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Transport through quasi-one-dimensional wires with correlated disorder
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We study transport properties of bulk-disordered quasi-one-dimensional (Q1D) wires paying main attention
to the role of long-range correlations embedded into the disorder. First, we show that for stratified disorder for
which the disorder is the same for all individual chains forming the Q1D wire, the transport properties can be
analytically described provided the disorder is weak. When the disorder in every chain is not the same, however
it has the same binary correlator, the general theory is absent. Thus, we consider the case when only one channel
is open and all others are closed. For this situation we suggest a semianalytical approach which is quite effective
for the description of the total transmission coefficient. Our numerical data confirm the validity of this approach.
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I. INTRODUCTION

According to the theory of Anderson localization, all
eigenstates in one-dimensional (1D) disordered models are
exponentially localized independently on the degree of ran-
domness [1–3]. The same result has been rigorously proved for
quasi-one-dimensional (Q1D) systems [4]. To date, many de-
tails of global transport properties are known for Q1D systems
describing multichannel wires with continuous random poten-
tials (see for example [5,6]). On the other hand, some problems
remain open for Q1D tight-binding models. Among these
problems are the definition of the localization length and its
relevance to mean free paths and the analytical description of
transmission characteristics in terms of the localization length
(see discussion and references in [7–14]). These problems are
mainly caused by the nonhomogeneous character of transport
in the channel space, a fact that cannot be neglected, especially
when the number of channels M is not very large. Thus, in
order to correctly describe all details of the transmission, one
needs to know M characteristic lengths, which is in contrast
to the single-parameter scaling emerging for 1D disordered
models [15].

The situation turns out to be even more complicated
for tight-binding Q1D models that can be considered as
M-leg chains with interchain coupling. For example, for
weakly disordered coupling between different channels (off-
diagonal disorder) in the M-leg tight-binding hopping model
the eigenstates may be delocalized at the center of the
energy band [16,17]. Clearly, this effect is attributed to the
off-diagonal disorder, however, even for a purely diagonal
disorder the role of the interchannel interaction is not fully
understood. The interest on tight-binding models with M > 1
has recently increased due to their relevance to specific
physical systems, such as DNA models [18–22] and synthetic
photonic lattices [23–25]. In such models a quite natural
question emerges about the role of statistical correlations that
are described by colored-noise potentials.

To be compared, in 1D disordered models the role of short-
and long-range correlations has been already studied in detail
(see for example review [26] and references therein). The
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interest on the problem of localization for 1D colored-noise
potentials has been triggered by numerical studies of discrete
dimer models for which the onset of delocalization has
been observed numerically [27,28]. Later it was understood
that such delocalization, appearing at discrete energy values,
does not contradict the general statement of the theory of
localization according to which the delocalization is not
possible for 1D disordered potentials in finite-width energy
windows. On the other hand, since in reality the size of
disordered samples is always finite, one can speak about an
effective delocalization when the localization length is much
larger than the system size.

One of the results of the studies of tight-binding models
with colored-noise disorder is the discovery that long-range
correlations can lead to a vanishing Lyapunov exponent in a
finite range of energy inside allowed energy bands [29,30].
Although this result is obtained for weak disorder in the first-
order perturbation theory, one can speak about an emergence
of effective mobility edges dividing the regions with localized
and extended states. The theoretical prediction of arranging
controlled energy windows with perfect transmission has
been experimentally confirmed in microwave experiments
with pointlike scatterers inserted into one-channel waveg-
uides [31,32]. Alternatively, it was shown that with long-range
correlations one can also strongly enhance the localization
even when the disorder is very weak [33]. The important
point is that such localization of eigenstates can be arranged
in quite narrow energy regions, thus resulting in a strong
selective reflection of scattering waves. Both numerical and
experimental results have demonstrated robust anomalous
properties of the scattering even if the sample size is quite
small. It should be stressed that apart from specific colored-
noise potentials that can be experimentally arranged, there are
many physical situations where long-range correlations are not
avoidable and have to be taken into account. One such situation
occurs in experiments with interacting bosons in 1D optical
lattices (see for example [34–36]).

In contrast to the problem of correlated disorder in 1D
systems for which the theory is practically developed, the
transport properties of Q1D systems with colored noise are
studied very poorly. Among few models that were under close
attention one can mention the tight-binding Anderson model
with two-coupled chains [21], the models with a layered bulk
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disorder [37,38], and multimode waveguides with long-range
correlations in surface profiles [39].

The aim of this presentation is to contribute to the theory
of correlated disorder in the Q1D geometry. Specifically, we
consider the Q1D model of the Anderson type in connection
with the results obtained for 1D disordered models. As the
first step we analyze the situation for which the scattering
potential has specific long-range correlations in the longitu-
dinal direction, however, does not depend on the transverse
coordinate. As is shown in Ref. [37], for such stratified
disorder the problem can be solved by the reduction of the
Q1D scattering problem to the analysis of the scattering along
M independent 1D channels. Indeed, the independence of the
disorder on the transverse coordinate allows one to reduce
the model to a coset of noninteracting channels characterized
by different localization lengths [39,40]. However, still there
is a problem to express the total transmission coefficient in
terms of these lengths. A similar problem emerges even for
1D tight-binding disordered models for which the presence of
resonant values of energy does not allow us to derive general
expressions for the transmission and reflection coefficients
valid for any value of energy inside the energy band (see
discussion in Ref. [26]). There is no such a problem for
continuous 1D random potentials for which the resonances
are absent. Thus, the analytical treatment of the scattering
problem for Q1D tight-binding models with stratified disorder
presented in Ref. [37] is not complete. In this paper we suggest
a semianalytical approach that allows us to solve this problem
by borrowing the analytical expression for the transmission
coefficient from the theory of localization fully developed for
1D models with continuous potentials. A similar procedure
has been recently used in Ref. [41] for a potential consisting
of a random set of barriers and/or wells of fixed thickness
and random heights. Our numerical results demonstrate a
very good agreement between numerics and the analytical
expression, even if the disorder is not very weak and sample
sizes are finite. It should be stressed that for Q1D models
with stratified correlated disorder one gets a quite unusual
(nonmonotonic) dependence for the total conductance as a
function of energy [37,38].

