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Anomalous mean-field behavior of the fully connected Ising model
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Although the fully connected Ising model does not have a length scale, we show that the critical exponents
for thermodynamic quantities such as the mean magnetization and the susceptibility can be obtained using finite
size scaling with the scaling variable equal to N , the number of spins. Surprisingly, the mean value and the
most probable value of the magnetization are found to scale differently with N at the critical temperature of the
infinite system, and the magnetization probability distribution is not a Gaussian, even for large N . Similar results
inconsistent with the usual understanding of mean-field theory are found at the spinodal. We relate these results
to the breakdown of hyperscaling and show that hyperscaling can be restored by increasing N while holding
the Ginzburg parameter rather than the temperature fixed, or by doing finite size scaling at the pseudocritical
temperature where the susceptibility is a maximum for a given value of N . We conclude that finite size scaling
for the fully connected Ising model yields different results depending on how the mean-field limit is approached.
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I. INTRODUCTION

Mean-field approaches to phase transitions are useful for
several reasons. Two of the most important are that they
provide a simple way of understanding the nature of critical
phenomena [1], and they are good approximations for systems
with long-range interactions and for systems with large
molecules [2,3]. Despite the work of Kac and collaborators [4],
who defined the applicability of mean-field theories in a math-
ematically precise manner, mean-field approximations are still
approached in different ways. These different approaches can
be confusing because they can produce different results for
the same system. A common approach is to assume that the
probability distribution of the order parameter is a Gaussian.
Another common approach is to consider a system at its upper
critical dimension.

In this paper we investigate another often used approach of
understanding mean-field systems and compare this approach
to other ways of doing mean-field theory. We consider the
fully connected Ising model for which every spin interacts
with every other spin. The Hamiltonian of the fully connected
Ising model is given by [5–8]

H = −JN

N∑
i>j, j=1

σiσj − h

N∑
i=1

σi, (1)

where σi = ±1 and h represents the external magnetic field.
The interaction strength JN is rescaled so that the total
interaction energy of a given spin remains the same as N
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is changed. We take

JN = qJ

N − 1
, (2)

with q = 4. This choice of q yields the mean-field critical
temperature Tc,∞ = 4, the value of the critical temperature for
a square lattice in the limit N → ∞. We have chosen units
such that J/k = 1, with k equal to the Boltzmann constant.
The fully connected Ising model is sometimes referred to as the
“mean-field” [9], “infinitely coordinated” [10,11], or “infinite
range” [12] Ising model.

The standard approach to finite size scaling yields nu-
merical values of the critical exponents by determining how
various quantities change with the linear dimension L at the
critical temperature of the infinite system [13–15]. The finite
size scaling relations for the Ising model with finite-range
interactions include

m ∼ L−β/ν, (3)

χ ∼ Lγ/ν, (4)

where m = |M|/N , |M| is the absolute value of the magnetiza-
tion of the system; the overbar denotes the ensemble average;
χ is the susceptibility per spin; N is the number of spins; and
β, γ , and ν are the usual critical exponents [1]. The exponents
at the mean-field critical point are given by

γ = 1, β = 1/2, and ν = 1/2, (5)

which yields m ∼ L−1 and χ ∼ L2 if we assume the system
can be described by mean-field theory at or above the upper
critical dimension.

Because the fully connected Ising model has no length
scale, the linear dimension L is not defined. One simple way
to determine how m and χ change with N at the critical
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temperature is to assume that its critical exponents are the
same as the nearest-neighbor Ising model in four dimensions,
the upper critical dimension [16]. Given this assumption we
can write N ∼ L4, and hence [17]

m ∼ N−1/4, (6)

χ ∼ N1/2. (7)

We stress that we will not assume that N ∼ L4 to obtain any
of our results in the following, and we make this assumption
here only to motivate our investigation and simply note that
this assumption is only one way of doing finite size scaling for
mean-field systems.

As pointed out in Refs. [18] and [19], the properties of the
Ising model in four dimensions and the predictions of other
approaches are not always the same. Hence, it is desirable to
determine the finite size scaling behavior of various properties
of the fully connected Ising model directly. We will find that
finite size scaling at the critical temperature of the infinite fully
connected Ising model yields results that are inconsistent with
both the assumption of a Gaussian probability distribution and
several results at the upper critical dimension.

