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We employ a simple model for rotational diffusivity Dg of dumbbells in porous media in order to study spatially
heterogeneous and non-Gaussian dynamics at Fickian time scales. We obtain the distribution P(Dyg) of Dg’s of
single dumbbells for both ergodic and nonergodic systems. When a pore percolating network disappears beyond
the pore percolation transition and the rotational dynamics becomes nonergodic, each single dumbbell undergoes
Gaussian rotational dynamics but with different Dg, which depends solely on the local pore structure. We also
construct a map of heterogeneous dynamic regions and illustrate that such seemingly Fickian but non-Gaussian
dynamics could be understood as the linear combination of the Gaussian rotational displacement distribution
functions of each dumbbell. With a percolating pore network, the rotational dynamics becomes ergodic, and

P(Dy) is a § function at the average value of Dp.
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I. INTRODUCTION

The dynamics of single molecules is spatially heteroge-
neous in complex systems such as glasses and cells [1-9]. For
example, band 3 molecules in human red blood cells rotate
with a broad range of rotational relaxation times t [10-12].
T is smaller than 250 us for about 20% of band 3 molecules,
whereas T ~ 1 ms for most cases. A small fraction of band 3
molecules is even rotationally immobile. Such heterogeneous
systems consist of regions of different dynamics: fast, slow,
and intermediate regions [2,6,9,13]. The characteristic size of
eachregion in glasses, for example, is about a few nanometers,
and the dynamics varies by several orders of magnitude [2].
Recent experiments and simulations showed that when the
rotational correlation function U(#) was averaged over many
molecules in different regions, U (¢) was stretched exponential,
ie., U(t) ~ exp[—(t/t)ﬁ] with 0 < 8 < 1 [2,9,14,15]. The
stretched-exponential form of U(z) is considered a clear
indication of dynamic heterogeneity [2,9,16-21].

Such dynamic heterogeneity has been described in terms
of the distribution t or the distribution P(D) of diffusion
coefficients D [22-25]. It is, however, usually formidable to
obtain P(D): (1) in ergodic systems there is no distribution
of D, i.e., P(D) reaches a § function after sufficient time
averaging, and (2) in nonergodic systems such as glasses the
diffusion is usually too slow to estimate P (D). Therefore, it
should be an issue of importance to develop a model system,
obtain P(D) for both ergodic and nonergodic systems, and
investigate the notion of dynamic heterogeneity systematically.
In this work, we consider a model system where a dumbbell
is located in porous media with or without a percolating pore
network. Without a percolating pore network, no dumbbell can
escape from its own region, and its dynamics is nonergodic,
depending solely on the structure of the local region [26]. On
the other hand, when a percolating pore network exists, each
dumbbell travels over many pores, and the dynamics becomes
ergodic.

Recent single-molecule experiments in entangled actin
networks, gels, and colloidal suspensions revealed that while
the dynamics was Fickian, i.e., the mean-square displacement
W(t) was linear with time 7, the displacement distribution
function [or the van Hove correlation function, G,(r,t)] was
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non-Gaussian instead of being Gaussian [24,25,27-31]. Be-
cause W(t) ~ ¢t indicates that molecules would undergo
Brownian diffusion at given time scales, the Gaussian form of
G,(r,t) is usually expected. However, there have been several
reports of such a seemingly Fickian but non-Gaussian dy-
namics in complex systems [23-25,27-31], and how the non-
Gaussian G,(r,t) emerges still remains elusive. Non-Gaussian
G,(r,t) has been interpreted as a linear combination of the
Gaussian displacement distribution functions g(r,t| D) of each
single molecule, i.e., G(r,t) = f P(D)g(r,t|D)d D.However,
it is still a difficult task to verify the interpretation because for
ergodic systems P(D) becomes a § function and for noner-
godic systems it is daunting to estimate P(D). In this work,
we obtain P(D) for both ergodic and nonergodic systems and
illustrate that such non-Gaussian dynamics should result from
the linear combination of Gaussian displacement distributions
of single molecules. We investigate the rotational diffusion
of dumbbells in porous media around a pore percolation
transition. When a dumbbell is confined in its own local region
with no pore percolating network, the angular displacement
distribution function g(0,7|Dg) (the van Hove function for
the rotational motion) of each dumbbell is Gaussian. But the
rotational diffusion coefficient Dy of each dumbbell differs
for different dumbbells depending on the structure of the local
region. When g(6,¢| Dg)’s are averaged over all dumbbells, the
averaged angular displacement distribution function G(6,1) is
exponential instead of being Gaussian.