As a second step, we study a much more complicated model
where the stratification of the disorder is broken. Specifically,
we consider the case when along every chain forming the Q1D
wire the long-range correlations are of the same kind, however,
specific realizations of the disorder are different for each
channel. Thus, there are no correlations in the transverse di-
rection, however, in the longitudinal direction the correlations
persist. For the case of two coupled chains such a model has
a clear relevance to the DNA molecules for which long-range
correlations are found from experimental data. The analytical
treatment for more than two channels, M > 2, is absent due to
an extremely complicated character of the transmission along
the chains, and to an unavoidable mixing between various
channels of propagation. In this situation, we have found a way
to suggest a phenomenological expression for the Lyapunov
exponent that appears to work quite well for a specific case
when only one channel is open in the energy space and all
other M − 1 channels are closed.

This paper is organized as follows. In the next section we
define the model of Q1D wire and give basic relations for

FIG. 1. (Color online) Disordered Q1D wire of length N and
width M (full circles) connected at both ends to semi-infinite ideal
leads of width M (open circles).

the characterization of scattering properties. Specifically, we
show how the total transmission coefficient can be expressed
in terms of the independent partial transmission coefficients
corresponding to the 1D wires composing the Q1D structure. In
Sec. III we explain the approach according to which we numer-
ically compute the scattering properties of the Q1D correlated
wires, based on an effective non-Hermitian Hamiltonian
approach to scattering. In Sec. IV for the stratified disorder
we verify our analytical predictions by comparing them with
numerical data, and show that for long-range correlations the
conductance reveals a highly unexpected nonhomogeneous
energy dependence. In Sec. V we study the specific case
when along each chain the long-range correlations are of the
same kind, however, individual realizations in the channels
are different. Thus, in the transverse direction the correlations
are absent. For this situation we suggest a procedure according
to which one can get an analytical description of the transmis-
sion coefficient in dependence of the control parameters of the
model. Finally, in Sec. VI we draw our conclusions.

II. MODEL AND SCATTERING SETUP

The model consists of a rectangular array of sites of length
N and width M � N , with nearest-neighbor couplings; see
Fig. 1. The Hamiltonian corresponding to this setup has the
following form:

〈n,m|H |n′,m′〉 = εnmδnn′δmm′ − v(δnn′δm,m′+1

+ δnn′δm,m′−1 + δn,n′+1δmm′ + δn,n′−1δmm′ ).

(1)

The on-site entries εnm are assumed to be random numbers
whose statistical properties will be specified below, while the
coupling amplitudes v between sites are considered to be
constant. The disordered wire is connected to semi-infinite
tight-binding leads of width M marked in Fig. 1 by open
circles. In the leads, for n � 0 and n > N , the disorder is
absent and the coupling amplitudes between the sites in the
leads are also fixed to v.
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The corresponding stationary Schrödinger equation for the
eigenstates ψnm of energy E reads

v(ψn,m+1 + ψn,m−1 + ψn+1,m + ψn−1,m) = (E − εnm)ψnm.

(2)

Without disorder, εnm = 0, the solutions ψnm are plane waves
with wave numbers μq in the transverse direction. In the
following, the index q = 1, . . . ,M is treated as the channel
(or mode) number. In our model we assume zero boundary
conditions in the transverse direction, ψn,0 = ψn,M+1 = 0,
therefore, the dispersion relation takes the form [12]

2v cos μq = E − 2v cos

(
πq

M + 1

)
, q = 1, . . . ,M. (3)

From this relation one can see that the qth channel is open
as long as the energy fulfills the condition inside the interval,

− 2v � E − 2v cos

(
πq

M + 1

)
� 2v, (4)

and outside it μq becomes imaginary. In fact, the latter equation
determines the number M1(E) of open modes in dependence of
the energy. For example, at the band center, E = 0, all modes
are open and M1 = M . While for |E|/2v > 1 + cos(π/M +
1) all modes are closed. Taking into account that

cos

(
πq1

M + 1

)
> cos

(
πq2

M + 1

)
for q2 > q1, one can obtain the expression for the number of
open modes in terms of the energy and channel number q,

M1 =
{

q if cos
( (q+1)π

M+1

)
<

|E|
2v

− 1 < cos
(

qπ

M+1

)
,

0 if |E|
2v

> 1 + cos
(

π
M+1

)
.

(5)

Then, once the model for Q1D wires has been introduced, in
the next section we describe the non-Hermitian Hamiltonian
approach, i.e., the approach we shall use to describe the
transmission through Q1D disordered wires.

III. NON-HERMITIAN HAMILTONIAN APPROACH

In order to analyze the transport properties of our model, in
what follows we use the non-Hermitian Hamiltonian approach
(see for example [42–45]). The key point of this approach is
based on the projection of the total Hermitian Hamiltonian
H [disordered part plus leads; see Eq. (1)] onto the basis
defined by the Hamiltonian H (int) describing the properties of
the closed model (only disordered part in Fig. 1). In this way
the leads are considered as a continuum to which the disordered
part is coupled according to given boundary conditions. The
knowledge of the effective Hamiltonian H (int) allows one to
construct the scattering matrix and, as a result, all transport
properties can be obtained.

For our model the non-Hermitian Hamiltonian expressed in
the site basis |n,m〉 has the following form:

〈n,m|H(E)|n′,m′〉 = 〈n,m|H (int)|n′,m′〉

−
M1∑
q=1

eiμq (γLδn1 + γRδnN )δnn′Pqm′Pqm.

