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By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches
to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends
to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in
previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also
for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key
role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space.
In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager’s generalized
resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager
generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium
thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state
space along the path of SEA compatible with the conservation constraints and the boundary conditions. The
resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of
thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA
dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept
has not been investigated before. We believe it defines the precise meaning and the domain of general validity of
the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach
may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and
theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium states.
The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models
of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation);
(C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics;
(D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum
statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and

intrinsic quantum thermodynamics.
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I. INTRODUCTION

The problem of understanding entropy and irreversibility
has been tackled by a large number of preeminent scientists
during the past century. Schools of thought have formed
and flourished around different perspectives of the problem.
Several modeling approaches have been developed in various
frameworks to deal with the many facets of nonequilibrium.

In this paper, we show how to construct steepest entropy
ascent (SEA) models of nonequilibrium dynamics by adopting
a unified mathematical formulation that allows us to do
it at once in several different well-known frameworks of
nonequilibrium description.

To avoid doing inevitable injustices to the many pioneers
of all these approaches and to the many and growing fields
of their application, here we skip a generic introduction and
given no references nor a review of previous work. Rather,
we dig immediately into the mathematical reformulations of
the different frameworks in such a way that the construction
of the proposed SEA dynamics becomes formally a single
geometrical problem that can be treated at once.

Our reformulations here not only allow a precise meaning,
general implementation, and unified treatment of the so-called
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maximum entropy production (MEP) principle (for a recent
review see Ref. [1]) in the various frameworks but also extend
to all frameworks an observation that we have been developing
in the quantum thermodynamics framework for the past three
decades [2-5]. In doing so, we also introduce an important
generalization for the quantum thermodynamics modeling
framework.

The observation is that we cannot simply maximize the
entropy production subject to a set of conservation constraints
or boundary conditions, but in order to identify a SEA path in
state space we must equip the state space with a metric field
with respect to which to compute the distance traveled during
the time evolution.

The generalization is as follows. In our previous work,
we adopted the proper uniform metric for probability dis-
tributions, namely the Fisher-Rao metric, because in quan-
tum thermodynamics the state representative, the density
operator, is essentially a generalized probability distribution.
In other frameworks, however, the state representative not
always is a probability distribution. Moreover, the present
application to the framework of mesoscopic nonequilibrium
thermodynamics [6,7] shows that standard results such as
the Fokker-Planck equation and Onsager theory emerge as
straightforward results of SEA dynamics with respect to a
metric characterized by a generalized metric tensor that is
directly related to the inverse of the generalized conductivity
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tensor. Since the generalized conductivities represent, at least
in the near-equilibrium regime, the strength of the system’s
reaction when pulled out of equilibrium, it appear that their
inverse, i.e., the generalized resistivity tensor, represents the
metric with respect to which the time evolution, at least in the
near equilibrium, is locally SEA.

But the local SEA construction does much more, because it
offers a strongly thermodynamically consistent way to extend
the well-known near-equilibrium theories to the treatment of
nonequilibrium states.

The unified formulation of the local SEA variational
problem s as follows and it is not restricted to near equilibrium:
The time evolution of the local state is the result of a balance
between the effects of transport or Hamiltonian dynamics
and the spontaneous and irreversible tendency to advance
the local state representative in the direction of maximal
entropy production per unit of distance traveled in state space
compatible with the conservation constraints.

Geometrically, the measure of distance traveled in state
space requires the choice of a local metric tensor. Physically,
the local metric tensor contains the full information about
the relaxation kinetics of the material. The standard near-
equilibrium results obtain when the local metric tensor is
proportional to the inverse of the local matrix of generalized
conductivities, i.e., to the local generalized resistivity matrix.

The structure of the SEA geometrical construction for the
description of highly nonequilibrium dissipative dynamics
in the nonlinear domain turns out to be closely related to
the formulation of dissipation in the well-known general
equation for the nonequilibrium reversible—irreversible cou-
pling (GENERIC) [8-10]. The seeds of SEA and GENERIC
developed independently in the early 1980s with different
motivations and approaches, but the common general thrust
has been, and still is, to impose strong thermodynamic con-
sistency in the dynamical modeling of systems far from stable
thermodynamic equilibrium. SEA has focused exclusively on
the irreversible entropy-generation component of the time
evolution, while GENERIC has emphasized the coupling and
interplay between the reversible and irreversible components
of the time evolution.

We will show elsewhere [11] that the main technical
differences are that (1) SEA chooses a (nondegenerate)
Riemannian metric tensor as dissipative structure, while
GENERIC chooses two compatible degenerate structures
(Poisson and degenerate co-Riemannian), and (2) in the
description of a continuum, SEA uses the local entropy
density field as potential, while GENERIC uses the global
energy and entropy functionals as potentials. Future work
is needed to address also the relationships and establish
differences and similarities between the SEA description of
far from equilibrium dissipation and other closely related
approaches, such as the recent contact geometry of mesoscopic
thermodynamics and dynamics [12-14], the general ideas
of the rate-controlled constrained-equilibrium approach to
far-from-local-equilibrium thermodynamics [15,16] and of the
quasiequilibrium approximation of invariant manifolds [17],
as well as the works of Ziegler [18] and Edelen [19].

The question of what “the physical basis” is for the SEA
scheme (or that for the GENERIC scheme) is tricky and
philosophically ill posed. It is as if one would ask what the
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physical basis is for believing that a classical system should
obey Hamilton’s equations or the equivalent minimum action
principle. The meaning of “physical reality” is well explained
in the classic book on this subject by Henry Margenau [20].
There is a level of perceptions, the empirical world, that we
try to describe by defining concepts, their relations with the
plane of perceptions (operational measurement procedures),
and relations among concepts that we call laws or principles
(often using the language of mathematics to express them
efficiently). The farther the construction goes from the plane of
perceptions the more “abstract” it becomes, but the advantage
is that more abstraction may allow us to encompass and
regularize a broader set of less abstract theories, in short, to
unify them. At any level of abstraction, what makes a theory
“physical” are its links to the plane of perception, namely the
fact that the theory allows us to model some empirical evidence
with some reasonable level of approximation.

Paraphrasing the words of Feynman, what makes a partic-
ular law or principle “great,” such as the great conservation
principles or the second law of thermodynamics, is the fact
that they hold for whatever level of description of whatever
empirical reality, provided the model has some basic structure
and obeys some reasonable conditions, such as those that
grant and give meaning to the concept of separability between
the object of study and its surroundings. The spirit of the
SEA construction is precisely this. We consider a number of
frameworks that have successfully modeled nonequilibrium
systems at some level of description, we focus on how these
successful models of physical reality describe entropy produc-
tion by irreversibility, and we cast them in a way that allows
us to see that they can all be encompassed and regularized by
the unifying geometrical SEA construction. The GENERIC
construction is even more ambitious in that it attempts to
unify at once also the reversible and transport contributions
by recognizing their common Hamiltonian structure and their
relations with the irreversible aspects of the dynamics.

Being more abstract (i.e., farther from Margenau’s plane
of perceptions) than the various physical theories they unify,
the SEA and GENERIC constructions emerge as general
dynamical principles which operate within the same domain
of validity of the second law of thermodynamics and, hence,
enjoy a similar level of “greatness”, by complementing it with
the additional essential and general features of nonequilibrium
behavior at all levels of description.