Recent theoretical and simulation studies by Fierro et al.
[23,32] showed that the dynamics of permanent gels was also
non-Gaussian at Fickian time scales and verified systemati-
cally that such non-Gaussian dynamics could be understood as
a linear combination of the Gaussian displacement distribution
functions of different values of D,, where Dy is the diffusion
coefficient of cluster size s of permanent gels. By employing
the percolation theory and assuming the relation between D
and s, they proposed a quantitative theory to explain the
complex dynamic behavior of gels in terms of P(Dy) and
compared the theory to their simulation results.

There have been various relevant experiments for the
rotational diffusion in complex systems [33-37]. For example,
in recent single-molecule experiments, the wobbling dynamics
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of single molecules in silica mesopores was investigated
[33,34]. Some single molecules traveled between different
mesopores and showed different dichroism emission in differ-
ent mesopores depending on the pore structure. This suggests
that the rotational dynamics would be heterogeneous due to the
structural difference in mesopores. Another recent experiment
was also performed to investigate the rotational dynamics
of nanodoublers (noncentrosymmetric crystalline particles) in
living cells [35]. In the experiment, P(Dg) was obtained and
the spatial map of Dy was also constructed, which illustrated
the dynamic heterogeneity of rotational diffusion in living cells
and is consistent with our simulation results.

In porous media molecules may diffuse translationally only
when a pore percolating network exists [7,38—43]. When the
matrix density ¢ is smaller than a critical value ¢., a pore
percolating network exists, and W(z) ~ ¢ at long times. At the
percolation transition (¢ = ¢.), W(¢) ~ ¢* at all time scales
with o < 1, i.e., the translational diffusion is subdiffusive
[44-46]. For ¢ > ¢., the pore percolating network disappears.
Because all molecules are confined in local pores for ¢ > ¢,,
molecules cannot diffuse, and W(¢) approaches a plateau.
Such an interesting translational diffusion in porous media
is very similar to the protein diffusion in cell membranes
[1,3,7,41,47]. Porous media, therefore, have been employed
as a model system for cell membranes. Since the translational
diffusivity disappears but molecules still rotate for ¢ > ¢, it
would not be surprising if the translational motion of molecules
were to separate from the rotational motion. But we illustrate
in this work that a certain mode of rotational relaxation should
accompany the translational motion of molecules even for
¢ > ¢., which should account for the anomalous oscillatory
relaxation of G,(0,t) observed in our simulations.

The rest of this paper is organized as follows. Our model and
simulation details are described in Sec. II. Simulation results
are presented and discussed in Sec. I1I. Finally, a summary and
conclusions are presented in Sec. IV.

II. MODEL AND METHODS

Porous media are modeled as a set of monodisperse hard
disks (matrix particles) that are randomly distributed and
quenched in two dimensions. The diameter o of hard disks
is the unit length in our simulations. A dumbbell is modeled
as a dimer of hard disks of the same diameter o. The bond
distance of a dumbbell is allowed to fluctuate from 0.95 to
1.05. In order to obtain initial configurations, we place matrix
particles sequentially at random positions. The position is
accepted if the matrix particle does not overlap with preexisting
particles, and otherwise, it is discarded. The procedure is
repeated until a desired matrix density (or area fraction) ¢
(=n0%N,,/4L?, where N,, is the number of matrix particles
and L is the simulation cell dimension) is obtained. L ranges
from 50 to 100, and periodic boundary conditions are applied
in all directions. Once the configurations of porous media
are obtained, dumbbells are placed at random positions. No
overlap between dumbbells and other particles is allowed. The
area fraction (¢, = 2mwo>N;/4L?, where N is the number of
dumbbells) of dumbbells is fixed at 0.01.