(6)

Here H (int) is the Hermitian Hamiltonian of the internal system,
i.e., H (int) represents the Q1D wire (of length N and width M)
and has zero boundary conditions at n = 0 and n = N + 1.
The second term in the right hand side of Eq. (6) corresponds
to the coupling of the internal system to the leads. In the general
case the coupling is characterized by two parameters, γL and
γR , with L and R denoting the left and right leads, respectively.
In our study, for simplicity, we assume symmetric couplings,
γL = γR = γ . As is defined above, μq stands for the wave
number at the qth channel and is related to the energy E

through the dispersion relation (3). The elements Pij in Eq. (6)
are the eigenstates of a 1D tight-binding chain of size M in the
absence of disorder,

Pij =
√

2

M + 1
sin

(
πij

M + 1

)
. (7)

Equation (6) can be written in the matrix form as follows:

H(E) = H(int) + 2πAQ(E)AT − iπAAT . (8)

Here H(int) is the NM × NM Hermitian matrix with ordered
matrix elements 〈n,m|H int(E)|n′,m′〉. The second Hermitian
and third non-Hermitian terms in the right hand side of Eq. (8)
represent the real and imaginary parts of the coupling to the
leads, respectively. As for the coupling matrix A of size MN ×
2M1, it is composed by the ordered coupling amplitudes A =
{A(Lq)

mn ,A
(Rq)
mn } between the internal states |n,m〉 and the open

left and right channels Lq and Rq, respectively. Thus, the
coupling amplitudes are given by

ALq
mn = (γL/π )1/2√sin μqPqmδn1,

(9)
ARq

mn = (γR/π )1/2√sin μqPqmδnN .

Q(E) is the 2M1 × 2M1 diagonal matrix with real elements
ordered as {Q1,Q2, . . . ,QM1 ,Q1,Q2, . . . ,QM1}, where

Qq(E) = −(cot μq)/2, q = 1, . . . ,M1(E). (10)

Now, from the effective non-Hermitian Hamiltonian we can
write down the scattering S matrix in the channel space as

S =
(

t r′
r t′

)
= 1 + C†K

1 + CK , (11)

where t, t′, r, and r′ are M1 × M1 transmission and reflection
matrices. Below, we chose the coupling parameter γ in such a
way that the transmission in each channel is maximal. This
means that we consider the so-called perfect coupling for
which the average scattering matrix is zero, 〈S〉 = 0. In our
case, both for the 1D model with M = 1 and for the Q1D model
with M > 1, the perfect coupling corresponds to γ ≈ v [45].

It can be shown that the matrix C in Eq. (11) of size 2M1 ×
2M1 has the following structure:

C = iπ − 2πQ(E).

As for the reaction matrix K (of the same size, 2M1 × 2M1),
its matrix elements are defined by

Kab(E) =
∑
nm

Â(a)
nmÂ(b)

nm

E − Enm

, Â(a,b)
nm =

∑
rs

A(a,b)
rs ψrs(Enm).

(12)
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Here, ψrs are the components of the eigenvector of the matrix
H(int) having the eigenvalue Enm, and we have introduced the
channel index a,b ≡ cq that indicates which lead c = L,R

and mode q we refer to. Once the S matrix is known one
can calculate the dimensionless conductance g = (2e2/h)T ,
where T = Tr(t t†) is the transmission coefficient [46], with e

and h being the charge of the electron and the Planck constant,
respectively.

It should be noted that at the band center the relation (8)
reduces to the simple form [47]

H = H(int) − iπAAT ,

in which the coupling to continuum is described by the
imaginary term only. In addition, in the 1D case the scattering
matrix (11) takes the well known form

S = 1 − iπK
1 + iπK .

In the next section, before presenting numerical results
for the transmission through Q1D disordered wires, we first
elaborate on the stratified disordered case to be able to propose
an analytical expression that will allow us to predict the
transmission as a function of the energy of the incident wave.

IV. CORRELATED STRATIFIED DISORDER

A. Analytical results

In this section we consider the so-called stratified disorder
for which the potential is independent of the transverse
coordinate quantized by the index m, i.e.,

εn1 = εn2 = · · · = εnM ≡ εn. (13)

In this case our model can be reduced to a set of M 1D
independent chains which are nothing but 1D tight-binding
Anderson models [37]. To show this, first, we rewrite the
Schrödinger equation (2) in the matrix form,

v(a(n+1) + a(n−1)) = (E − B(n) − C)a(n), (14)

where a(n) is the vector with components ψnm (m = 1, . . . ,M).
Here B(n) and C are M × M matrices with elements given by

B
(n)
ij = εnj δij , Cij = v(δi,j+1 + δi,j−1). (15)

Then, we pass to a new unperturbed basis through the
transformation,

b(n) = Pa(n), (16)

where the columns of the matrix P are the eigenvectors of
the Hamiltonian matrix C that correspond to the 1D Anderson
model of size M with vanishing disorder, εi = 0, and zero
boundary conditions. Note that the corresponding eigenvectors
and eigenvalues are analytically known. In this representation
the Schrödinger equation (14) takes the form

v(b(n+1) + b(n−1)) = (E − PT B(n)P − D)b(n), (17)

where the elements of the M × M matrix D are given by

Dij = 2v cos

(
πi

M + 1

)
δij , (18)

while the elements of the M × M matrix P are given by Eq. (7).