An important fraction of the greatness of the second law
of thermodynamics stems from the fact that it supports the
operational definition of entropy [21,22] as a property of
any well-defined system and in any of its equilibrium and
nonequilibrium states. Other good fractions that have direct
impact also on the near-equilibrium description of dynamics
derive from the stability and maximal entropy features of the
equilibrium states.

An important fraction of the importance of the SEA
principle stems from the fact that for any well-defined system
it supports the operational definition of the metric field
G over its entire state space, which characterizes even in
the far-nonequilibrium domain all that can be said about
the spontaneous, irreversible, entropy-generating tendency
towards stable equilibrium. Another good fraction derives
from the fact that within the SEA construction the MEP
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principle acquires a precise and general validity whereby, in
any well-defined model, the entropy-producing component of
the dynamics effectively pulls the state of the system in the
direction of steepest entropy ascent compatible with the metric
field G and the imposed conservation laws.

The paper is structured as follows. In Sec. II we reformulate
several of the well-known approaches for the description of
dissipation in nonequilibrium systems to express them all in
terms of a common geometrical formulation. In Sec. III we
then introduce our steepest-entropy-ascent unified variational
formulation of nonequilibrium dissipation and discuss its main
general features. In Sec. IV we give a pictorial representation
of the same concepts and in Sec. V we draw our conclusions.

II. COMMON STRUCTURE OF THE DESCRIPTION
OF DISSIPATION IN SEVERAL NONEQUILIBRIUM
FRAMEWORKS

In this section we show that several well-known nonequi-
librium frameworks at various levels of description can be
recast in slightly nonstandard, but unifying, notation so that
they all exhibit as common features the following essential
conditions:

Cl: the state space, denoted by the symbol ., is a manifold
in a Hilbert space equipped with a suitable inner product (-|-);
we denote its elements (the states) by y or, alternatively, |y);

C2: the system properties (energy, entropy, mass, momen-
tum, etc.) are represented by real functionals A(y), B(y), ...
of y such that their functional derivatives with respect to y
are also elements of .#; we denote them by §A(y)/8y or,
alternatively, by |8 A(y) /8Y);

C3: if the states are functions of time ¢ only, y = y(t),
their time evolution y (¢) obeys the equation of motion,

ldy /dt) = |T1,), (1)

where |IT,) is also an element of £ such that the rates of
change of the entropy S(y) and of any conserved property
Ci(y), with i labeling a list of conserved properties, are

dS/dt =Tlg with TIg = (®[I1,) > 0, )
dCi/dt =T, with T¢, = (W|M,)=0,  (3)

where I1g and Il¢, are the respective production rates and
|®) = [85(y)/8y) and |¥;) = |8C;(y)/8y) are shorthand for
denoting the variational derivatives with respect to y of the
entropy functional S(y) and the conserved functional C;(y),
respectively;

C3': if the states are continuum fields y = y(¢,x), where x
is position and 7 is time, assume that the time evolution obeys
the equation of motion,

10y /01) + %y ly) = |T1,), “4)

where %, is an operator on . responsible for the description
of the local fluxes in the continuum and [IT,) is an element
of .Z responsible for the description of the local production
densities, such that the balance equations for entropy and any
conserved property are

39S/01 +V - Jg = g
8C,/8I+V 'JC; = HCi

with Ty = (®[11,) >0, (5
with Tl = (¥|T1,) =0, (6)
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where, of course, Js and J ¢, are the respective local Lagrangian
fluxes and Ilg and Il¢, the respective local production
densities.

In the next subsections we introduce the details of the
slightly nonstandard notations that allow us to reformulate in
the terms just outlined some of the approaches that have been
developed over the past several decades to provide thermody-
namically consistent theories of nonequilibrium dissipation at
various levels of description. This list of approaches is by no
means exhaustive and their reformulations have no important
elements of novelty. Their presentation here is only intended to
explicitly substantiate the above common features in some of
the most well-known nonequilibrium modeling frameworks.
Perhaps the only major point is that in order to satisfy condition
C2 in frameworks (A), (B), (D), and (E), we will borrow
from the formalism we originally developed for the quantum
framework [2,3] (later introduced also in Refs. [4,23]): the use
of square roots of probabilities (instead of the probabilities
themselves) as state representatives.

The reader who does not need to be convinced about such
details can skip the rest of this section and jump to Sec. III,
where we provide the unified construction and implementation
of the SEA concept, based only on the general assumptions
itemized above.

A. Framework A: Statistical or information-theoretic models
of relaxation to equilibrium

Let . be the set of all n-vectors of real finite nhumbers
A = vect(a;), B = vect(b;), ... (n < 00), equipped with the
inner product (-|-) defined by

(A|B) = Tr(AB) = Za,- b;. (7)
j=1

In information theory [24], the probability assignment to a
set of n events, p; being the probability of occurrence of the
Jj-th event, can be represented by p = vect(p;). In order to
easily impose the constraint of preservation of non-negativity
of the probabilities during their time evolution and to obtain
condition C2 above, we adopt the description in terms of the
square root of p that we denote by

y = vect(y; = /D)) 8)

Typically, we consider a set of conserved expectation values
of the process

(C;} ={HY).Ni(y). ....N )., I(»)}, 9
where H(y) =Tr(y*H) = )_"_ v} e¢; with H denoting the
constant vector H = vect(e;), for i =1,...,r, 1\7[()/) =

Tr(y>N;) = 22:1 yjz n;j with N; denoting the constant vector
N; = vect(n;;), and I(y) = Tr(y*I) = Y_'_,y} = 1, provid-
ing the normalization condition, with I = vect(1). Notice that
the variational derivatives § H /8y = vect(2yje;), SN; /0y =
vect(2y;n;j), 61/8y = 2y are vectors in .Z, thus satisfying
condition C2 above. We denote them collectively by

v; =8C; /8y, (10)
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A time evolution of the square-root probability distribution,
y (1), is a solution of the rate equation

dy

dr

where the term IT,, must be such as to satisfy the constraints

of conservation of the expectation values C;(y), i.e., such that

M, = % - %Tr(yzci) = (¥i|,)=0.  (12)

The entropy in this context is represented by the Shannon
functional

=11, (1)

S(y) = —kTr(pIn p) = (—ky Iny?|y) (13)
so the rate of entropy production is given by
ds d
Ms=—-= —kETr(pln,O) = (PI1,), (14)

where @ denotes its variational derivative with respect to y,
® = 85/8y = vect(—2ky; — 2ky;Iny}). (15)

It is noteworthy that an advantage of the state representation
in terms of square-root probability distributions is that §S/5y
is well defined and belongs to .Z for any distribution, even if
some of the probabilities p; are equal to zero, whereas in such
cases 85/68p is undefined and does not belong to .Z.

In Sec. IIT we present the SEA construction which in this
framework provides a model for the rate term IT,, whereby ITg
is maximal subject to the conservation constraints I1¢, =0
and the suitable additional constraint we discuss therein.

An attempt along the same lines has been presented in
Ref. [25].

