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Generalized dynamic scaling for quantum critical relaxation in imaginary time
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We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial
correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the
behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small
M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization,
similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum
critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising
model is employed to numerically determine the specific form of the characteristic function. We demonstrate
that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the
characteristic function is confirmed by numerical simulations of models belonging to the same universality class.
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I. INTRODUCTION

Divergent properties of a system near its critical point are
usually characterized by the critical exponents [1], describing
the dependence of macroscopic quantities on the deviation
from the critical point. For example, at a distance g from the
critical point, the order parameter M behaves as M ∼ gβ , the
correlation length ξ as ξ ∼ g−ν , and the correlation time ζ ∼
ξz, where β and ν are the static exponents and z is the dynamic
exponent. Although the number of microscopic degrees of
freedom is huge, the number of independent critical exponents
is small, as these critical exponents satisfy several scaling
laws. Whether the power laws with the several exponents are
enough to describe universal critical properties is an interesting
and fundamental question in both classical [2,3] and quantum
phase transitions [4].

In this paper, we study the relaxation quantum criti-
cal dynamics. Theoretical studies on the quantum critical
dynamics have been partly stimulated by developments in
experimental technologies [5–8], which provide effective
platforms to manipulate quantum many-body systems and
detect their nonequilibrium quantum phenomena. Although
a lot of effort has been devoted to understanding the universal
dynamic properties [4,9,10], long-range entanglement and
nonequilibrium nature make this issue difficult to tackle in
both analytical and numerical aspects [11].

In classical critical dynamics [12], the dynamic exponent
and the static ones are decoupled. In the quantum case, it is
well known that there is a mapping between a d-dimensional
quantum system and a corresponding (d + 1)-dimensional
classical system. The additional dimension comes from the
inverse of the temperature, and plays the role of the imaginary
time. As the imaginary time has an identical dimension to the
real time, parts of the dynamic and static critical properties are
intimately intertwined in quantum critical phenomena [4,13].
For example, hyperscaling scaling laws in quantum criticality
include the dynamic exponent z and the static ones together
[4,13]. So, aside from the usual static critical exponents and
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the dynamic one, it is believed that no additional exponent
is necessary in quantum critical dynamics, compared to the
equilibrium critical phenomena. A typical example is the
driving quantum critical dynamics, in which the Kibble-
Zurek mechanism [14] and the finite-time scaling theory
[15,16] show that nonequilibrium critical properties are well
described by the exponents in the equilibrium quantum critical
phenomena, even at finite temperatures [16].

However, it has been discovered that analogous to the
case of classical short-time dynamics [17–20], an additional
critical exponent θ is needed to describe the universal critical
initial slip in the imaginary-time evolution near a quantum
critical point [21]. Starting with a state with vanishing initial
correlations and small initial order parameters M0, after a
microscopic stage, a system enters the critical initial slip stage,
in which M increases with the imaginary time τ as M ∝ M0τ

θ .
This behavior lasts until a crossover time τcr, characterized by
τcr ∼ M

−x0/z

0 with x0 being the scaling dimension of M0 and
satisfying x0 = θz + β/ν. For τ > τcr, M decays according to
M ∼ τ−β/νz. Scaling behaviors in both short and long times
are shown to be described by unified scaling forms, which can
be used to determine the critical point and critical exponents
in the short-time stage. The advantage of this method is that
it overcomes the critical slowing down and the divergence of
the entanglement entropy [21].