For the stratified disorder Eqs. (17) become uncoupled
since PT B(n)P = B(n) is a diagonal matrix. Hence, the Q1D
Anderson model is reduced to a set of M 1D chains, where the
energy for each chain is given by

Eq = E − 2v cos

(
πq

M + 1

)
, q = 1, . . . ,M. (19)

Let us now specify the properties of the stratified disorder.
First, we assume the zero mean and small variance σ 2 of the
site energies,

〈εn〉 = 0, σ 2 = 〈
ε2
n

〉 � 1, (20)

where 〈· · · 〉 denotes the average over different realizations
of disorder. Apart from that, we assume that the statistical
properties of disorder are defined by the two-point correlator
describing long-range correlations. Therefore, an additional
ingredient of the disorder is the specific form of the normalized
binary correlator,

χ (k) = 〈εnεn+k〉
σ 2

, (21)

to be defined below.
Since our model with the stratified disorder can be rigor-

ously reduced to a set of M 1D chains, one can try to apply the
theory of 1D localization developed for continuous potentials.
According to this theory for weak disorder and in the limit
N → ∞, the eigenstates b(n)

q [in our case the components of
the vectors b(n); see Eq. (17)] are exponentially localized with
the characteristic length l

(q)
∞ related to the qth channel. As is

known, the inverse localization length can be defined in terms
of the Lyapunov exponent λq , where the analytical expression
for the latter has the following form:

λq ≡ 1

l
(q)
∞

= σ 2

8 sin2 μq

W (2μq),

(22)

W (2μq) = 1 + 2
∞∑

k=1

χ (k) cos 2μqk.

These equations were obtained by the use of the Hamiltonian
map approach [48] following the procedure described in
Refs. [29,49] (see also Ref. [26]). As one can see from (22), the
correlation properties of the random sequence {εn} are entirely
defined by the power spectrum W (μ) of the binary correlator.
Note that the expression for λq is correct for weak disorder,
σ 2 � 1; as for the higher moments of the correlations they
may contribute to the localization length only in the next order
of perturbation theory in the disorder parameter σ 2. We also
would like to stress that Eq. (22) is generically valid for any
random potential, provided it is statistically homogeneous;
that is, the binary correlator χ (k) can be introduced according
to Eq. (21). Indeed, Eq. (22) has been successfully put to
test in the case of short- and long-range correlated potentials
(see Ref. [26] and references therein). Also note that for a
white-noise disorder we have W (2μq) = 1.

Now we focus on the problem of scattering through the
disordered region represented by full circles in Fig. 1. Since
for stratified disorder the transmission along every 1D channel
is independent from those along the other channels, the total
transmission coefficient T can be expressed as the sum of
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partial coefficients Tq corresponding to the propagation of
incident plane waves along the qth independent channels,

T (E) =
M1∑
q=1

Tq(E). (23)

This expression agrees with the Landauer concept of conduc-
tance [46]. Here M1(E) is the number of open modes in the
leads given by Eq. (5).

Above we announced that we plan to use the analytical
results developed for 1D continuous models. However, the
model under consideration is a discrete model for which
the theoretical analysis is restricted due to the presence of
resonances in the energy space (see for example [26,50]
and references therein). Specifically, there are no rigorous
results for the probability distribution of T , or equivalently,
for the corresponding moments for any energy inside the
allowed energy band. To the contrary, for continuous random
potentials with weak disorder the problem of scattering
through finite 1D wires was rigorously solved by various
analytical approaches [15,26]. In particular, there is an exact
expression for the average transmission coefficient in terms of
the ratio of the localization length l∞ to the length N of the
sample [15,26],

〈Tq〉 =
√

2x3
q

π
exp

(
− 1

2xq

) ∫ ∞

0

z2

cosh z
exp

(
−z2xq

2

)
dz,

xq = l(q)
∞

/
N. (24)

In Eq. (24), we have added the index q in order to indicate
to which channel we are referring. Here, the brackets stand
for the average over a number of different realizations of the
correlated disorder.

As was found in Ref. [51], expression (24) turns out to
be very good even for the 1D tight-binding Anderson model,
provided the energy values are not very close to the resonances.
Moreover, recently a different approach has been developed
in Ref. [41] allowing one to modify the standard perturbation
theory in such a way that it gives good results also at the
resonant energies. In particular, it was shown that Eq. (24)
still gives a good description of numerical results at the
resonances, provided the expression for the localization length
takes into account the influence of those resonances. Thus,
the relation (24), together with Eqs. (22) and (23), give us
the possibility to obtain the expression for the transmission
coefficient 〈T (E)〉 in dependence on the model parameters.
Below we verify the validity of Eq. (24) by comparing it with
numerical data.

B. Numerical data

Since the localization length l
(q)
∞ of any qth conducting

channel is fully determined by Eq. (22), if the power
spectrum W (2μq) vanishes within some energy window, the
corresponding channel will be fully transparent in that energy
interval [29,30,52]. This prediction has been confirmed both
numerically and experimentally for the 1D Anderson model
(see details and references in Ref. [26]). Here our question is
how can such an effect be seen in the Q1D model with the
stratified disorder? To answer this question, we choose the

 0

 1

-2 -1  0  1  2
<

T>
E

(b)

 0

 2

 4

-2 -1  0  1  2

λN

E

(a)

FIG. 2. (Color online) (a) Rescaled Lyapunov exponent λN as
a function of the energy E for a one-chain wire, M = 1. The
correlated disorder has been fixed by the stepwise power spectrum of
Eq. (26) with EL = 0.4, ER = 1.3, σ 2 = 0.02, and v = 1. (b) Average
transmission coefficient 〈T 〉 as a function of E. The continuous
curve corresponds to numerical data while the dashed one is the
theoretical prediction from Eqs. (22)–(24). The average is taken
over 100 realizations of disorder for a disordered region of length
N = 300.

following form of the binary correlator [26]:

χ (k) = 1

2k(μR − μL)
(sin 2μRk − sin 2μLk). (25)

As one can see, this correlator exhibits a power law decay
which is typical for long-range correlated disorder. With this
choice of χ (k), the correlator (25) results in the stepwise power
spectrum,

W (Eq) =
{
W0 if EL �

∣∣Eq

∣∣ � ER,

0 if |Eq | < EL or ER < |Eq | � 2v,
(26)

having three well defined energy windows of total transparency
in the 1D-chain case; see below and Ref. [53] where similar
correlators χ (k) have been used. Here, μL and μR are related to
EL and ER through the dispersion law for the 1D system, E =
2 cos μ, and W0 is determined by the normalization condition∫ π/2

0 W (μ)dμ = π/2 (see details in Ref. [26]). Note that we
have omitted the transverse index m since each chain has
the same disorder sequence εn. In our numerical simulations
we consider the following fixed values: EL = 0.4, ER = 1.3,
σ 2 = 0.02, and v = 1.