B. Framework B: Small-scale and rarefied gas dynamics

Let Q. be the classical one-particle velocity space, and .Z

the set of real, square-integrable functions A,B, ... on 2,
equipped with the inner product (-|-) defined by
(A|B) = Tr.(AB) = / AB d<,, (16)
Q

where Tr.(+) in this framework denotes ch -dQ2., withd 2, =
dcydceydc,.

In the kinetic theory of rarefied gases and small-scale hy-
drodynamics [26], the probability to find a particle (at position
x and time ¢) with velocity between ¢ and ¢ + dc¢ [where, of
course, € = (cy,Cy,c;)] is given by f(e;x,t) dQC/erf <.,
where f(c;Xx,?) is the local phase-density distribution which
for every position x and time instant 7 is a function in .Z.

Also in this framework, in order to easily impose the con-
straint of preservation of the non-negativity of f during its time
evolution and, perhaps more importantly, to obtain condition
C2, we introduce the local one-particle state representation not
by f itself but by its square root, which we assume is also a
function in . that we denote by y = y(c; x,t). Therefore, we
have

af ay
f:yz’ 8_227/_’

t ot a7
d 0 0 0
of _, v of _, Oy

X Yax’ ¢ Ve
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and for any functionals Af(f) and Ay(y) = Af(yz),

$A,1) _, , SAAS)
8y 8f f=v?

Again, among the functionals that represent the one-particle
physical observables we focus on the conserved fields, i.e.,
the collision invariants (mass, momentum, energy), which we
denote synthetically by the set

{Ci(y)} = (mA(y), Mc(y),My(y),M.(y),H(y)},  (19)

where m is the single-particle mass, 7i(y) = Tr.(y?) the
particle number density field, Mi(y) = mTrC(yzci) the i-th
component of the momentum density field, and the total energy
density field H(y) = T(y) + U(y) is, in general, composed
of a kinetic energy contribution T(y) = %mTrc(yzc -¢)and a
potential energy contribution U (y ), such that at position x and
time ¢ the functional derivative U (y)/8y = 2y@,(x,t) is a
function in .Z, thus obeying condition C2 above, where @, (x,1)
is the single-particle potential field. For example, for a uniform
externally applied field in the z direction, —Vg,(x) =a =
—a Vz with a constant. Again, for the Vlasov-Poisson kinetic
theory [27], U(y) = %Trc(yzgo],), where ¢, (x,1) is a nonlocal
functional of y, with ¢,(x,7) = fQ dQy fg dQeV(x —

x'|) y%(¢/;x',t) representing a locally averaged mean-field
single-particle potential due to the effects of the neighboring
particles via the interparticle potential V assumed to be a
function of particle distance only.
The dissipative time evolution of the distribution function
f is given by the Boltzmann equation or some equivalent
simplified kinetic model equation, which in terms of the
square-root distribution may be written in the form
dy dy
ar 1O VY Ve
In order to satisfy the constraints of mass, momentum, and
energy conservation, the collision term IT, must be such that

e, = (Wi[IT,) =0, 21

(18)

=T1I,. (20)

where
v; =8C;/8y. (22)
The entropy density field in this context is represented by
S(x.1) = 8(y) = —kTre(y* Iny?) = (—ky Iny?ly). (23)

the rate of entropy production is

[Ty = (P[IT,), (24)
where
& =685/8y, (25)
and the entropy balance equation is
aTr.(f 1
—k%nf) —kV-Tr(feln f) =T, (26)

where Js = —kTr.(f ¢ In f) represents the entropy flux field.

In Sec. III, we construct the family of models for the
collision term IT, such that ITg is maximal subject to the
conservation constraints II¢, = 0 and the suitable additional
geometrical constraint we discuss therein.
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The resulting family of SEA kinetic models of the collision
integral in the Boltzmann equation is currently under investi-
gation by comparing it with standard models such as the well-
known Bhatnagar, Gross, and Krook (BGK) model as well
as with Monte Carlo simulations of the original Boltzmann
equation for hard spheres [28]. In addition to the strong
thermodynamic consistency even far from stable equilibrium,
Ref. [28] gives a proof that in the near-equilibrium limit the
SEA models reduce to the corresponding BGK models.

In a forthcoming paper [11], we work out the explicit
relation between SEA and GENERIC and we provide the
explicit SEA form of the full Boltzmann collision operator
by using its already-available GENERIC form [8,14,29,30].

C. Framework C: Rational extended thermodynamics,
macroscopic nonequilibrium thermodynamics,
and chemical kinetics

Let £ be the set of all n vectors of real numbers A =
vect(a;), B = vect(b;), ... (n < 00), equipped with the inner
product (-|-) defined by

(A|B) = Tr(AB) = Za,- b;. (27)
j=1

In rational extended thermodynamics [31], the local state
at position x and time ¢ of the continuum under study is
represented by an element y in %, i.e.,

y(x,1) = vect[aj(x,1)]. (28)

Thus, y(x,t) represents a set of extensive underlying fields
or internal variables o ;(x,t) which represent the instantaneous
spatial distributions within the continuum of the local densities
that define all its other local properties. In particular, for the
conserved properties energy, momentum, and mass [32] it is
assumed that their local densities and their local (Lagrangian)
fluxes are all given by particular functions of y that we denote
synthetically by

(G} = {E@W), M (y), My (), M.(y). 57 (y)},  (29)
Je, Y =TI, (V) I, V), It (V) I, ()}, (30)

so the energy, momentum, and mass balance equations take
the form

aC;

— +V.Je, =I¢ =0. (€20

ot
Moreover, also for the local entropy density and the local
(Lagrangian) entropy flux it is assumed that they are given by
particular functions of y that we denote respectively by

S(y) and Js(y), (32)
so the entropy balance equation takes the form

aS

¥+V-Js=1'ls, (33)

where [T is the local production density.
In general, the balance equation for each of the extensive
underlying field properties, i.e., the internal variables, is
da j

?"'V'Jaj =Ha/a (34)

PHYSICAL REVIEW E 90, 042113 (2014)

where J,, and I1,, are the corresponding flux and production
density, respectively. Equivalently, this set of balance equa-
tions may be written synthetically as
0
L yv.y, =1, (35)
ot
where J, = vect(Jy,) and IT,, = vect(Il,).
It is then further assumed that there exist functions ®,,(y)
(Liu’s Lagrange multipliers [33]) that we denote here in vector
form by

® = vect(Dy;) (36)

such that the local entropy production density can be written as

n

Ms =) @M, = (PIM,) (37)
j=1

and must be non-negative everywhere.

For our development in this paper we additionally assume
that there also exist functions W; 4, (y) that we denote in vector
form by

W; = vect(V; ) (38)

such that the production density of each conserved property
C; can be written as

Me, =) Wio, Mo, = (WTT,). (39)
j=1

Typically, but not necessarily, the first 4 + ng, — n, underlying
fields a;(x,t) for j =1,...,44 nyp — n, are conveniently
chosen to coincide with the energy, momentum, and (inde-
pendently conserved [32] linear combinations of the) mass
densities, where ng, is the number of species and n, the number
of independentreactions, soEqs. 34)for j =1, ... 4+ ngyp —
n, coincide with Egs. (31) because Iy, = 0 for this subset of
conserved fields.