Ten initial configurations are generated for each ¢ and are
used to ensemble average observables. Because of quenched
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FIG. 1. (Color online) Simulation results for (a) the mean-square
displacement W (¢) of the center of mass of the dumbbells and (b) the
mean-square angular displacement R(z).

disorder inherent in porous media, double ensemble averaging
should be carried out; that is, an observable needs to be
averaged first over all dumbbells in each realization of porous
media and then over many realizations of porous media. The
system is evolved via a discontinuous molecular dynamics
(DMD) simulation that employs an event-driven algorithm
[48]. For each successive collision between two particles, the
momenta and positions of dumbbells are updated based on
the conservation laws of energy and momentum. When a pore
percolating network exists, the system is equilibrated until the
mean-square displacement of dumbbells is at least larger than
5002, In the absence of a pore percolating network, the system
is equilibrated until the mean-square angular displacement is at
least larger than 50. In both cases, the time correlation function
U(¢) of the director of a dumbbell decays to zero, except in
the case of the largest value of ¢ = 0.4.
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FIG. 2. (Color online) Simulation results for angular displace-
ment distribution functions G,(6,t) averaged over all dumbbells for
(a) ¢ = 0.1 and (b) ¢ = 0.3. Time-averaged angular displacement
distribution functions g(@,7|Dg) of individual dumbbells for (c)
¢ =0.1and (d) ¢ = 0.3.
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III. RESULTS AND DISCUSSION

The pore percolation threshold area fraction ¢, depends
on the size of the tracers and the polydispersity of matrix
particles [41-43]. It is well known that ¢, ~ 0.22 when the
matrix particles are monodisperse and the size of the tracer
is identical to that of the matrix particles, as in this study.
When ¢ < ¢, a pore percolating network should exist. On
the other hand, for ¢ > ¢., the pore percolating network
disappears, and all dumbbells are confined in local regions.
Figure 1(a) depicts the mean-square displacements [W(¢t) =
(|[F(t) — 7(0)|*)]. ¥(¢) denotes the position vector of the center
of mass of a dumbbell at time ¢, and (---) represents an
ensemble average. For ¢ = 0.1, W(¢) ~ ¢ in our simulation
times. For ¢ > ¢. = 0.22, W(¢) reaches a plateau, indicating
that all dumbbells are confined in local pores. For ¢ = 0.2,
dumbbells show subdiffusive behavior in our simulation times.
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But dumbbells are expected to enter the Brownian regime for
longer times with W(¢) ~ t.

The rotational diffusion of dumbbells is Fickian for all
values of ¢ in our simulations. We estimate the mean-square
angular displacements [R(¢) = (|8(t) — 6(0)|*)]. 6(¢) is the
angle of a dumbbell with respect to a reference axis at time
t. Note that the unit of 6 in this study is radians and that
the rotational motion in two dimensions corresponds to the
one-dimensional walk along the 6 axis. R(t) ~ ¢ at large times
for all values of ¢ in our study, as depicted in Fig. 1(b). This
indicates that even when dumbbells are confined in local pores
with no pore percolating network and are not able to diffuse,
they are still allowed to rotate.

The rotational displacement distribution function aver-
aged over all dumbbells [G(0,1) = ({60 — [0(t) — O8(0)]})] is
Gaussian for small ¢, as expected. For ¢ = 0.1, dumbbells un-
dergo Brownian rotational motion; thus, R(¢) ~ ¢ and G4(0,1)
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FIG. 3. (Color online) g(6,¢|Dg) for individual dumbbells as a function of 6 for r = 1000 and ¢ = 0.3.
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is Gaussian at large times [Fig. 2(a)]. The time-averaged
rotational displacement distribution function g(@,7|Dg) of
individual dumbbells is also all Gaussian, with an identical
rotational diffusion coefficient Dg.