Correlations with the power spectrum (26) have been
already used in the literature to control the transport properties
of 1D systems [31,52,54]. In Fig. 2 we demonstrate these
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 0
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<
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FIG. 3. (Color online) Same as in Fig. 2(b) for the Q1D model
with (a) M = 2, (b) M = 5, and (c) M = 10. The energy window
where all modes in the leads are open is shown by the shaded region.

properties by considering our model with one chain only,
M = 1. Specifically, we present the analytical expression for
the Lyapunov exponent (22), together with the predicted and
actual dependence of the transmission coefficient 〈T 〉; see
Eq. (24). One can see a good correspondence with the data
showing the expected windows of transparency in dependence
of the energy E.

For the Q1D model with stratified disorder the scenario is
much more complicated. Indeed, for any of the qth channels
the windows of transparency are defined by the energy
shifted in accordance with Eq. (19). Specifically, for each
channel there are three transparent energy windows given
by Eq. (26). Outside of these windows the transmission
vanishes due to the chosen type of correlations. Thus, the
total transmission is obtained by the overlap of the en-
ergy dependencies corresponding to each channel. One can
show that the average transmission coefficient is approxi-
mately defined by the integer number due to the following

 0

 4

 8

-4 -2  0  2  4
T

E

(b)

 0

 2

 4

-4 -2  0  2  4

T

E

(a)

FIG. 4. (Color online) Transmission coefficient T as a function
of E for the Q1D model with correlated stratified disorder of
length N = 300 having (a) M = 5 and (b) M = 10. Continuous
curves correspond to the numerical data while dashed curves are
the theoretical predictions from Eqs. (22)–(24). A single realization
of disorder was used. The energy window where all modes in the
leads are open is indicated by the shaded region.

expression:

Nc(E) =
M∑

q=1

(
[Eq + EL] − 
[Eq − EL] + 
[Eq − ER]

−
[Eq + ER] + 
[Eq + 2v] − 
[Eq − 2v]),

(27)

with 
[x] as the Heaviside step function. The resulting
stepwise behavior is shown in Fig. 3. Notice that the maximum
value of the average conductance is reached, in most of
the cases, in the energy region where without disorder all
modes are open, therefore, the average transmission takes its
maximum value M . The general properties of such behavior
were predicted in Ref. [37]. As one can see, the main feature
of the correlated disorder is the nonmonotonic dependence of
the transmission in dependence on the energy.

The data presented in Fig. 3 are obtained by averaging over
a large number of disorder realizations with the same kind of
long-range correlations. However, from the experimental point
of view it is important to know whether the nonmonotonic
dependence of T (E) can be practically seen for individual
samples of finite size and disorder. To answer this question,
in Fig. 4 we report T (E) for a single disorder realization of
the Q1D model of length N = 300 with M = 5 and M = 10,
i.e., we use the same parameters as in Figs. 3(b) and 3(c),
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respectively. The numerical data reported in Fig. 4 demonstrate
that the nonmonotonic stepwise dependence of T (E) can be
still detected. However, the fluctuations can wash out very
narrow peaks; this can be clearly seen when the average
is performed [compare Figs. 4(a) and 4(b) with Figs. 3(b)
and 3(c), respectively]. In fact, according to the theory of 1D
disordered systems in the ballistic regime, N/l

(q)
∞ � 1, the

variance of Tq can be written as [26]

Var(Tq) = 4

(
N

l
(q)
∞

)2

+ O

[(
N

l
(q)
∞

)3
]

. (28)

Therefore, on the one hand, one can expect that if the qth
channel is open (ballistic regime, Tq ≈ 1), the fluctuations of
Tq should not be very strong, i.e., proportional to (N/l

(q)
∞ )2. On

the other hand, if due to specific long-range correlations the qth
channel is closed (localized regime, Tq � 1) the fluctuations
are negligible. Thus, we expect the fluctuations of the total
transmission to be of the order of (N/l

(j )
∞ )2, with l

(j )
∞ being the

smallest localization length.

V. CORRELATED NONSTRATIFIED DISORDER

Another important problem refers to the Q1D model (1)
with the disorder having the same correlation properties in
the longitudinal direction for each chain, however, with no
correlations in the vertical direction. Mathematically, this
means that the disorder potential depends on both transverse
and longitudinal coordinates, being correlated along the
sample, however, completely uncorrelated transverse to it. In
other words, the statistical properties for the site energies are
defined as follows:

〈εnm〉 = 0, σ 2 = 〈
ε2
nm

〉
, χ (k) = 〈εnmεn+k,m′ 〉

σ 2
δmm′ , (29)

where χ (k) is the normalized binary correlator of the site
energies. As before, we assume that the disorder is weak,
σ 2 � 1. In the numerical calculations the specific form of
the correlator is chosen according to Eq. (25) with the
corresponding power spectrum (26). However, the presented
results are valid for the systems with any form of the binary
correlator χ (k).

When the correlated disorder is not stratified, the model
cannot be represented by a set of independent 1D systems,
and the analytical solution for the localization length is
known for specific cases only. For example, for the two-
chain model, M = 2, the expression for the Lyapunov ex-
ponent has been analytically derived in Ref. [21] for any
kind of correlations, both in the longitudinal and transverse
directions.