II. NUMERICAL RESULTS FOR THE MEAN
MAGNETIZATION AND THE SUSCEPTIBILITY

The exact density of states g(M) of the fully connected
Ising model is given by

g(M) = N !

n!(N − n)!
, (8)

where n = (N + M)/2 is the number of up spins. The proba-
bility that the system has magnetization M is proportional to

P (M) = g(M)e−E/T , (9)

with the energy E given by

E = JN

2
(N − M2) − hM. (10)
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FIG. 1. Log-log plot of m, the mean value of the absolute
magnetization per spin, versus N , the number of spins, at the critical
temperature of the infinite fully connected Ising model, Tc,∞ = 4
computed using the exact density of states in Eq. (8). The slope from
a least squares fit to m for 105 � N � 2 × 107 is −0.2502, which is
consistent with Eq. (6).
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FIG. 2. Log-log plot of χ , the susceptibility per spin, versus N

at T = Tc,∞ for N � 2 × 107 computed using the exact density of
states in Eq. (8). The slope from a least squares fit to χ for 105 �
N � 2 × 107 is 0.5000, consistent with Eq. (7).

Note that the density of states depends only on M . We will
refer to P (M) in Eq. (9) as a probability, although P (M) is not
normalized.

We can evaluate χ and m numerically as a function of N

using the exact density of states in Eq. (8). The only numerical
limitation is associated with the rapid increase of g(M) with
increasing N . Our calculations for N � 2 × 106 use infinite
precision integer arithmetic. Five thousand digits were retained
for 2 × 106 < N � 2 × 107. The two numerical approaches
give consistent results for N = 2 × 106.

Our numerical results for the N dependence of m and χ are
shown in Figs. 1 and 2, respectively, and are consistent with
Eqs. (6) and (7).

III. MOST PROBABLE VALUE OF THE MAGNETIZATION

We can derive analytical expressions for the N dependence
of various quantities using the exact density of states. The
usual treatment of the fully connected Ising model is based on
determining the value of M that maximizes P (M). If we use
Stirling’s formula, ln x! ≈ x ln x − x, we find for large N that

d ln P (M)

dM
≈ 1

2
ln

(N − n)

n
+ β(qJM + h) = 0. (11)

Equation (11) yields the usual mean-field result m =
tanh β(qJm + h).

To find the N dependence of M at T = Tc,∞ we keep the
next term in Stirling’s formula, ln x! ≈ x ln x − x + ln

√
2πx,

so that d ln x!/dx ≈ ln x + 1/2x. In this approximation we
obtain

d ln P (M)

dM
≈ 1

2
ln

1 − m

1 + m
+ m

N

1

1 − m2
+ βqJm

1 − 1/N
+ βh

= 0. (12)

We let h = 0 and keep terms to first order in 1/N and third
order in m. The result is

−m − m3

3
+ m

N
(1 + m2) + βqJm

(
1 + 1

N

)
= 0. (13)
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FIG. 3. The N dependence of m̃, the most probable value of m, at
T = Tc,∞ as determined from Eqs. (8)–(10). The slope from a least
squares fit to m̃ for 105 � N � 2 × 107 is −0.4997, consistent with
the N dependence of the analytical result in Eq. (14).

For βqJ = 1 (T = Tc,∞), several terms cancel, and we
obtain [20]

m2 ∼ 6

N
(N � 1). (14)

We see from Eq. (14) that m ∼ N−1/2, in apparent contradic-
tion with Eq. (6). However, the variable m in Eq. (14) is the
most probable value of the magnetization rather than its mean
value. Hence, the mean value and the most probable value
of the magnetization scale differently with N at T = Tc,∞,
behavior that is inconsistent with our usual understanding of
mean field.

In Fig. 3 we plot the N dependence of m̃, the most
probable (positive) value of m, as determined numerically
from Eqs. (8)–(10). We see that the N dependence of m̃ is
consistent with

m̃ ∼ N−1/2 (most probable value at T = Tc,∞). (15)

IV. THE PROBABILITY DISTRIBUTION

A plot of P (m) for N = 100 and N = 800 as determined
from Eqs. (8)–(10) at T = Tc,∞ is given in Fig. 4. Note that
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FIG. 4. Plot of P (m) versus m as determined from Eqs. (8)–(10)
at T = Tc,∞ for (a) N = 100 and (b) N = 800. Note that P (m) is
symmetrical about m = 0, and the maxima of P (m) are at |m| > 0.
It is clear that P (m) cannot be approximated by a Gaussian.
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FIG. 5. Plot of P (M) at T = 5, T = Tc,∞ = 4, and T = 3 for
N = 800. As expected, P (M) has a single maximum for T > Tc,∞
and two maxima at M �= 0 for T < Tc,∞.