The initial magnetization M0 plays an essential role in
characterizing the initial condition in classical [17–20] and
quantum short-time critical dynamics [21]. Both M0 = 0
and the saturated M0 are the fixed points of the initial
order parameter under scale transformations [17–21]. When
evolution begins with M0 = 0, all the evolution is the initial
slip. When evolution begins with the saturated M0, there
is no critical initial slip. When M0 is very small and thus
close to the fixed point M0 = 0, the rescaled order parameter
M ′

0, under a scale transformation with a rescaling factor b,
is M ′

0 = bx0M0. In-between, for an arbitrary M0, in classical
critical dynamics, Zheng [22] showed that universal behavior
also exists, however, bx0M0 cannot characterize the rescaled
order parameter M ′

0 for large M0. He proposed that M ′
0 can

be represented by a universal characteristic function, with
b and M0 being its arguments [22]. Numerical results have
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confirmed this proposal [22]. Moreover, the universality of
the characteristic function has been verified in other classical
systems [23–27]. A natural question is then as follows: Does
quantum imaginary-time evolution also need such a universal
characteristic function?

In this paper, we show that the power-law scale transfor-
mation of bx0M0 is not enough to characterize the rescaled
initial magnetization in the imaginary-time relaxation near
the quantum critical point with an arbitrary M0. We suggest
that a universal characteristic function U (b,M0) can be
introduced, as in the classical case [22–27], to characterize
the behavior of an arbitrary initial parameter M0 under
the scale transformation. Both the short- and the long-time
critical dynamics are well described by the generalized scale
transformation containing this function as the rescaled initial
order parameter. The characteristic function is shown to be
determined by the scaling factor b and the original M0, and
independent of g and the symmetry-breaking field h. When M0

is small, U (b,M0) recovers the power-law form bx0M0, while
for the saturated M0 we have U (b,M0) = M0. This function
is universal since it is identical for different models belonging
to one universality class. These conclusions are verified by
numerical results of the order parameter and the entanglement
entropy in the one-dimensional (1D) transverse-field Ising
model and quantum XXZ model and the transverse-field
Ising-ladder model.

The rest of the paper is organized as follows. In Sec. II,
we illustrate the imaginary-time Schrödinger equation and
compare it with the classical master equation. Then, in
Sec. III, we discuss the scale transformations containing the
universal characteristic function U (b,M0) and its properties.
The scaling theory is verified in Sec. IV. First, a mean-field
theory is developed to study the scaling properties of the
characteristic function in Sec. IV B. Then, in Sec. IV C, we
determine U (b,M0) of the quantum Ising chain and confirm its
scaling properties numerically. Subsequently, the universality
of U (b,M0) is verified for various realizations of the initial
magnetization and for other models in the same universality
class. Finally, a summary is given in Sec. V.

II. IMAGINARY-TIME QUANTUM EVOLUTION

Studies on the imaginary-time quantum critical dynamics
have attracted a lot of attention recently [28–31]. Some scaling
properties of the imaginary-time quantum critical dynamics
can be used to predict the behavior of the real-time critical
dynamics [28–32]. Moreover, simulations of the imaginary-
time dynamics can be readily realized in both quantum
Monte Carlo [28–30,33] and density-matrix renormalization
group methods [34,35]. More importantly, the imaginary-time
quantum dynamics has its own physical realization. For
example, it can be regarded as the evolution controlled by
a non-Hermitian Hamiltonian with strong dissipation [36,37].

The imaginary-time evolution of a quantum state |ψ(τ )〉 is
governed by the Schrödinger equation with a Hamiltonian H

and the time t replaced by −iτ [38,39],

∂

∂τ
|ψ(τ )〉 = −H |ψ(τ )〉, (1)

in which |ψ(τ )〉 satisfies the normalization condition
〈ψ(τ )|ψ(τ )〉 = 1. In the real-time evolution, the normalization
condition is naturally satisfied because of the unitarity of
the evolution operator. For the imaginary-time evolution, the
normalization condition has to be imposed on [38]. The formal
solution to Eq. (1) is

|ψ(τ )〉 = Z−1exp(−Hτ )|ψ0〉, (2)

where |ψ0〉 ≡ |ψ(0)〉 is the initial state, and

Z = ‖exp(−Hτ )|ψ0〉‖, (3)

is the normalization factor with ‖ . . . ‖ denoting a modulo
operation.