So far, an analytical solution for the Lyapunov exponent in
the general case with M > 2 channels and correlated disorder
is absent. Instead, in this section we focus on a particular case
when only one channel is open to wave propagation and all
the others are closed. Specifically, we are interested in the
transmission coefficient T for the energy corresponding to the
first open channel. Our approach is based on the expression
for the localization length which is used in Eq. (24) obtained
for 1D models with continuous random potentials. To do this,

we employ the result obtained for a white-noise disorder [12],

λR = 1

N

M∑
n,m=1

〈∣∣R(N)
nm

∣∣2〉 = (3 + δ2,M+1)σ 2

16(M + 1) sin2 μ1
, (30)

valid for any number of channels M , however, in the situation
when one channel is open only. Here the Lyapunov exponent
λR is defined through the reflection amplitudes R(N)

nm for an
electron which is incident along the nth transverse mode and
scattered back along the mth transverse mode; see details in
Ref. [12]. The relation of the localization length lR = 1/λR

to the localization length ξM defined via the conventional
definition,

ξ−1
M = − lim

N→∞
1

2N

〈
ln

M∑
n,m

∣∣T (N)
nm

∣∣2

〉
, (31)

is discussed in Refs. [9,11,12,14]. Here T (N)
nm is a transmission

amplitude for the transmission of the wave incoming into the
nth channel and outgoing from the mth channel. Note that in
both Eqs. (30) and (31) the summation is performed over all
channels since the mixing between the channels should not be
neglected.

With the use of this expression, we can suggest the phe-
nomenological generalization valid for the correlated disorder
as well,

λ(E) = (3 + δ2,M+1)σ 2

16(M + 1) sin2 μ1
W (2μ1). (32)

Note that in the case of uncorrelated disorder, W (2μ1) = 1,
the latter expression reduces to Eq. (30) and for M = 2 the
result obtained in Ref. [21] is recovered. Quite remarkable is
the prediction that the inverse localization length decreases as
the total number M of chains increases.

It should be pointed out that here we study the case when
the longitudinal and transverse hopping amplitudes are equal;
see Fig. 1. Therefore, all the subbands (4) are overlapped.
However, Eq. (32) can be generalized even for the case
when the transverse hopping amplitudes are not equal to
the longitudinal ones; this could lead to the nonoverlapping
of some subbands. In this case one has also to take into
account the influence of the evanescent modes as stated in
Ref. [55]. Another related result can be found in Ref. [56]
where the localization-delocalization transition was studied
when considering the strength of the transverse hopping as an
independent parameter.

Now, since only the open mode mainly contributes to
transmission, one can suggest that the expression for the
average total transmission (in the energy region where only
one mode is open) can be obtained by inserting the localization
length defined by Eq. (32) into Eq. (24). Indeed, our numerical
data presented in Figs. 5 manifest that Eq. (32) give a very
good description for the total transmission coefficient in the
energy regions corresponding to only one open channel. One
can also see that when more than one channel is open the
energy dependence of the transmission coefficient acquires a
quite complicated form, thus indicating an extreme difficulty
in the analysis of the behavior of the transmission coefficient
in other energy regions.
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FIG. 5. (Color online) Average transmission coefficient as a
function of the energy for nonstratified disorder. Continuous curves
represent the numerical data and dashed curves are the theoretical
prediction given by Eqs. (24) and (32). The length of the system
is N = 300 with the disorder strength σ 2 = 0.02 for (a) M = 2,
(b) M = 3, and (c) M = 4.

VI. CONCLUSIONS

We have studied the transport properties of bulk-disordered
Q1D wires paying main attention to the role of long-range
correlations along disordered structures of finite size. First, we
have manifested that in the case of stratified disorder global
transport properties can be fully explained by the semiana-
lytical theory that uses results obtained for 1D continuous
random potentials. As predicted in Ref. [37], in this case
the expression for the total transmission coefficient T can be
presented as a sum of partial coefficients Tq that correspond
to independent 1D chains characterized by the index q.
Since the theory of correlated disorder for 1D tight-binding
models is fully developed (see discussion in [26]), this allows
one to incorporate the obtained results into the problem of
the correlated transport for Q1D disordered systems. This

incorporation is not rigorous since it does not take into account
the resonances emerging in discrete (tight-binding) models,
however, it can be approximately used. Indeed, our numerical
data demonstrate a perfect agreement with the analytical
predictions. For the numerical study we have used the approach
which is based on the non-Hermitian Hamiltonians from which
one can construct the scattering matrix, therefore, to obtain all
transport characteristics.

Second, we have analyzed the model in which the long-
range correlations are taken in the same way as for the
stratified disorder, however, the individual realizations of the
disorder in the chains are independent from each other. In this
case the disordered potential depends on both coordinates,
the longitudinal and transverse ones; this leads to a mixing
between different channels when the waves propagate through
the Q1D structure. Since the general theory is absent, we
have studied a specific, however, realistic case when one
channel is open only while M − 1 other channels are closed.
For this case the rigorous analysis is also absent, and we
suggested an approach which results in a phenomenological
expression for the transmission coefficient. This approach
is based on the results obtained earlier for a white-noise
disorder. The suggested expression turns out to be very good,
as the comparison with the data shows. It should be noted
that such a situation when the transport in Q1D systems
is practically defined by one open channel can be arranged
experimentally [57].