P (m) is not a Gaussian and the maxima of P (m) are at
|m| > 0. To emphasize that the behavior of P (m) at T = Tc,∞
is qualitatively different than at other temperatures, we plot
P (M) for T = 3, T = Tc,∞ = 4, and T = 5 in Fig. 5. We see
that P (M) has a single maximum for T > Tc,∞ and has two
maxima at M �= 0 for T < Tc,∞.

One way to characterize P (m) is to compute the reduced
fourth-order (Binder) cumulant, which is defined as [21]

U4 = 1 − m4

3m2
2 . (16)

We use Eqs. (8)–(10) to compute U4 and find that, as expected,
U4 ≈ 0 for T = 5, and hence P (m) is well approximated by
a single Gaussian for T > Tc,∞ and large N . Similarly, for
T = 3 we find that U4 ≈ 2/3, which implies that P (m) is well
approximated as a sum of two Gaussians [22]. At T = Tc,∞
we find that U4 ≈ 0.2706 for N = 2 × 107, and hence at the
critical temperature of the infinite system P (m) is not well
approximated by a Gaussian, even for large N . We also note
that U4 ≈ 0.4948 at T = Tc,N , the pseudocritical temperature
at which the susceptibility for a given N is a maximum.
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FIG. 6. Monte Carlo results for the nearest-neighbor Ising model
at the critical temperature of the infinite system, Tc = 2/ ln(1 + √

2).
(a) The probability P (M) for linear dimension L = 64 and 108 Monte
Carlo steps per spin. Note the existence of maxima at M ≈ ±2872.
(b) Log-log plot of the maxima of P (m) for m > 0 as a function of L.
The slope is approximately −0.128, consistent with β = 0.125, the
critical exponent for the mean magnetization.
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It is interesting to compare the behavior of m̃ and P (m)
for the fully connected Ising model to their behavior in the
nearest-neighbor Ising model at the critical temperature of the
infinite system. As shown in Fig. 6(a), the maxima of P (m) for
the nearest-neighbor Ising model at T = Tc = 2/ ln(1 + √

2)
as obtained from a Monte Carlo simulation are not at m =
0 [23]. However, the most probable and mean values of the
magnetization both scale as L−1/8 in two dimensions [see
Fig. 6(b)], in contrast to their different scaling behavior in the
fully connected Ising model.

V. THE GINZBURG PARAMETER AND THE
RESTORATION OF HYPERSCALING

The different scaling behavior of the mean magnetization
and the most probable magnetization in the fully connected
Ising model implies that hyperscaling does not hold. As
discussed in Ref. [2], hyperscaling is not satisfied by mean-
field theories, but hyperscaling is restored if the Ginzburg
parameter, G, is held constant as the critical point is ap-
proached [2,24].

The definition of the Ginzburg parameter follows from the
well known Ginzburg criterion for the applicability of mean-
field theory [25]. This criterion requires that the fluctuations of
the order parameter be small compared to its mean value, that
is, G−1 = ξdχ/ξ 2dm2 	 1, where ξ is the correlation length
and d is the spatial dimension. In the limit G → ∞ the system
is described exactly by mean-field theory. The system is near
mean field for G � 1 but finite.

To determine the dependence of G on N and ε = |T −
Tc,∞|/Tc,∞, we use the mean-field dependence of m and
χ implied by the exponents in Eq. (5) and obtain G =
ξdε2 [2]. Because N ∼ ξd , the Ginzburg parameter for the
fully connected Ising model is given (up to a numerical
constant) by

G = Nε2. (17)

We can show analytically that m̃ scales as N−1/4 if G is held
constant. We substitute T = Tc,∞(1 + ε) in Eq. (13), assume
that ε = −(G/N)1/2 with G a constant and T < Tc,∞, and
rewrite Eq. (13) to leading order in 1/N as

−m − m3

3
+ m

1 − (G/N)1/2
= 0, (18)

where qJ/Tc,∞ = 1. If we let [1 − (G/N)1/2]−1 ≈ 1 +
(G/N)1/2, we obtain

m̃ = 31/2

(
G

N

)1/4

∼ N−1/4 (constant Ginzburg parameter).