The above framework reduces to the traditional On-
sager theory of macroscopic nonequilibrium thermodynamics
(NET) [6] if the «;’s are taken to represent the local deviations
of the underlying fields from their equilibrium values. In
this context, the usual notation calls the functions CD%.
the “thermodynamic forces” and I, the “thermodynamic
currents.”

In Sec. IIT we construct an equation of motion for y such
that [Ty is maximal subject to the conservation constraints
[1¢, = 0 plus a suitable additional constraint.

The same framework reduces to the standard scheme of
chemical kinetics (CK) if the «;’s include the local reaction
coordinates of each of the n, steps of the detailed kinetic mech-
anism, the corresponding Iy, ’s are the local rates of advance-
ment of the reactions, ®,, = 35/da; = — v Vi) T is
the entropic affinity of the j-th reaction step (equal to the
de Donder affinity divided by the temperature, see, e.g.,
Refs. [34,35], where i, is the chemical potential of species
£), and m; are the local values of the ny, — n, independently
conserved linear combinations of the masses of the various
species (see Ref. [32] for the precise definition) so I1,, =0
are their local production densities.
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In the CK framework, the SEA construction is closely
related to the gradient-dynamics formulations of the
Guldberg-Waage mass action law as suggested in Refs. [36,37]
and more recently in Refs. [38,39].

D. Framework D: Mesoscopic nonequilibrium thermodynamics
and continuum mechanics with fluctuations

Let £ be the set of all n vectors A = vect(a;(a)),
B = vect(b;(a)), ... whose entries a;(a), b;(e), ... are real,
square-integrable functions of a set of mesoscopic (internal)
variables denoted synthetically by the vector

o = vect(ay, ... ,0,), 40)

whose m-dimensional range €2, is usually called the & space.
Let .Z be equipped with the inner product (-|-) defined by

<A|B>=ZTra(a,-bi>=Z/ ai@bi(@) dQq.  (41)
i=1 i=1 7S

where Tr, (+) in this framework denotes f Q, dQ2y, withd 2, =
day---doy,.

In mesoscopic nonequilibrium thermodynamics (MNET)
(see, e.g., Refs. [6,40]) the «;’s are the set of mesoscopic
(coarse-grained) local extensive properties assumed to repre-
sent the local nonequilibrium state of the portion of continuum
under study. Our mesoscopic description of the local state at
position x and time ¢ is in terms of a square-root probability
density on the & space €2, which we denote by

y(a;x,1)

such that y%(a;x,t) dQ, represents the probability that the
values of the underlying fields are between & and & + da.
In the standard formulation the state representative is the
probability distribution P(e; x,t) = [y(a;x,t)]z.

It is assumed that the probability density y obeys a
continuity equation that we may write as follows:

dy

o1 +v-Vy =1,
where v = v(e) is the particle velocity expressed in terms of
the underlying fields (usually it is convenient to take the first
three o;’s to coincide with the velocity components), v - Vy =
V - J,, where J, is the flux of square-root probability density,
and

with  2yIl, = -V, - I,, (42)

[y (a;x,1) = vect(Ily;) , Vo = vect (i> s 43)
Jo j
where the Il,’s are interpreted as probability weighted
components of a streaming flux in €2,, i.e., a current in the
space of mesoscopic coordinates.

The local densities C;(x,t) of the conserved properties are
assumed to have an associated underlying extensive property
which can be expressed in terms of the mesoscopic coordinates
as ¢;(a) such that

Cix.t) = Ci(y) = / @) e x.)d,  (44)
Qq
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They obey the balance equation

aC;
?‘FV'JC,‘:HC;:O, (46)

where the local Lagrangian flux J¢,(X,#) and the local
production density I, (X,t) are defined as follows:

Jc[(x,f)=f ci(@) v(a) y*(e; x,1) d2y
Qa
e, (x,t) = (W;]I1,)

_ / (@) 2y (@ x0TI (@: x,1) dS2%
Qy

- f (@) Vi - Tl x,1) dS2
Qy

/ Ha(a;XJ) : Vaci(a) an
Qq

= (¥i|lly), (47)

where in the next-to-last equation we integrated by parts and
assumed that currents in & space decay sufficiently fast to zero
as the a;’s — o0, and we defined

vi(@) = Vaci(@). (48)

Also the condition of preservation of normalization is written
in the same way, by setting co(@) =1 so ¥y =2y and
the corresponding balance equation (46) with the condition
¢, (x,t) = 0 yields the following conditions on IT,, and I1,:

ey (x,1) = (Wo|I1,) = / 2y(a; x, 011, (a; %,1) d 24

o

—/ Ve - (e x,1)dS2% = 0. (49)
Qq

The local entropy density S(x,#) is expressed in terms of
the local square-root probability density as

Sx,t) = 8(y) = —k/ yie:;x,0)Iny?(@;x,1)dQ,  (50)
QV
such that
& =685/8y = —2ky(a;x,0)[1 +Iny*(@;x,0)], (51)
and the entropy balance equation takes the form
aS

— 4+ V. = I1g, 52
8t+ Js s (52)

where the local Lagrangian flux Js(x,#) and the local produc-
tion density I1g(x,#) are defined as follows:

Js(x,t) = —k/ YA x, 1) via) Iny(a; x,1) dS2,
Mg(x,7) = (q>|n:)
= —k/ [1+ Iny>(e;x,1)]
XZy?;;x,t)Hy(a;x,z)an

= k/ In yz(a;x,t) Vo (e x,1)d2,
Q

o

042113-6



STEEPEST ENTROPY ASCENT MODEL FOR FAR- ...

—kf Mo (e;x,1) - Vo Iny2(a; x,1) dS2q
Q,

= (¢[I1o), (53)

where we used the normalization condition (49) and again in
the next-to-last equation we integrated by parts and defined

dla;x,1) = —kVy Iny*(a; x,1). (54)

In Sec. III, we construct an equation of motion for y such
that ITg is maximal subject to the conservation constraints
IT¢, = 0 and the suitable geometrical constraint we discuss
therein. The result, when introduced in Eq. (42), will yield
the Fokker-Planck equation for y (e; x,#), which is also related
(see, e.g., Ref. [41]) to the GENERIC structure [8—10]. The
formalism can also be readily extended to the family of
Tsallis [42] entropies in the frameworks of nonextensive
thermodynamic models [43].

E. Framework E: Quantum statistical mechanics, quantum
information theory, quantum thermodynamics, mesoscopic
nonequilibrium quantum thermodynamics, and intrinsic
quantum thermodynamics

Let 57 be the Hilbert space (dim 27 < o0) associated with
the physical system and .Z the set of all linear operators A,
B, ...on JZ, equipped with the real inner product (-|-) defined
by

(A|B) = Tr(A'B + BT A)/2, (55)

where AT denotes the adjoint of operator A and Tr(-) the usual
trace functional symbol.

In the quantum frameworks that we consider in this section,
the state representative is the density operator p, i.e., a unit-
trace, self-adjoint, and non-negative-definite element of .Z.