Finally, we have numerically demonstrated that specific
long-range correlations can result in a strong enhancement
of the localization, even when the disorder is weak; in the
1D disordered models this was confirmed experimentally
(see results, discussion, and references in [26]). Such an
effect of an enhancement of localization is clearly seen from
our numerical data obtained for relatively short disordered
samples. Specifically, the emergence of the energy windows
where the transmission coefficient vanishes or becomes very
small is a direct consequence of the enhancement of the
localization. Interestingly enough, such an enhancement of
localization in the selected energy windows is accompanied
by the suppression of localization in the complementary
energy windows within the energy band [26]. Therefore, the
long-range correlations can be considered as the mechanism
for the creation of eigenstates with both enhanced and
suppressed localization, selectively embedded in the energy
space. This effect can be used to manufacture devices with
controlled transport properties in photonic heterostructures,
semiconductor superlattices, electron nanoconductors, and
microwave waveguides. As an example of an experimental
realization of the Q1D correlated disorder we mention the
recent study of transport properties of a Q1D waveguide
with long-range correlations inside the scattering potential (for
details see Ref. [58]).
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[58] O. Dietz, U. Kuhl, H.-J. Stöckmann, N. M. Makarov, and F. M.

Izrailev, Phys. Rev. B 83, 134203 (2011).