(19)

From Eq. (13) we see that the scaling of m̃ is determined by
the way the coefficient of the linear term in m vanishes. Instead
of working at the critical temperature of the infinite system, we
determine how m̃ scales with N at the pseudocritical temper-
ature Tc,N . To that end we define εN = (Tc,∞ − Tc,N )/Tc,∞,
and note that the coefficient of the linear term in Eq. (13) can
be written as εN + Tc,∞/NTc,N .

We can show that hyperscaling is apparently restored if
finite size scaling is done at Tc,N [26]. We compute Tc,N
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FIG. 7. Plot of the Ginzburg parameter G = Nε2
N with εN =

(Tc,∞ − Tc,N )/Tc,∞ versus log N . The pseudocritical temperature,
Tc,N , corresponds to the temperature at which χ is a maximum for
a given N . The smallest value of εN is 2.8 × 10−4 for N = 2 × 107.
A least squares fit of G(N ) for N � 102 yields G(N ) ≈ −0.3000 +
0.6484 log N . The plot suggests that G is increasing no faster than
log N for larger values of N .

numerically using Eqs. (8)–(10). The corresponding results
for the Ginzburg parameter G = Nε2

N versus log N are shown
in Fig. 7. We see that G is a slowly increasing function of
log N for large N and is increasing no faster than log N for
large N . We were unable to fit the N dependence of G to a
simple analytical form in the range 106 � N � 2 × 107 and
were unable to distinguish between G approaching a constant
as N → ∞ or G increasing indefinitely, albeit less than
logarithmically. This behavior is consistent with logarithmic
corrections to the mean-field behavior of quantities such as χ

obtained by renormalization group calculations for the Ising
model in four dimensions [26,27].

In Fig. 8 we show the N dependence of m and m̃

computed at T = Tc,N , the values of T corresponding to
the pseudocritical point. Least squares fits to m̃ and m yield
slopes of −0.2496 and −0.2494, respectively, consistent with
m̃,m ∼ N−1/4, and the apparent restoration of hyperscaling if
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FIG. 8. Log-log plot of m̃ (open circles) and m (filled circles)
versus log N for N � 2 × 107 at the pseudocritical temperature
corresponding to the values of G shown in Fig. 7. The slopes from
a least squares fit in the range 105 � N � 2 × 107 of m̃ and m are
−0.2496 and −0.2494, respectively, consistent with m̃,m ∼ N−1/4,
and the restoration of hyperscaling.
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finite size scaling is done at the pseudocritical temperature.
We conclude that G is increasing sufficiently slowly with N

for N � 2 × 107 so that we cannot distinguish numerically
between the results of constant G or possible corrections.

We also investigated the N dependence of the specific heat
C at both Tc,N and Tc,∞. We find that C is a slowly increasing
function of N at both temperatures and we were unable to fit
the N dependence of C to a simple analytic function. Hence,
we are unable to conclude if C is approaching a constant as
is predicted by mean-field theory or if there are logarithmic
corrections.

VI. ANALYTICAL CALCULATION OF THE
MEAN MAGNETIZATION

To calculate the scaling behavior of m at T = Tc,∞, we
expand ln P (m) in a Taylor series in m − m̃, where m̃ is the
most probable value of m as given by Eq. (14). We have

ln P (m) ≈ ln P (m̃) + 1

2
(m − m̃)2 d2 ln P (m)

dm2

∣∣∣∣
m=m̃

+ 1

3!
(m − m̃)3 d3 ln P (m)

dm3

∣∣∣∣
m=m̃

+ 1

4!
(m − m̃)4 d4 ln P (m)

dm4

∣∣∣∣
m=m̃

. (20)

In analogy to the form of the free energy in Landau-Ginzburg
theory, we will need to keep terms only to fourth order
in (m − m̃). We also expect that the second and third
derivatives of ln P (m) to both approach zero as N → ∞ and
[d4 ln P (m)/dm4]m=m̃ to be independent of N .

