hütter, J. Non-Equilib. Thermodyn. 27, 349 (2002).
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[93] H. C. Öttinger, Phys. Rev. A 86, 032101 (2012).
[94] J. Flakowski, M. Schweizer, and H. C. Öttinger, Phys. Rev. A
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