042115-9

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1080/00018736100101271
http://dx.doi.org/10.1080/00018736100101271
http://dx.doi.org/10.1080/00018736100101271
http://dx.doi.org/10.1080/00018736100101271
http://dx.doi.org/10.1098/rspa.1963.0148
http://dx.doi.org/10.1098/rspa.1963.0148
http://dx.doi.org/10.1098/rspa.1963.0148
http://dx.doi.org/10.1098/rspa.1963.0148
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1103/PhysRevB.66.155434
http://dx.doi.org/10.1103/PhysRevB.66.155434
http://dx.doi.org/10.1103/PhysRevB.66.155434
http://dx.doi.org/10.1103/PhysRevB.66.155434
http://dx.doi.org/10.1088/0953-8984/15/29/314
http://dx.doi.org/10.1088/0953-8984/15/29/314
http://dx.doi.org/10.1088/0953-8984/15/29/314
http://dx.doi.org/10.1088/0953-8984/15/29/314
http://dx.doi.org/10.1103/PhysRevB.70.214206
http://dx.doi.org/10.1103/PhysRevB.70.214206
http://dx.doi.org/10.1103/PhysRevB.70.214206
http://dx.doi.org/10.1103/PhysRevB.70.214206
http://dx.doi.org/10.1103/PhysRevB.76.033305
http://dx.doi.org/10.1103/PhysRevB.76.033305
http://dx.doi.org/10.1103/PhysRevB.76.033305
http://dx.doi.org/10.1103/PhysRevB.76.033305
http://dx.doi.org/10.1103/PhysRevB.77.113105
http://dx.doi.org/10.1103/PhysRevB.77.113105
http://dx.doi.org/10.1103/PhysRevB.77.113105
http://dx.doi.org/10.1103/PhysRevB.77.113105
http://dx.doi.org/10.1088/0953-8984/21/40/405302
http://dx.doi.org/10.1088/0953-8984/21/40/405302
http://dx.doi.org/10.1088/0953-8984/21/40/405302
http://dx.doi.org/10.1088/0953-8984/21/40/405302
http://dx.doi.org/10.1088/0953-8984/23/4/045301
http://dx.doi.org/10.1088/0953-8984/23/4/045301
http://dx.doi.org/10.1088/0953-8984/23/4/045301
http://dx.doi.org/10.1088/0953-8984/23/4/045301
http://dx.doi.org/10.1016/j.ssc.2013.03.029
http://dx.doi.org/10.1016/j.ssc.2013.03.029
http://dx.doi.org/10.1016/j.ssc.2013.03.029
http://dx.doi.org/10.1016/j.ssc.2013.03.029
http://dx.doi.org/10.1103/PhysRevLett.81.862
http://dx.doi.org/10.1103/PhysRevLett.81.862
http://dx.doi.org/10.1103/PhysRevLett.81.862
http://dx.doi.org/10.1103/PhysRevLett.81.862
http://dx.doi.org/10.1016/S0550-3213(99)00518-0
http://dx.doi.org/10.1016/S0550-3213(99)00518-0
http://dx.doi.org/10.1016/S0550-3213(99)00518-0
http://dx.doi.org/10.1016/S0550-3213(99)00518-0
http://dx.doi.org/10.1038/356168a0
http://dx.doi.org/10.1038/356168a0
http://dx.doi.org/10.1038/356168a0
http://dx.doi.org/10.1038/356168a0
http://dx.doi.org/10.1209/epl/i2004-10190-9
http://dx.doi.org/10.1209/epl/i2004-10190-9
http://dx.doi.org/10.1209/epl/i2004-10190-9
http://dx.doi.org/10.1209/epl/i2004-10190-9
http://dx.doi.org/10.1103/PhysRevB.75.014201
http://dx.doi.org/10.1103/PhysRevB.75.014201
http://dx.doi.org/10.1103/PhysRevB.75.014201
http://dx.doi.org/10.1103/PhysRevB.75.014201
http://dx.doi.org/10.1103/PhysRevB.76.134202
http://dx.doi.org/10.1103/PhysRevB.76.134202
http://dx.doi.org/10.1103/PhysRevB.76.134202
http://dx.doi.org/10.1103/PhysRevB.76.134202
http://dx.doi.org/10.1016/j.chaos.2007.01.053
http://dx.doi.org/10.1016/j.chaos.2007.01.053
http://dx.doi.org/10.1016/j.chaos.2007.01.053
http://dx.doi.org/10.1016/j.chaos.2007.01.053
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1016/j.physrep.2011.11.002
http://dx.doi.org/10.1016/j.physrep.2011.11.002
http://dx.doi.org/10.1016/j.physrep.2011.11.002
http://dx.doi.org/10.1016/j.physrep.2011.11.002
http://dx.doi.org/10.1088/0953-8984/1/44/017
http://dx.doi.org/10.1088/0953-8984/1/44/017
http://dx.doi.org/10.1088/0953-8984/1/44/017
http://dx.doi.org/10.1088/0953-8984/1/44/017
http://dx.doi.org/10.1103/PhysRevLett.65.88
http://dx.doi.org/10.1103/PhysRevLett.65.88
http://dx.doi.org/10.1103/PhysRevLett.65.88
http://dx.doi.org/10.1103/PhysRevLett.65.88
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3889(199902)8:2<153::AID-ANDP153>3.0.CO;2-N
http://dx.doi.org/10.1063/1.127068
http://dx.doi.org/10.1063/1.127068
http://dx.doi.org/10.1063/1.127068
http://dx.doi.org/10.1063/1.127068
http://dx.doi.org/10.1016/S1386-9477(02)00261-8
http://dx.doi.org/10.1016/S1386-9477(02)00261-8
http://dx.doi.org/10.1016/S1386-9477(02)00261-8
http://dx.doi.org/10.1016/S1386-9477(02)00261-8
http://dx.doi.org/10.1103/PhysRevLett.100.126402
http://dx.doi.org/10.1103/PhysRevLett.100.126402
http://dx.doi.org/10.1103/PhysRevLett.100.126402
http://dx.doi.org/10.1103/PhysRevLett.100.126402
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1088/0305-4470/38/49/010
http://dx.doi.org/10.1088/0305-4470/38/49/010
http://dx.doi.org/10.1088/0305-4470/38/49/010
http://dx.doi.org/10.1088/0305-4470/38/49/010
http://dx.doi.org/10.1063/1.1765735
http://dx.doi.org/10.1063/1.1765735
http://dx.doi.org/10.1063/1.1765735
http://dx.doi.org/10.1063/1.1765735
http://dx.doi.org/10.1103/PhysRevB.67.113402
http://dx.doi.org/10.1103/PhysRevB.67.113402
http://dx.doi.org/10.1103/PhysRevB.67.113402
http://dx.doi.org/10.1103/PhysRevB.67.113402
http://dx.doi.org/10.1088/0305-4470/39/38/002
http://dx.doi.org/10.1088/0305-4470/39/38/002
http://dx.doi.org/10.1088/0305-4470/39/38/002
http://dx.doi.org/10.1088/0305-4470/39/38/002
http://dx.doi.org/10.1103/PhysRevE.88.052108
http://dx.doi.org/10.1103/PhysRevE.88.052108
http://dx.doi.org/10.1103/PhysRevE.88.052108
http://dx.doi.org/10.1103/PhysRevE.88.052108
http://dx.doi.org/10.1016/0003-4916(92)90180-T
http://dx.doi.org/10.1016/0003-4916(92)90180-T
http://dx.doi.org/10.1016/0003-4916(92)90180-T
http://dx.doi.org/10.1016/0003-4916(92)90180-T
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.323.0306
http://dx.doi.org/10.1147/rd.323.0306
http://dx.doi.org/10.1147/rd.323.0306
http://dx.doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1147/rd.323.0317
http://dx.doi.org/10.1147/rd.323.0317
http://dx.doi.org/10.1147/rd.323.0317
http://dx.doi.org/10.1147/rd.323.0317
http://dx.doi.org/10.1103/PhysRevB.52.3274
http://dx.doi.org/10.1103/PhysRevB.52.3274
http://dx.doi.org/10.1103/PhysRevB.52.3274
http://dx.doi.org/10.1103/PhysRevB.52.3274
http://dx.doi.org/10.1016/S1386-9477(00)00237-X
http://dx.doi.org/10.1016/S1386-9477(00)00237-X
http://dx.doi.org/10.1016/S1386-9477(00)00237-X
http://dx.doi.org/10.1016/S1386-9477(00)00237-X
http://dx.doi.org/10.1016/j.physe.2012.01.024
http://dx.doi.org/10.1016/j.physe.2012.01.024
http://dx.doi.org/10.1016/j.physe.2012.01.024
http://dx.doi.org/10.1016/j.physe.2012.01.024
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevE.86.011142
http://dx.doi.org/10.1103/PhysRevLett.102.203901
http://dx.doi.org/10.1103/PhysRevLett.102.203901
http://dx.doi.org/10.1103/PhysRevLett.102.203901
http://dx.doi.org/10.1103/PhysRevLett.102.203901
http://dx.doi.org/10.1016/j.physe.2010.04.020
http://dx.doi.org/10.1016/j.physe.2010.04.020
http://dx.doi.org/10.1016/j.physe.2010.04.020
http://dx.doi.org/10.1016/j.physe.2010.04.020
http://dx.doi.org/10.1209/0295-5075/90/14001
http://dx.doi.org/10.1209/0295-5075/90/14001
http://dx.doi.org/10.1209/0295-5075/90/14001
http://dx.doi.org/10.1209/0295-5075/90/14001
http://dx.doi.org/10.1088/1367-2630/14/1/013048
http://dx.doi.org/10.1088/1367-2630/14/1/013048
http://dx.doi.org/10.1088/1367-2630/14/1/013048
http://dx.doi.org/10.1088/1367-2630/14/1/013048
http://dx.doi.org/10.1103/PhysRevB.68.155403
http://dx.doi.org/10.1103/PhysRevB.68.155403
http://dx.doi.org/10.1103/PhysRevB.68.155403
http://dx.doi.org/10.1103/PhysRevB.68.155403
http://dx.doi.org/10.1103/PhysRevB.81.214202
http://dx.doi.org/10.1103/PhysRevB.81.214202
http://dx.doi.org/10.1103/PhysRevB.81.214202
http://dx.doi.org/10.1103/PhysRevB.81.214202
http://dx.doi.org/10.1038/ncomms4488
http://dx.doi.org/10.1038/ncomms4488
http://dx.doi.org/10.1038/ncomms4488
http://dx.doi.org/10.1038/ncomms4488
http://dx.doi.org/10.1103/PhysRevB.83.134203
http://dx.doi.org/10.1103/PhysRevB.83.134203
http://dx.doi.org/10.1103/PhysRevB.83.134203
http://dx.doi.org/10.1103/PhysRevB.83.134203