In order to compare the imaginary-time quantum dynamics
with the classical thermal dynamics, we now derive an equation
describing the evolution of the normalized wave function
|φ(τ )〉 ≡ Z−1|ψ(τ )〉. Substituting Eqs. (2) and (3) into Eq. (1),
we obtain

∂

∂τ
|φ(τ )〉 = −H |φ(τ )〉 + Ē(τ )|φ(τ )〉, (4)

where Ē(τ ) = 〈φ(τ )|H |φ(τ )〉 is the averaged energy. Expand-
ing |φ(τ )〉 in the eigenstates of the Hamiltonian

|φ(τ )〉 =
∑

i

Ci(τ )|Ei〉, (5)

we arrive at the evolution of the probability Pi(τ ) ≡ |Ci(τ )|2
of finding the ith eigenstate |Ei〉 with the eigenvalue Ei :

∂Pi(τ )

∂τ
= −[Ei − Ē(τ )]Pi(τ ). (6)

Two remarks are in order here. (a) Equation (6) is a typical
dissipation equation. If Ei > Ē(τ ), Pi will decay; if Ei <

Ē(τ ), on the other hand, Pi will increase. The steady solution
of this equation corresponds to Ē = Ei . (b) For a system with
a first exciting gap � = E1 − E0, the ground-state energy E0

is always smaller than Ē(τ ). Thus, the system will tend to its
ground state after a typical time scale ζτ ∼ �−1. Hence, the
imaginary-time evolution is a commonly used method to find
the ground state [35].

The reason for the similarity between the imaginary-time
quantum critical dynamics and the classical critical dynamics
can be inspected by comparing Eq. (6) with the classical master
equation [33]

∂Pi(t)

∂t
=

∑
j

[Wj→iPj (t) − Wi→jPi(t)], (7)

in which Wj→i is the transition probability from the j th to
the ith state. Wj→i must fulfill the detailed balance condition,
which is Wj→i/Wi→j = exp[−(Ei − Ej )/T ] with T being
the temperature. Both equations describe a dissipation process.
The probability of the high-energy excitations decays fast
with the time evolution, whereas the low-energy modes,
controlling the critical phenomena, are left over. As a re-
sult, Eqs. (7) and (6) exhibit similar evolution properties,
especially the critical initial slip behavior in the short-time
stage. However, the critical dynamics described by Eq. (6) is
essentially different from that described by the classical master
equation (7), even for two models in the same static universal-
ity class. For example, the dynamic exponent corresponding
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to Eq. (6) is z = 1 for the 1D quantum Ising model [4], while
that to Eq. (7) is z 
 2.1667(5) for the two-dimensional (2D)
classical Ising model [40,41]. The difference between them
also explains the fact that the initial-slip exponent θ is different
from the classical one [21].

III. GENERALIZED SHORT-TIME CRITICAL DYNAMICS

In classical short-time critical dynamics, a universal
characteristic function has been proposed to describe the
rescaled initial order parameter in the scale transformation
characterizing evolution with an arbitrary initial magnetization
[22]. In this section, we suggest a similar scale transformation
which contains a universal characteristic function to describe
the imaginary-time evolution starting with an arbitrary initial
magnetization in quantum critical dynamics.

Universal behavior near the quantum critical point is
controlled by the low-lying energy levels. Because of the
dissipative nature of Eq. (1), when a quantum system is
quenched to the vicinity of its critical point, contributions from
the high-energy levels decay fast in the microscopic initial
stage. After this stage, the critical system enters the universal
short-time stage. For both very small M0 and the saturated M0,
previous studies [21] have shown that a scaling form connects
the scaling behavior in this stage to that in the long-time stage.
Thus, it is justified to expect that criticality should also exist
for an arbitrary M0. However, as M0 is not in the vicinity of
its fixed point, a simple power-law relation is not enough to
describe the universal behavior. For example, if the relation
M ′

0 = bx0M0 were right for all M0, M ′
0 would be larger than

the saturated value, which is clearly not physical. Inspired by
the idea of the universal characteristic function applied to the
classical case [22], we suggest that the universal characteristic
function U (b,M0) is the rescaled initial order parameter M ′

0
for the rescaling factor b.