We have to leading order in 1/N that

d2 ln P (m)

dm2
= − 1

1 − m2
+ βqJ

1 − 1/N
+ 1

N

1 + m2

(1 − m2)2
, (21)

and hence

d2 ln P

dm2

∣∣∣
m=m̃

≈ −1 − m̃2 + 1 + 1

N
+ 1

N
= − 4

N
. (22)

Note that [d2 ln P/dm2]m=m̃ < 0, which is consistent with m̃

being the most probable value.
We also have to leading order that

d3 ln P

dm3
= − 2m

(1 − m2)2
and

d4 ln P

dm4
= − 2

(1 − m2)2
.

(23)

Hence to leading order in 1/N we have

d3 ln P

dm3

∣∣∣∣
m=m̃

≈ −2

(
6

N

)1/2

and
d4 ln P

dm4

∣∣∣∣
m=m̃

≈ −2.

(24)

We can interpret ln P (m) as the free energy per spin. Be-
cause [d2 ln P (m)/dm2]m=m̃ and [d3 ln P (m)/dm3]m=m̃ both
go to zero as N → ∞, we have from Eqs. (20) and (24)
that [11]

m =
∫ 1

0 me−N(m−m̃)4/12 dm∫ 1
0 e−N(m−m̃)4/12 dm

(N � 1). (25)

We change variables to x = (m − m̃)(N/12)1/4 and keep only
the leading order term in N . The upper limit of integration,
xmax = (1 − m̃)(N/12)1/4 ∼ N1/4 → ∞ as N → ∞. Simi-
larly, the lower limit of integration xmin = −m̃(N/12)1/4 ∼
N−1/4 → 0 as N → ∞. Hence, for large N we obtain

m =
(

12

N

)1/4 ∫ ∞
0 xe−x4

dx∫ ∞
0 e−x4

dx
≈ 0.91N−1/4. (26)

The leading correction to m in Eq. (26) is proportional to
N−1/2. Similar considerations yield the scaling behavior of χ

given in Eq. (7).
It is easy to check that [dn ln P (m)/dmn]m=m̃ for n > 4 is

either independent of N (n even) or proportional to N−1/2 (n
odd), thus justifying the assumption in Eq. (20) that higher-
order terms in the expansion of ln P (m) can be neglected.

The form of ln P (m) in Eq. (20) can be used to compute
the cumulant defined in Eq. (16). The result is U4 ≈ 0.271
at T = Tc,∞, which is consistent with the computed value of
U4 = 0.2706 using the exact density of states for N = 2 × 107.

VII. SCALING AT THE SPINODAL

A. Simple scaling argument

Because the spinodal is a line of critical points, we
expect that finite size scaling at the Ising spinodal proceeds
similarly to our analysis at the Ising mean-field critical point.
We assume that T < Tc,∞ and vary the field h near the spinodal
field hs . In terms of 
h = (h − hs)/hs the usual scaling
relations are [2]

ψ ∼ 
h1/2, (27)

χ ∼ 
h−1/2, (28)

ξ ∼ 
h−1/4, (29)

where the order parameter ψ = m − ms is related to the mean
magnetization per spin near the spinodal, and ms is the value
of the magnetization at the spinodal. We use Eq. (29) to
obtain ψ ∼ ξ−2 and χ ∼ ξ 2. If we assume the upper critical
dimension to be six at the spinodal [28], we have N ∼ ξ 6, and
hence

ψ ∼ N−1/3, (30)

χ ∼ N1/3. (31)

We will derive these results in the following without assuming
that N ∼ ξ 6 at the spinodal.

B. Numerical results

The numerical evaluation of the N dependence of various
quantities such as ψ and χ as a function of N at h = hs using
the exact density of states in Eq. (8) is more subtle than at
the critical temperature because we must include only values
of M corresponding to the metastable state. To understand
this restriction, imagine a Monte Carlo simulation of the
fully connected Ising model at T < Tc,∞ and magnetic field
h = h0 > 0. Because h0 > 0, the values of M are positive.
After equilibrium has been reached, we let h → −h0. If h0

is not too large, the system will remain in a metastable state
for a reasonable number of Monte Carlo steps per spin. To
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FIG. 9. Log-log plot of χ , the susceptibility per spin, versus N at
h = hs and T = 4Tc,∞/9 using the exact density of states in Eq. (8)
and the requirement that M � Mip. A least square fit for 105 � N �
2 × 107 yields a slope of 0.335, consistent with the exponent 1/3 in
Eq. (31).