Instead, also here we will adopt the state representation in
terms of the generalized square root of the density operator that
we developed in this context [2-5] in order to easily impose
the constraints of preservation of both the non-negativity and
the self-adjointness of p during its time evolution as well
as to satisfy Condition C2. Therefore, we assume that the
state representative is an element y in . from which we can
compute the density operator as follows:

p=yyh (56)

In other words, we adopt as state representative not the density
operator p itself but its generalized square root y. Therefore,
we clearly have

dp dyt dy .

— =y— 4 —J/j-

dt dt dt
We then consider the set of operators corresponding to the
conserved properties, denoted synthetically as

(Ci}y ={H,M;,M,,M_,Ny, ... NI} (58)

(57)

Here we assume that these are self-adjoint operators in %,
where each M; and N; commutes with H,i.e., HM; = M;H
for j = x,y,zand HN; = N;H fori =1, ...,r, and that [ is
the identity operator [44].

The semiempirical description of an irreversible relaxation
process is done in this framework by assuming an evolution
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equation for the state y given by the equations

dy i

—+-Hy =11, 59
dl+h YV y (59)
dyt i i

— — —y'H =11, 60
dt hy yt (60)

As aresult, it is easy to verify that for the density operator the
dynamical equation is

d i ,

T LHpI =T,y 4y T, ©1)
where [-,-] denotes the commutator. From this we see that in
order to preserve hermiticity of p the dissipative terms I, and
[T, must satisfy the conditions

M, =M} and II, = n;.. (62)

In order to satisfy the constraints of conservation of the
expectation values Tr(pC;), each C; must commute with H;
moreover, the term IT, must be such that

d
Mc, = —Tr(pC;) = THCiMl, v +y T, C)

= (2Cy|I1,) =0. (63)

The entropy functional in this context is represented by

S(y) = —kTr(pIn p) = (=k(Inyy ") y|y), (64)

so the rate of entropy production under a time evolution that
preserves the normalization of p is given by

d 5
Iy = —kETr(p Inp) = (=2k(nyy")y|T,).  (65)

In quantum statistical mechanics (QSM) and quantum infor-
mation theory (QIT), p is the von Neumann statistical or
density operator which represents the index of statistics from a
generally heterogeneous ensemble of identical systems (same
Hilbert space ¢ and operators {H,Ny, ...,N,}) distributed
over a range of generally different quantum mechanical
states. If each individual member of the ensemble is isolated
and uncorrelated from the rest of the universe, its state is
described according to quantum mechanics by an idempotent
density operator (p*> = p = Py = %), i.e., a projection
operator onto the span of some vector |¢) in 7. If the
ensemble is heterogeneous, its individual member systems
may be in different states, Pjy,), Ply,), and so on, and
the ensemble statistics is captured by the von Neumann
statistical operator p = > ; WjPly,). The entropy functional
here represents a measure of the informational uncertainty as
to which homogeneous subensemble the next system will be
drawn from, i.e., as to which will be the actual pure quantum
state among those present in the heterogeneous ensemble.

In this framework, unless the statistical weights w; change
for some extrinsic reason, the quantum evolution of the
ensemble is given by Eq. (61) with IT,, = 0so Eq. (61) reduces
to von Neumann’s equation of quantum (reversible) Hamilto-
nian evolution, corresponding to p(¢) = Y i Wj Py where
the underlying pure states |v/;(¢)) evolve according to the
Schrodinger equation d|v;)/dt = —i H|vy ;) /h.

In the framework of QSM and QIT, the SEA equation
of motion we construct in the next Sec. III for y and
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hence, through Eq. (57), for p represents a model for the
rates of change of the statistical weights w; in such a way
that ITg is maximal subject to the conservation constraints
[T, = 0 (and a suitable additional constraint, see Sec. III).
This essentially extends to the quantum landscape the same
statistical or information-theoretic nonequilibrium problem we
defined above as Framework A.

In quantum thermodynamics (QT), instead, the density
operator takes on a more fundamental physical meaning. It
is no longer related to the heterogeneity of the ensemble, and
it is no longer assumed that the individual member systems of
the ensemble are in pure states.

The prevailing interpretation of QT (for a recent review
see Ref. [45]) is the so-called open-system model whereby
the quantum system under study (each individual system of a
homogeneous ensemble) is always viewed as in contact (weak
or strong) with a thermal reservoir or “heat bath,” and its not
being in a pure state is an indication of its being correlated with
the reservoir. The overall system-plus-reservoir composite is
assumed to be a pure quantum mechanical state in 7 ® %
and reduces to the density operator p on the system’s space
¢ when we partial trace the overall density operator over the
reservoir’s space J¢3.

The semiempirical description of an irreversible relax-
ation process is done in this framework by assuming for
I1, in Eq. (61) the Lindblad-Gorini-Kossakowski-Sudarshan
(LGKS) form [46,47]

1.
M, =Y (VJ‘PVjT -5V Vj,p}+), (66)

J

where {-,-}; denotes the anticommutator and operators V;
are to be chosen to properly model the system-reservoir
interaction. The justification and modeling assumptions that
lead to the general form of Eq. (66) are well known.

In the framework of QT the SEA equation of motion we
construct in the next section may be useful as an alternative
model for I, (or for a term additional to the LGKS term) such
that TTg is maximal subject to the conservation constraints
[T¢, = 0 (and the suitable additional constraint defined below
in Sec. III). In some cases this could be simpler than the
LGKS model and it has the advantage of a strong built-in
thermodynamics consistency. A similar attempt has been
recently discussed in Ref. [48] as an application of the
GENERIC scheme.

Mesoscopic nonequilibrium quantum thermodynamics
(MNEQT) [7] starts from the formalism of QSM but attempts
to extend the Onsager NET theory and MNET to the quantum
realm. We will show elsewhere that the present SEA formu-
lation reduces to MNEQT in the near-equilibrium limit and
can therefore be viewed as the natural extension of MNEQT
to the far-nonequilibrium regime. The essential elements of
this proof have actually already been given [4] but only for the
particular case corresponding to Eq. (70) below (Fisher-Rao
metric).

An even more fundamental physical meaning is assumed
within the theory that we originally called quantum thermo-
dynamics [2,3,49-53] but more recently renamed intrinsic
quantum thermodynamics (IQT) to avoid confusion with
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the more traditional theories of QT such as those just
outlined.

IQT assumes that the second law of thermodynamics should
complement the laws of mechanics even at the single-particle
level [49]. This can be done if we accept that the true
individual quantum state of a system, even if fully isolated
and uncorrelated from the rest of the universe, requires density
operators p that are not necessarily idempotent. Over the set of
idempotent p’s, QT coincides with quantum mechanics (QM),
but it differs fundamentally from QM because it assumes a
broader set of possible states, corresponding to the set of
nonidempotent p’s. This way, the entropy functional S(p)
becomes in IQT an intrinsic fundamental property. In a sense
IQT with its SEA dynamical law accomplishes the conceptual
program, so intensely sought for also by Ilya Prigogine and
coworkers [54], of answering the following questions [2]:
What if entropy, rather than a statistical, information-theoretic,
macroscopic, or phenomenological concept, were an intrinsic
property of matter in the same sense as energy is universally
understood to be an intrinsic property of matter? What if
irreversibility were an intrinsic feature of the fundamental
dynamical laws obeyed by all physical objects, macroscopic
and microscopic, complex and simple, large and small? What
if the second law of thermodynamics, in the hierarchy of
physical laws, were at the same level as the fundamental laws
of mechanics, such as the great conservation principles? When
viewed from such extreme perspective, the IQT conceptual
scheme remains today as “adventurous” as it was acutely
judged by John Maddox in 1985 [55].