Accordingly, in case of the order parameter, we have

M(τ,g,h,M0) = b−β/νM[b−zτ,b1/νg,bβδ/νh,U (b,M0)],

(8)

where U (b,M0) is the universal characteristic function [22],
and δ is another static critical exponent defined as M ∝ h1/δ

at g = 0.
It should be noted that U is to be included in the scale

transformations for all macroscopic physical quantities. Aside
from the order parameter, we can also measure the evolution
of the entanglement. As a unique physical quantity of a
quantum system, the entanglement is usually measured as
S = −Tr(ρ logρ) if we apply the definition the von Neumann
entropy, where ρ is the reduced density matrix of half of the
system [42–44] and the base of logarithm is 2 throughout. For
a 1D system near its critical point S = (c/6)logξ [42–44], with
c being the central charge. Using the characteristic function,
we can write the generalized scale transformation of the
correlation length

ξ (τ,g,h,M0) = bξ [b−zτ,b1/νg,bβδ/νh,U (b,M0)]. (9)

Therefore, the entanglement entropy S satisfies

S(τ,g,h,M0) = c

6
logb + S[b−zτ,b1/νg,bβδ/νh,U (b,M0)].

(10)

Here are some properties of the function U (b,M0). (a) At
both fixed points of M0, i.e., M0 = 0 or the saturated one, we
have U (b,M0) = M0 for any given b. (b) The value U (b,M0)
depends only on M0 and the rescaling factor b, but not on any
other parameters, g and h, for example. In other words, Eq. (8)
always holds as long as the system is near its critical point.
(c) When the initial order parameter is small M0 → 0, the
characteristic function returns to a simple power-law relation
U (b,M0) → bx0M0. (d) Exactly at the critical point g = 0 and
h = 0, by setting b = τ 1/z, Eq. (8) becomes

M(τ,M0) = τ−β/νzfM (U (τ 1/z,M0)), (11)

where fM is the scaling function related to M . In the long-time
stage, any information of the starting M0 should be “forgotten,”
except for the sign of M0. Hence, we have fM (U (τ 1/z,M0)) ∼
sgn(M0) for any M0 when τ → ∞, where sgn is the sign
function. In the short-time stage τ � M

−z/x0
0 , the scaling

behavior for very small M0 can be easily restored [21]. As
U (b,M0) → bx0M0, we have fM (U (τ 1/z,M0)) ∼ M0τ

x0/z and
M increases with τ as M ∼ M0τ

θ [21], as in the classical
situation [17,18,22]. Similar to the case of M , let b = τ 1/z,
and the generalized scaling form for S reads as

S(τ,M0) = c

6z
logτ + fS(U (τ 1/z,M0)). (12)

We define an entanglement entropy difference �S by

�S(τ,M0) ≡ fS(U (τ 1/z,M0)) − fS(U (τ 1/z,0)). (13)

For long times, if M0 
= 0, fS(U (τ 1/z,M0)) tends to a constant
�S(∞,1), independent of M0 [21], whereas in the short times
and for a small M0, we restore [21]

�S(τ,M0) ∝ M2
0 τ 2x0/z. (14)

IV. VERIFICATION OF THE GENERALIZED SCALE
TRANSFORMATIONS

In this section, we verify the scale transformation proposed
for the universal imaginary-time quantum critical dynamics
with an arbitrary initial magnetization M0 and determine the
universal characteristic function U (b,M0). The 1D transverse-
field Ising model is taken as an example. First, a mean-
field theory is developed to show the universal behavior
for an arbitrary initial order parameter. An analytic result
of the characteristic function is obtained in this mean-field
approximation. Second, we shall confirm Eq. (8) at g = 0 and
h = 0 and determine U (b,M0). Third, we show that U (b,M0)
is independent of g and h. Finally, the universal properties are
confirmed by examining U for various initial states and for
different models in the universality class of the quantum Ising
chain and comparing it with the quantum Ising chain.
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A. Model, numerical method, and initial state