compute χ associated with the pseudospinodal (the spinodal
is defined only in the limit N → ∞ for the fully connected
Ising model), we must include only those values of M that
are representative of the metastable state. As discussed in
Ref. [12], the values of M that may be included in thermal
averages of the metastable state must satisfy the condition that
M � Mip, where Mip is the value of M at the inflection point
of P (M). We set d2 ln P (M)/dM2 = 0 and use Eq. (21) to
find that [12]

Mip =
√

N2

(
1 − 1

βqJ

)
+ N

βqJ
. (32)

We follow Ref. [29] and choose T = 4Tc,∞/9 = 16/9. Hence
z = βqJ = 9/4 in Eq. (32). For this value of z we obtain
hs ≈ 1.2704 [30].

Our numerical results for χ at h = hs for increasing values
of N are shown in Fig. 9 using the exact density of states in
Eq. (8) and values of M > Mip. The slope of 0.335 is consistent
with Eq. (31). Similarly, we find that a log-log plot of ψ versus
N yields a slope of −0.334 [see Fig. 10(a)] in agreement with

Eq. (30). A log-log plot of the most probable value of m near
the spinodal yields the scaling behavior [see Fig. 10(b)]

ψ̃ ∼ N−1/2. (33)

C. Analytical derivation

The analytical calculation of the N dependence of ψ , ψ̃ ,
and χ at the spinodal proceeds similarly to the derivation
at the critical temperature. We can use Eq. (12) with N →
∞ to show that the value of m at the spinodal is given by
(1 − m2

s )−1 − qβJ = 0, or

ms =
√

βqJ − 1

βqJ
=

√
z − 1

z
. (34)

The corresponding value of hs can be obtained by substituting
m = ms into Eq. (12) in the limit N → ∞.

To find the leading correction to the most probable value
of m near the spinodal, we substitute m = ms + ψ in Eq. (12)
and assume that ψ 	 ms for N � 1. The result is

d ln P

dm
≈ 1

2
ln

1 − ms

1 + ms

+ zms + βhs − 1

1 − m2
s

ψ + zψ

− ms(
1 − m2

s

)2 ψ2 + 1

N

ms

1 − m2
s

+ 1

N

1 + m2
s(

1 − m2
s

)2 ψ

+ zms

N
+ zψ

N
= 0. (35)

The sum of the first three terms on the right-hand side is
zero. We will assume that ψ ∼ N−1/2 and determine if this
assumption is consistent with the solution to Eq. (35).

The terms proportional to N−1/2 are[
− 1

1 − m2
s

+ z

]
ψ, (36)

which sum to zero using Eq. (34). The terms proportional to
N−1 include

− ms(
1 − m2

s

)2 ψ2 + 1

N

ms

1 − m2
s

+ zms

N
, (37)

102 103 104 105 106
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N

ψ
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10-3
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10-1

N

ψ∼

(a) (b)

FIG. 10. (a) Log-log plot of the mean value of the order parameter, ψ , versus N at h = hs and T = 4Tc,∞/9. The slope is ≈−0.334, which
is consistent with Eq. (30). (b) Log-log plot of the most probable value of the order parameter, ψ̃ , at h = hs and T = 4Tc,∞/9. The slope is
≈−0.523, consistent with the exponent in Eq. (33). We see that the N dependencies of ψ and ψ̃ at the spinodal differ.
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which also must sum to zero. The result for ψ2 to order 1/N

is

ψ2 =
(
1 − m2

s

)2

N

[
1

1 − m2
s

+ z

]
= 2

Nz
. (38)

The quantity ψ in Eq. (38) represents the most probable value,
which we write in the following as ψ̃ . Hence, we conclude that
ψ̃ ∼ N−1/2, in agreement with the numerical result in Eq. (33)
and the slope in Fig. 10(b).

Near the spinodal the Ginzburg parameter Gs is given by

Gs = ξdψ
2
/χ ∼ N
h3/2 [2], where we have used Eqs. (29)

and (31). In analogy to our discussion in Sec. V, we can show
that ψ̃ ∼ N−1/3 if Gs is held fixed as 
h is varied at constant
temperature.