In the framework of IQT the SEA equation of motion (61)
for p which results from the expression for I, we construct in
the next section represents a strong family of implementations
of the MEP principle at the fundamental quantum level which
contains our original formulation as a special case.

Even the brief discussion above shows clearly that the
differences among QSM, QIT, QT, IQT, and MNEQT are
important on the interpretational and conceptual levels. Nev-
ertheless, it is also clear that they all share the same basic
mathematical framework. Hence, we believe that the SEA
dynamical model, which we show here fits their common
mathematical basis, can find in the different theories different
physical interpretations and applications.

III. STEEPEST-ENTROPY-ASCENT DYNAMICS:
UNIFIED VARIATIONAL FORMULATION
OF NONEQUILIBRIUM DISSIPATION

In the preceding section we formulated the nonequilibrium
problem in various different frameworks in a unifying way that
allows us to represent their dissipative parts in a single formal
way. In essence, as summarized by conditions C1-C4 above,
the state is represented by an element y of a suitable vector
space .Z equipped with an inner product (-|-). The term in the
dynamical equation for y which is responsible for dissipative
irreversible relaxation and hence entropy generation is another
element IT, of ¢ which, together with the variational
derivatives ® and W; of the functionals S(y) and Ci(y)
representing, respectively, the entropy and the constants of
motion, determines the rate of entropy production according
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to the relation
s = (®|11,) (67)

and the rates of production of the conserved properties C;
according to the relation

¢, = (W;[1T,). (68)

The formulations in terms of square roots of probabilities
in Framework A, of the square root of the phase density
in Framework B, of the square-root probability density in
Framework D, and of the generalized square root of the density
operator in Framework E take care not only of the important
condition that for the evolution law to be well defined it must
conserve the non-negativity of probabilities, phase densities,
and density operators (which must also remain self adjoint)
but also of condition C2, namely that functional derivatives of
the entropy and the constants of the motion are also elements
of the vector space .Z.

We are now ready to formulate the SEA construction. We
do this by assuming that the time evolution of the state y
follows the path of steepest entropy ascent in .Z’ compatible
with the constraints. So, for any given state y, we must find
the IT, which maximizes the entropy production ITg subject
to the constraints IT¢, = 0. But in order to identify the SEA
path we are not interested in the unconditional increase in ITg
that we can trivially obtain by simply increasing the “norm” of
IT, while keeping its direction fixed. Rather, the SEA path is
identified by the direction of IT, which maximizes ITg subject
to the constraints, regardless of the norm of IT,. Hence, we
must do the maximization at constant norm of IT,,.

In the absence of Hamiltonian or transport contributions to
the time evolution of y, the vector IT, is tangent to the path
v (). Therefore, the norm of IT, represents the square of the
distance d¢ traveled by y in the state space .Z in the time
interval dt, the square of the “length” of the infinitesimal bit
of path traveled in state space in the interval d¢. The variational
problem that identifies the SEA direction at each state y looks
atall possible paths through y, each characterized by a possible
choice for IT,,. Among all these paths it selects the one with
the highest entropy produced in the interval d¢, I1g dt per unit
of distance d/{ traveled by y.

It is therefore apparent that we cannot identify a SEA path
until we equip the space . with a metric field with respect
to which to compute the distance d¢ traveled and the norm of
I1,.

In our previous work [5], we selected the Fisher-Rao metric
based on the inner product (-|]-) defined on .Z. Indeed, in
dealing with probability distributions it has been argued by
several authors that the Fisher-Rao metric is the proper unique
metric for the purpose of computing the distance between two
probability distributions (see, e.g., Refs. [56-58]). According
to this metric, the distance between two states y; and y; is
given by

d(y1,y2) = V2 arccos(y1]y2), (69)

which implies that the distance traveled along a trajectory in
state space is

d¢ =2,/(I1, |1, ) dt. (70)
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As a result, for Framework E the SEA dynamics we have
originally proposed is most straightforward.

However, here we will not adopt a priori a specific
metric but rather assume a most general metric, which in
Framework E generalizes our previous work and in the other
frameworks provides the most general formulation. We assume
the following expression for the distance traveled along a short
bit of trajectory in state space:

dt =/, | G(y)|1,)dt, (71)

where G(y) is a real, symmetric, and positive-definite operator
on .Z that we call the metric tensor field, (super)matrix, or
(super)operator depending on the framework. In general, G(y)
may be a nonlinear function of y. In Framework E, since .% is
the space of operators on the Hilbert space ¢ of the quantum
system, G is a superoperator on .. For example, a simple case
is when GlA) = |[GT,[G,A]]) with G some operator in .Z.

We may now finally state the SEA variational problem and
solve it. The problem is to find the instantaneous “direction” of
T, which maximizes the entropy production rate Tlg subject
to the constraints Tl¢, = 0. We solve it by maximizing the
entropy production rate I[1s subject to the constraints I1¢, = 0
and the additional constraint (d¢/dt)* = ¢*> = prescribed. The
last constraint keeps the norm of II, constant as necessary
in order to maximize only with respect to its direction. From
Eq. (71) it amounts to keeping fixed the value of (IT, | G ITT,)
at some small positive constant ¢2. The solution is easily
obtained by the method of Lagrange multipliers. We seek
the unconstrained maximum, with respect to II,, of the
Lagrangian

T N
Y=Ts—) fille -5 MIGIM), (72
i

where f; and /2 are the Lagrange multipliers. Like G, they
must be independent of IT, but can be functions of the state
y. Using Eqgs. (67) and (68), we rewrite (72) as follows:

T =(@I,) = YA Wi, — 2 (LG M,).  (73)

Taking the variational derivative of Y with respect to |IT, ) and
setting it equal to zero we obtain

§Y N
HZICD)—Z/?;I\IG)—IGIH)/):O, (74)
4 i

where we used the identity (IT,| G = G |T1,)), which follows

from the symmetry of G. Thus, we obtain the SEA general
evolution equation (the main result of this paper)

M) =L|o—) B;¥), (75)
J

where we define for convenience

A

.1
L=-G". (76)
T

Since in the various frameworks L can be connected with the
generalized Onsager conductivity (super)matrix in the near
equilibrium regime, we see here that 7L is the inverse of the
metric (super)matrix G with respect to which the dynamics
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is SEA. In other words, denoting the generalized Onsager
resistivity (super)matrix by R we have R = 7 G. Since G is
positive definite and symmetric, so are [ and R.In other words,
the SEA assumption automatically entails Onsager reciprocity
near thermodynamic equilibrium.