In the following, we mainly use the 1D transverse-field
Ising model. The Hamiltonian reads as

HI = −
∑

n

σ z
nσ z

n+1 − hx

∑
n

σ x
n − h

∑
n

σ z
n , (15)

where σx
n and σ z

n are the Pauli matrices in the x and z directions,
respectively, at site n, hx is the transverse field, and h is the
symmetry-breaking field. We have set the Ising coupling to
unity as our energy unit. The order parameter is defined as M =
〈σ z

n 〉, where the angle brackets denote the quantum average
of the operator over each site. The critical point of model
(15) is hxc = 1 and h = 0. The exact critical exponents are
β = 1

8 , ν = 1, δ = 15, and z = 1 [4], and the central charge
c = 1

2 [42,43]. The critical initial-slip exponent θ is estimated
to be θ = 0.373 [21]. This model is realized in CoNb2O6

experimentally [45].
In order to show the universality of the characteristic

function, we also employ the quantum XXZ model in a
transverse field with the Hamiltonian [46]

HXXZ = −
∑

n

σ z
nσ z

n+1 − Jxy

∑
n

σ x
n σ x

n+1

− Jxy

∑
n

σ y
n σ

y

n+1 − hx

∑
n

σ x
n , (16)

where σy is the Pauli matrix in the y direction and Jxy is
the coupling constant in the spin x and y directions. For
Jxy = 0.2 and 0.3, the critical points from the ferromagnetic
phase to the paramagnetic phase are hxc = 0.8504 and 0.7682,
respectively. The critical point is determined by the method of
the short-time critical dynamics [21]. This method is also used
to estimate the critical exponents, including the initial-slip
exponent θ . All of the exponents are identical with those of
model (15), confirming that the phase transition belongs to the
same universality class to model (15). This model has been
realized in Cs2CoCl4 experimentally [47].

Another model utilized to verify the universality of the
characteristic function is the quantum Ising-ladder model with
the Hamiltonian [46]

HL = −
∑

n

∑
α=1,2

σ z
α,nσ

z
α,n+1 −

∑
n

σ z
1,nσ

z
2,n

−hx

∑
n

∑
α=1,2

σx
α,n, (17)

where the first and the second terms are the interactions along
the ladder and on the rung, respectively, and α denotes the legs
of the ladder. The critical point of this model was determined
by finite-time scaling method [15] to be hx = 1.8323 [48]
and the static critical exponents and the dynamic exponent z

determined by the same method show that it belongs to the
same universality class to model (15) [48]. It has also been
shown that the initial-slip exponent θ is very close for the two
models [21].

The infinite time-evolving block decimation (ITEBD) al-
gorithm [49] is used to calculate the imaginary-time evolution
in Sec. IV C. A quantum state in 1D can be represented in
a matrix product form via Vidal’s decomposition and each
site is attached with such a matrix. By taking the translational

invariance of an infinite homogeneous condition into account,
the ITEBD algorithm represents the matrix product form with
repeated matrices in one primitive cell. The evolution of a
state then is represented by the updating of these matrices
according to the local evolution operators, which are obtained
by the Suzuki-Trotter decomposition of exp(−Hτ ). The time
interval is chosen as 0.01 and 100 states are kept. These values
are identical with the previous study [21]. Three decimal places
are kept in our results, as the increment of M0, which we choose
to determine U , is 0.002.