For ¢ = 0.3 beyond the pore percolation transition, the
ensemble-averaged G4(6,r) is exponential at large 6, as
depicted in Fig. 2(b). Note that R(¢) ~ ¢ for ¢ = 0.3, which
indicates that the rotational dynamics should be Fickian and
that Gaussian G(6,t) would be expected. However, G,(6,1) is
exponential even at large times. Such a seemingly Fickian but
non-Gaussian dynamics was also observed in heterogeneous
systems such as entangled actin networks, gels, and colloidal
mixtures [24,25,27-31]. In those systems, translational dis-
placement distribution functions G,(r,z) were Gaussian at
short r and non-Gaussian at large » while W(¢) ~ ¢.

Previous studies [25,27] proposed that such a non-Gaussian
ensemble-averaged G(6,r) at Fickian time scales would be
interpreted as a linear combination of Gaussian g(6,7|Dg)’s of
single molecules that rotate with different rotational diffusion
coefficients Dg, i.e.,

Gs(0.1) = / P(Dg)g(6,t|Dg)d Dg, (D

where P(Dy) is the effective distribution function of rotational
diffusion coefficients, representing the spatial heterogeneity of
systems. If a molecule were allowed to sample all regions of
different dynamics, the molecule might rotate with a different
transient D in a given local region, but the molecule would
travel all regions of different dynamics eventually. Then,
G,(0,t) and g(0,t|Dg) would be identical to each other
[Fig. 2(c)]. In such a case P(Dg) does not necessarily mean
that there should be a distribution of diffusion coefficients.
However, determining whether the trajectory of a single
molecule would be sufficiently long and/or how many regions
a single molecule would have sampled would be difficult tasks
in both experiments and simulations.

In our systems for ¢ > ¢., dumbbells are confined in their
own regions and are not allowed to sample other regions due to
the absence of pore percolating networks. G;(0,t) is therefore
different from g(6,¢|Dg) for a single dumbbell. A single
dumbbell rotates with different rotational diffusion coefficients
Dg, and g(0,t|Dg) for each single dumbbell is Gaussian
(Fig. 3). Figure 2(d) depicts time-averaged g(6,f|Dg)’s of five
representative dumbbells at # = 1000. While some dumbbells
(molecule 2) rotate slowly, others may rotate quickly with large
Dg. Figure 3 depicts g(8,t|Dg)’s of 16 individual dumbbells.
All of 16 g(0,t] Dg)’s are Gaussian functions of 6 for r = 1000
and ¢ = 0.3 even though the rotational diffusion coefficient
Dy differs for different dumbbells. When all g(8,7|Dg)’s
are averaged over all dumbbells and media configurations,
the ensemble-averaged G,(6,f) becomes non-Gaussian and
exponential, as depicted in Fig. 2(d).

We also scale g(0,t|Dgr) by Dg of each dumbbell for
¢ = 0.3 (Fig. S1 in the Supplemental Material [49]). For
all dumbbells except rotationally immobile ones, the scaled
g(0,t|Dg)’s overlap well with one another, implying that
g(0,t|Dg)’s are all Gaussian but have different values of Dg.
Figure 4(a) depicts the distribution of Dy for different values
of ¢. When there are percolating pore networks (¢ = 0.1 to
0.2), P(Dg) reaches a § function at the average value ((Dg))
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FIG. 4. (Color online) (a) The scaled distribution of Dg. (Dg)
denotes the averaged value of Dg. (b) A simulation snapshot of
dumbbells with Delaunay triangles. Light yellow (light gray) and dark
gray circles represent matrix particles and dumbbells, respectively.
Solid lines are the edges of Delaunay triangles. Shaded (colored
online) triangles are regions that contain dumbbells. The value of Dy
of the dumbbell in each shaded triangle is presented by the area color
according to the bar on the right.

of Dg. When the percolating pore network vanishes and the
dumbbell dynamics becomes nonergodic for ¢ = 0.25and 0.3,
broad distribution functions [ P(Dg)] of Dy are observed.