Inserting Eq. (75) into the conservation constraints (68)
yields the important system of equations which defines the
values of the Lagrange multipliers 8;,

D (W L) B = (Wil L|®). (77)
J

This system can be readily solved for the 8;’s (for example,
by Cramer’s rule) because the functionals (\IJ,-|I:|\IJj) and
(W;|L|®) are readily computable for the current state y.
Notice that the determinant of the matrix [(V;| L |¥ Dlisa
Gram determinant and its being positive definite is equivalent
to the condition of linear independence of the conservation
constraints. When Cramer’s rule is worked out explicitly, the
SEA equation (75) takes the form of a ratio of determinants
with which we presented it in the IQT framework [5,50-53],
namely,

Lo Ly, Ly,
(Wi L|®) (| L W) (| L |w,)
) — (W, | L|®) (W, | L W) (W, | L|9,)
’ (W] L)) (| L1w,)
(W, | L |wy) (W, | L |w,)
(78)
where the set of vectors L'/2 |W,), ..., L'/?|W,) are linearly

independent so the Gram determinant at the denominator is
strictly positive. These are all the vectors in the set {£'/2 |W;)}
if they are linearly independent, otherwise they are a subset of
n of them which are linearly independent.

We can now immediately prove the general consistence
with the thermodynamic principle of entropy nondecrease (H -
theorem in Framework B). Indeed, subtracting Egs. (68), each
multiplied by the corresponding 8; from Eq. (67), and then
inserting Eq. (75) yields the following explicit expression for
the rate of entropy production:

M = (®IT,) = (® - _ B; ¥,[IT,)
J

=@-) BWILIO-) §;¥)>0. (19
i J

which is clearly non-negative-definite by virtue, again, of the
non-negativity that must be assumed for a well defined metric
superoperator G.

It is interesting to write the expression for the (prescribed)
speed d¢/dt at which the state y evolves along the SEA path.
This amounts to inserting Eq. (75) into the additional constraint
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(de/dt)? = €* = prescribed. We readily find

de> .
Pz(HHG“—Iy)
1 Al A A
zﬁ(cp—z,s,»q/,-m GG 1|<1>—Z;3,\11,-) (80)
i J
1 N
=TIy =¢ 81)
T

so we have the relations

J@-T pulG10-%, 8 v))

T = (82)
de/dt
Y By |G D -3 .8V,
_ (-8 |H| ;B J)’ &)
S

from which we see that through the Lagrange multiplier T we
may specify either the speed at which y evolves along the SEA
trajectory in state space or the instantaneous rate of entropy
production. Hence, using 7 given by Eq. (83) the evolution
equation (75) will produce a SEA trajectory in state space
with the prescribed entropy production ITg. These relations
also support the interpretation of t as the “overall relaxation
time.” We see this as follows.
In general, we may interpret the vector

M) =GP0 =) g (84)

as a vector of “nonequilibrium affinities” or, more precisely, of
“generalized partial affinities.” In terms of this vector, Eq. (75)
rewrites as

. 1
G'*mn,) = - [A). (85)

When only some of the partial affinities in the vector A
are zero, the state is partially equilibrated (equilibrated with
respect to the corresponding underlying components of the
state y). When the entries of the vector A are all zero, then and
only then do we have an equilibrium state or a nondissipative
limit cycle. In fact, it is when and only when the entropy
production vanishes. (A|A), which, with respect to the metric
tensor G, is the norm of the vector |® — ) j B; V), represents
a measure of the “overall degree of disequilibrium” of the
state y. It is important to note that this definition is valid no
matter how far the state is from the (maximum entropy) stable
equilibrium state, i.e., also for highly nonequilibrium states.

We have proved in the IQT framework, and the result
can be readily extended to all other frameworks, that among
the equilibrium states only the maximum entropy one is not
unstable (in the sense of Lyapunov [59]). As a result, the
maximum entropy states emerge as the only stable equilibrium
ones and, therefore, we can assert that the SEA construction
implements the Hatsopoulos-Keenan statement of the second
law [21,60] at the level of description of everyone of the
frameworks we are considering.

Equation (83) rewrites as

_(AlA)

I , (86)
T

which shows that the rate of entropy production is proportional
to the overall degree of disequilibrium. The relaxation time

042113-10



STEEPEST ENTROPY ASCENT MODEL FOR FAR- ...

7 may be a state functional and needs not be constant, but
even if it is, the SEA principle provides a nontrivial nonlinear
evolution equation that is well defined and reasonable, i.e.,
thermodynamically consistent, even far from equilibrium.

We finally note that when the only contribution to the
entropy change comes from the production term Ilg (for
example, in Framework B in the case of homogeneous
relaxation in the absence of entropy fluxes or in Framework E
for an isolated system), i.e., when the entropy balance equation
reduces to dS/dt = Ilg, Eq. (81) may be rewritten as
at = ﬁ, (87)

dt/t dt
from which we see that when time ¢ is measured in units of T
the “speed” along the SEA trajectory is equal to the local rate
of entropy increase along the trajectory.

If the state y moves only due to the dissipative term IT,,
(for example, in Framework E when [H ,yy"] = 0), then the
overall length of the trajectory in state space traveled between
t = 0 and ¢ is given by

1103) =/ VI, G 1) dt, (88)
0

and, correspondingly, we may also define the “nonequilibrium

action”
1 [ R 1[I
E:—/(HV|G|Hy)dt:—/ S ar
2 0 2 0 T

1 [T (AlA)
_5/0 . (89)

where for the last two equalities we used Eq. (81) and Eq. (86),
respectively.

IV. PICTORIAL REPRESENTATIONS

Let us give pictorial representations of the vectors that we
defined in the SEA construction. We consider first the simplest
scenario of a uniform metric tensor G = I.

Figure 1 gives a pictorial representation of the linear
manifold spanned by the vectors |W;)’s and the orthogonal
projection of |®) which defines the Lagrange multipliers §; in
the case of uniform metric, i.e., the orthogonality conditions

|- Y, Bi)

/

linear
manifold

{1¥)}

[¥1)

FIG. 1. (Color online) Pictorial representation of the linear man-
ifold spanned by the vectors |W¥;) and the orthogonal projection of
|®) onto this manifold which defines the Lagrange multipliers f;
in the case of a uniform metric G = I. The construction defines
also the generalized affinity vector, which in this case is |A) =

D= Bi W)
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{|¥:)} | X Bi'¥s)

/
Ils = (P|I1,) max /
¢, = (¥i|IL) =0 Vi D —Y,; B
1 L l

1)
(I,

I,) = &

FIG. 2. (Color online) Pictorial representation of the SEA vari-
ational construction in the case of a uniform metric G = /. The
circle represents the condition (I1,, |T1,) = €2. The vector |TT,,) must
be orthogonal to the |W¥;)’s in order to satisfy the conservation
constraints IT¢, = (W;[I1,) = 0. In order to maximize the scalar
product (® — Y, B; ;|IT,), |I1,) must have the same direction as
| =3 Bi W)

(W;|® — )", B ¥;) = 0 for every j, which are Eqgs. (77) with
L = I /7. The construction defines also the generalized affinity
vector, which in this case is [A) =|® — ), B; ¥;) and is
orthogonal to the linear manifold spanned by the vectors |\¥;)’s.

Figure 2 gives a pictorial representation of the subspace
orthogonal to the linear manifold spanned by the |\¥;)’s that
here we denote for simplicity by {|V;)}. The vector |®) is
decomposed into its component | Zi Bi ¥;) which lies in
{I¥;)} and its component |[® — )", B; ;) which lies in the
orthogonal subspace.