Similarly, we find for large N at T = 4Tc,∞/9 and h = hs

that

d2 ln P

dm2
= − 2ms(

1 − m2
s

)2 ψ ∼ N−1/2 (39)

and

d3 ln P

dm3
= − 2ms(

1 − m2
s

)3 ∼ N0. (40)

We see that d2 ln P/dm2 ∼ N−1/2 and d3 ln P/dm3 is inde-
pendent of N in the limit N → ∞. Hence, we can show that
ψ ∼ N−1/3 and χ ∼ N1/3 at the spinodal in agreement with
Eqs. (30) and (31).

VIII. DISCUSSION

We have shown that finite size scaling done at Tc,∞, the
critical temperature of the fully connected Ising model in
the limit N → ∞, gives results that differ from our usual
understanding of mean-field systems. In addition, we found
that finite size scaling yields different results depending on
how the mean-field limit is approached.

In particular, the Gaussian approximation often associated
with mean-field theory does not hold at T = Tc,∞, and the
probability distribution of the magnetization is not a Gaussian,
even in the limit N → ∞. Also our results are inconsistent
with the assumption that the scaling properties of the fully
connected Ising model at the critical temperature of the
infinite system are the same as the scaling properties of the
nearest-neighbor Ising model (when N is used as the scaling
parameter) at the upper critical dimension, where hyperscaling
is satisfied and the Ginzburg parameter is independent of the
distance from the critical point and the spinodal.

The reason that the most probable value of the magneti-
zation, m̃, and the mean value, m, scale differently with N

at T = Tc,∞ is that hyperscaling is not satisfied. However,
the breakdown of hyperscaling does not affect the values
of thermodynamic exponents such as β and γ [31]. In
contrast, the most probable value of the magnetization is not
a thermodynamic quantity and is affected. The breakdown of
hyperscaling is consistent with results above the upper critical
dimension where hyperscaling also does not hold if finite size
scaling is done at the critical point of the infinite system [26].
To do finite size scaling so that hyperscaling is restored,

it is necessary to keep the Ginzburg parameter constant as
N is increased. It is also possible to do finite size scaling
at the pseudocritical temperature where the susceptibility is
a maximum. In this case the Ginzburg parameter is either
a constant or diverges more slowly than ln N for large N .
Whether the latter dependence maintains hyperscaling or leads
to logarithmic corrections cannot be determined from our
numerical results.

To understand the different scaling behavior at T = Tc,∞
and T = Tc,N , we return to Eq. (22) and interpret ε as the
coefficient of the quadratic term in the free energy. Hence at
T = Tc,∞ we have

εeff ∼ − 4

N
, (41)

and the Ginzburg parameter G = Nε2
eff ∼ 1/N , leading to

m̃ ∼ N−1/2. In contrast, if G is held constant, εeff ∼ N−1/2,
leading to m̃ ∼ N−1/4. As shown in Fig. 7, G appears
to increase more slowly than ln N for large N if finite
size scaling is done at the pseudocritical temperature T =
Tc,N , the temperature corresponding to the maximum of the
susceptibility. Because logarithmic corrections do not change
the scaling laws [1], we expect that corrections that are
weaker than logarithmic will not affect the scaling of the most
probable value of the magnetization. Hence, we conclude that
m̃ ∼ N−1/4 if finite size scaling is done at T = Tc,N .

It is remarkable that the fully connected Ising model, which
is discussed in some undergraduate textbooks because of its
simplicity [8], still yields surprises. In particular, the behavior
of the fully connected Ising model at the critical point differs
from that of the long-range Ising model with the Kac form
of the interaction. This conclusion is not surprising because
the interaction between spins in the fully connected Ising
model does not have the Kac form for which mean-field
theory has been shown to be exact if the thermodynamic
limit is taken before the range of the interaction is taken to
infinity.

Our results are a reminder that the applicability of mean-
field theories is subtle. A recent example is found in Ref. [18],
where it was shown that the divergence of the specific heat
of the long-range Ising model in one and two dimensions is
neither mean field nor has the exponents associated with the
nearest-neighbor Ising model. We also note that experiments
in systems that are well approximated by mean-field theory
are not usually done at fixed Ginzburg parameter. Hence, the
interpretation of experimental results for such systems should
be done with caution.
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