Because each dumbbell is isolated in its own region and
is not allowed to sample over many regions, the rotational
diffusion coefficient Dy tells us how fast the dynamics would
be in each region. Figure 4(b) shows the map of local regions of
fast, slow, and intermediate dynamics with Delaunay triangles
[50] embedded for ¢ = 0.3. Solid lines depict the edges of
Delaunay triangles whose vertices are located on the center
of matrix particles [yellow (light gray) circles]. Delaunay
triangles with the same color construct a local region for
a single dumbbell (dark gray circles). Fourteen dumbbells
are shown in Fig. 4(b). Shaded (colored online) triangles in
Fig. 4(b) are regions where dumbbells are confined. The values
of Dg’s of the dumbbells vary among dumbbells by orders of
magnitude, and are represented by the colors of the regions
according to the bar on the right. Figure 4(b) illustrates clearly
that the system consists of regions of different dynamics: fast,
slow, and intermediate regions. The map of local regions
corresponds conceptually to the schematic illustration of
regions of spatially heterogeneous dynamics for glasses [2]. A
recent experiment was carried out for the rotational diffusion
of nanodoublers in living cells. A spatial map of Dg’s was
constructed for living cells and is qualitatively identical to our
map.

The rotational diffusion of a dumbbell is sensitive to the
local structure of a pore. We construct a set of rectangular
pores that consist of hard disks, and we place a dumbbell
in the rectangular pore and perform discontinuous molecular
dynamics simulations. The width w and height / of rectangular
pores are changed from 20 to 40. For example, if a dumbbell
is located in arectangular pore of w = 4 and & = 1, there is not
much free area for the dumbbell to rotate in. g(6,¢| Dg) hardly
propagates with time for (w,h) = (4,1), indicating that dumb-
bells in the pore are rotationally immobile. On the other hand,
in the case of rectangular pores of (w,h) = (2,2) and (4,3),
g(0,t|Dg)’s are Gaussian with relatively large Dy (Fig. S2
in the Supplemental Material [49]). More interestingly, for
(w,h) = (4,2), g(0,t| D) shows an oscillatory behavior even
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FIG. 5. (Color online) Monte Carlo (MC) simulation results for
the angular displacement distribution functions G(6,t) averaged over
all dumbbells for ¢ = 0.3. MCS denotes the number of Monte Carlo
steps and is a time unit in MC simulations.

att = 1000, which is not observed for (w,h) = (2,2) and (4,3).
We find from the trajectories of the dumbbells that g(6,¢| Dg)
becomes oscillatory only when dumbbells are allowed to carry
out translational motion in one direction for anisotropic pores
with sufficiently small height (or width).

We also perform Monte Carlo simulations for media
configurations that were used in DMD simulations (Fig. 5).
The oscillatory behavior of G,(6,t) is still observed for
MC simulations for various times. This implies that the
oscillatory behavior should not result from the ballistic nature
of DMD simulations. Considering that the oscillatory behavior
of g(0,t|Dg) of an individual dumbbell is sensitive to the
structure of a local pore, we believe that the oscillatory
behavior should originate from the anisotropic structure of
local pores in porous media.