The circle in Fig. 2 represents the condition (I1,,|I1,) = é?
corresponding in the uniform metric to the prescribed rate of
advancement in state space, é> = (d¢/dt)*. The compatibility
with the conservation constraints I1¢, = (¥;|I1,) = Orequires
that |IT, ) lies in the subspace orthogonal to the |W;)’s. To take
the SEA direction, |IT,,) must maximize the scalar product
(® — >, B V;|I1,). This clearly happens when |IT,) has
the same direction as the vector |® — ) . 8; ¥;) which in
the uniform metric coincides with the generalized affinity
vector |A).

Next we consider the more general scenario of a nonuniform
metric tensor G. Figure 3 gives a pictorial representation of
the linear manifold spanned by the vectors G~'/2 |W;) and
the orthogonal projection of G~'/2|®) which defines the

linear

ma}nifold
{G12 W)}

V2 Y B )
G—l/2|1pl) /

FIG. 3. (Color online) Pictorial representation of the linear mani-
fold spanned by the vectors G~'/2 W; and the orthogonal projection of
G~/ |®) onto this manifold which defines the Lagrange multipliers
B: in the case of a nonuniform metric G. The construction defines
also the generalized affinity vector |[A) = G™2 |® — 3, B; W)).
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FIG. 4. (Color online) Pictorial representation of the SEA vari-
ational construction in the case of a nonuniform metric G. The
circle represents the condition (IT,, | G ITT,) = €2, corresponding to
the norm of vector G'/2|T1,). This vector must be orthogonal to
the G172 |W;)’s in order to satisfy the conservation constraints
¢, = (Y;|I1,) = 0. In order to maximize the scalar product ITg =
(®|T1,) = (& — Y, B W,|T1,), vector G'/ |T1,) must have the same
direction as [A) = G~/ |® — 3, Bi ;).

Lagrange multipliers B; in the case of nonuniform metric G,
where the orthogonality conditions that define the B;’s are
(Y] G'o— > Bi ¥;) = Oforevery j, whichare Egs. (77).
The construction defines also the generalized affinity vector
|A) = G2 |® — >, Bi ¥;) which is orthogonal to the linear
manifold spanned by the vectors G /2 |W;)’s.

Figure 4 gives a pictorial representation of the subspace
orthogonal to the linear manifold spanned by the G—1/2 |W;)’s
that here we denote for simplicity by {G~1/2|W,)}. The vector
G2 |®) is decomposed into its component G /2 | 3", B; ;)
which lies in {G~'2|¥;)} and its component |A) =
G170 — > Bi ¥;) which lies in the orthogonal subspace.

The circle in Fig. 4 represents the more general condition
(IT, | G ITT,) = é2 corresponding in the nonuniform metric
to the prescribed rate of advancement in state space, é> =
(d/dt)?. Tt is clear that the direction of G'/2 [T1,), which
maximizes the scalar product (& — Y, B W;|I1,), is when
ITT,)) is in the direction of the point of tangency between the
ellipse and a line orthogonal to [P — Y. B; W)).

The compatibility with the conservation constraints I[1¢, =
(¥;[I1,,) = 0 requires that G'? [TT,) lies in the subspace
orthogonal to the G~'/2 |W;)’s. To take the SEA direction,
the vector G'/2 |TT,) must maximize the scalar product
(® — Y, Bi ¥;|I1,), which is equal to the entropy production
[Ty = (®|IT,) since (¥;|I1,) = 0. This clearly happens when
G2 [T1,)) has the same direction as the generalized affinity
vector [A) = G2 |® — Y, i ).

V. CONCLUSIONS

In this paper, we reformulate with a somewhat unusual
notation the essential mathematical elements of several differ-
ent approaches to the description of nonequilibrium dynamics
with the purpose of presenting a unified formulation which,
in all these contexts, allows us to implement the local SEA
concept whereby the dissipative, irreversible component of
the time evolution of the local state is assumed to pull the
state along the path in state space which, with respect to an
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underlying metric, is always tangent to the direction of max-
imal entropy increase compatible with the local conservation
constraints.

The frameworks we consider are the following: (A)
statistical or information-theoretic models of relaxation; (B)
small-scale and rarefied gas dynamics (i.e., kinetic models
for the Boltzmann equation); (C) rational extended ther-
modynamics, macroscopic nonequilibrium thermodynamics,
and chemical kinetics; (D) mesoscopic irreversible thermo-
dynamics and continuum mechanics with fluctuations; (E)
quantum statistical mechanics, quantum thermodynamics,
mesoscopic nonequilibrium quantum thermodynamics, and
intrinsic quantum thermodynamics.

The present SEA unified formulation allows us to extend
at once to all these frameworks the SEA concept which has
so far been considered only in the framework of quantum
thermodynamics. However, a similar or at least closely related
set of assumptions underlie the well-known GENERIC scheme
[8—10], which developed independently.

In the present paper, we emphasize that, in the SEA
construction, a key role is played by the geometrical metric
with respect to which to measure the length of a trajectory in
state space. The metric tensor turns out to be directly related
to the inverse of the Onsager’s generalized conductivity
tensor. The SEA construction can be viewed as a precisely
structured implementation of the MEP principle. The formal
relation between the SEA metric tensor G and the GENERIC
dissipative tensor (usually denoted by M) can be established
by means of a detailed technical analysis of the respective un-
derlying mathematical landscapes. We present such discussion
in a forthcoming paper, where we discuss the analogies and
differences of the SEA and GENERIC approaches and show
under what conditions their descriptions of the dissipative part
of the time evolution can be considered essentially equivalent.

The formulation discussed here constitutes a generalization
of our previous SEA construction in the quantum thermo-
dynamics framework by acknowledging the need of more
structured and system-dependent metrics than the uniform
Fisher-Rao metric. It also constitutes a natural step towards
generalizing mesoscopic nonequilibrium quantum thermody-
namics to the far-nonequilibrium nonlinear domain.

We conclude that in most of the existing theories of
nonequilibrium the time evolution of the local state representa-
tive can be seen to actually follow in state space the path of SEA
with respect to a suitable metric connected with the generalized
conductivities. This is true in the near-equilibrium limit, where
in all frameworks it is possible to show that the traditional
assumption of linear relaxation coincides with the SEA result.
Since the generalized conductivities represent, at least in the
near-equilibrium regime, the strength of the system’s reaction
when pulled out of equilibrium, it appears that their inverse,
i.e., the generalized resistivity tensor, represents the metric
with respect to which the time evolution, at least in the near
equilibrium regime, is SEA.

Far from equilibrium the resulting unified family of SEA
dynamical models is a very fundamental as well as practical
starting point because it features an intrinsic consistency
with the second law of thermodynamics which follows from
the non-negativity of the local entropy production density
as well as the instability of the equilibrium states that do
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not have the maximum local entropy density for the given
local values of the densities of the conserved properties, a
general and straightforward conclusion that holds regardless
of the details of the underlying metric tensor. In a variety
of fields of application, the present unifying approach may
prove useful in providing a new basis for effective numerical
and theoretical models of irreversible, conservative relaxation
towards equilibrium from far nonequilibrium states.
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