The time correlation function U(#) of a director of a
dumbbell is also calculated, i.e., U(¢) = (R(¢) - R(0)), where
R(t) is the director, or the normalized end-to-end vector, of
the dumbbell at time ¢. According to the Boltzmann equation
and akinetic model [51], U(t) = B(¢t) + % fot dsB(s)U(t — s),
where B(t) = exp(—’%t2 — t/7) and the reduced mass I =
1/2 and kT =1 in this study. When the interaction of
dumbbells with matrix particles is scarce, 7 — ocoand U () —
B(t) = exp(—t?). In the case of ¢ = 0.1 and 0.2, dumbbells
may rotate even without colliding with matrix particles, 7 is
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quite large, and U(¢) decays before R(t) reaches a Fickian
time regime, i.e., R(t) ~ t. Therefore, U(t) decays faster than
an exponential decay. However, the rotational dynamics of
dumbbells is homogeneous; that is, U(#)’s of single dumbbells
are identical to one another [Fig. 6(b)]. As expected, U(¢)
decays more slowly with an increase in ¢. For ¢ = 0.4,
the local pores are so small that there are many rotationally
immobile dumbbells, and U () hardly decays in our simulation
times [Fig. 6(a)]. For ¢ = 0.3, the time-averaged U(t)’s of
individual dumbbells are categorized into three types: (1) most
dumbbells rotate with exponential relaxation functions, but
the relaxation times are different, (2) a few dumbbells are
rotationally immobile, and (3) the time-averaged U (¢) of some
dumbbells are stretched exponential themselves [Fig. 6(c) and
Fig. S3 in the Supplemental Material [49]]. For the last case,
a single dumbbell is confined in a relatively large tortuous
pore such that the pore may consist of more than one local
region itself, and the dumbbell may undergo rotational hopping
motions in the pore [52]. When averaging the time-averaged
U(t)’s over all molecules in the three types, the ensemble-
averaged U () is not exponential but stretched exponential with
B = 0.244, which indicates that dumbbells show both spatial
and temporal heterogeneous dynamics in dense porous media.

In porous media structural heterogeneity exists due to
the quenched disorder, which is different from the case for
supercooled liquids and glasses. In porous media molecules
in different pores experience different local structure, which
results in the spatially heterogeneous dynamics. Therefore,
even though our model of dumbbells in porous media allows
us to estimate P(Dy) and explain non-Gaussian dynamics for
nonergodic systems, there is a caveat that it is still an important
issue to investigate the non-Gaussian dynamics and P(D) in
glasses and supercooled liquids. However, note that the struc-
tural heterogeneity in porous media is significant even when
a percolating pore network exists, for which dumbbells show
anomalous translational diffusion, i.e., W(t) ~ t* witha < 1
for a few orders of magnitude of time [Fig. 1(a)]. However,
the rotational dynamics of dumbbells is still homogeneous for
¢ < ¢., and P(Dp) is a § function [Fig. 4(a)]. The rotational
dynamics becomes heterogeneous only when a percolating
pore network disappears for ¢ > ¢.. This implies that even
though the structural heterogeneity plays an important role
in the heterogeneous dynamics of dumbbells, the percolation
transition and the ergodicity breakage are also critical to the
dynamic heterogeneity of dumbbells.

(a) 1.0 Fomg (b) 1.0 Molecule 1~16 (c) 1.0 ¢=0.3
0.84 084  {oee average U(t) 0.8
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FIG. 6. (Color online) (a) Time correlation function U(¢) averaged over all dumbbells for each value of ¢ from 0.1 to 0.4. U(¢)’s of

representative individual dumbbells for (b) ¢ = 0.1 and (c) ¢ = 0.3.
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IV. SUMMARY

We perform discontinuous molecular dynamics simulations
for dumbbells in porous media near the pore percolation
transition. For all values of ¢ in our simulations, the
mean-square angular displacement R(¢) is linear with time;
that is, the rotational dynamics is Fickian, even without pore
percolating networks. However, when the pore percolating
network disappears, dumbbells are isolated in local regions,
and the rotational motion of each dumbbell becomes sensitive
to the local pore structure. Even though the rotational dynamics
is Fickian, the van Hove rotational correlation function G(6,t)
is non-Gaussian. More interesting is that the time-averaged ro-
tational displacement distribution g(6,¢| Dg) of each dumbbell
is Gaussian with different values of Dg. This clearly shows that

PHYSICAL REVIEW E 90, 042105 (2014)

when Gaussian g(0,7|Dg)’s are averaged over all dumbbells,
the ensemble-averaged G,(6,t) becomes non-Gaussian. We
obtain P(Dpg)’s for both ergodic and nonergodic systems and
show that non-Gaussian dynamics can be interpreted as the
linear combination of the Gaussian displacement distribution
functions of single molecules of different Dpg.
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