The initial state with an order parameter M0 is prepared in
a direct product state. Both homogeneous and staggered initial
states have been used to determine the universal short-time
properties in the previous study [21]. For models (15) and
(16), the initial wave function is chosen as

|ψ0〉I =
⊗

n

[(a2n|↑〉+ b2n|↓〉)(a2n+1|↑〉 + b2n+1|↓〉)], (18)

where an and bn are coefficients of the local state at site n,
|↑〉 and |↓〉 are eigenvectors of σ z. For a given initial mag-
netization M0, a2n = √

(1 + M0A)/2, b2n = √
(1 − M0A)/2,

a2n+1 = √
(1 + M0B)/2, and b2n+1 = √

(1 − M0B)/2, and
M0A and M0B satisfy (M0A + M0B)/2 = M0. For the ho-
mogeneous initial state, M0A = M0B , thus a2n = a2n+1 and
b2n = b2n+1. For the quantum Ising-ladder model (17), the
local basis vectors are |↑l↑r〉, |↑l↓r〉, |↓l↑r〉, and |↓l↓r〉,
where l and r label the two spins on the same rung. We shall
choose the homogeneous initial state for the quantum Ising
ladder and the initial wave function is

|ψ0〉L =
⊗

n

[(
al

n

∣∣↑l〉 + bl
n|↓l〉)(ar

n|↑r〉 + br
n|↓r〉)], (19)

where al
n = ar

n = √
(1 + M0)/2 and bl

n = br
n = √

(1 − M0)/2
for a given M0.

B. Mean-field theory

In this section, we shall study the mean-field theory of the
relaxation dynamics from an arbitrary M0. In this mean-field
approximation, the universal behavior is confirmed and an
analytic expression for the universal characteristic function is
obtained for the universality class of model (15).

1. Analytic results of U in the mean-field theory

The mean-field Hamiltonian of the quantum Ising model
(15) is [21,50]

H̃MF = −2Mσz − hxσx. (20)

Its critical point is hMF
xc = 2 and the static critical exponents

βMF = 1
2 , δMF = 3, and νMF = 1

2 , while the dynamic exponent
zMF = 2 [21,50] and the critical initial-slip exponents θMF = 0
and xMF

0 = 1 [21]. These exponents satisfy xMF
0 /zMF = 1

2 and
νMFzMF = 1 [21].

According to Eq. (20), the evolution equation for the order
parameter M in the mean-field approximation is [21]

dM

dτ
= 4M − 4M3 − 2hxM

√
1 − M2. (21)

Equation (21) can be solved analytically. At the critical
point hx = hMF

xc = 2, the solution for an arbitrary initial
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FIG. 1. (Color online) Comparison of Z(M), Y (M), and Z(M) −
Y (M).

magnetization M0 fulfills an implicit function

Z(M) = 8τ + Z(M0), (22)

where Z(M) is

Z(M) = Y (M) + ln

[
1 + √

1 − M2

|M|

]
, (23)

with

Y (M) = 1 + √
1 − M2

M2
. (24)

Comparing the two parts in the right-hand side of Eq. (23),
as displayed in Fig. 1, one finds that the first part Y (M) domi-
nates for M � 1. Therefore, the universal scaling behavior can
be well approximated by solving

Y (M) = 8τ + Y (M0). (25)

The analytic explicit solution of Eq. (25) is

M(τ,M0) = sgn(M0)

√
16τ + 2Y (M0) − 1

[8τ + Y (M0)]2 . (26)

In the universal stage τ > 1
16 , Eq. (26) becomes

M(τ,M0) 
 sgn(M0)

√
2

Y (M0) + 8τ
. (27)

In the long-time stage τ � Y (M0), Eq. (27) indicates that
M(τ,M0) ∼ τ−1/2. This scaling relation coincides with M ∼
τ−βMF/νMFzMF

by substituting the mean-field critical exponents.
To explore the universal behavior in the short-time stage,

we carry out a scale transformation according to Eq. (8) with
a rescaling factor b. Under this scale transformation, Eq. (27)
becomes

MbβMF/νMF = sgn(M0)

√
2

Y [UMF(b,M0)] + 8τb−zMF , (28)

where UMF(b,M0) is the universal characteristic function
in the mean-field approximation. According to Eq. (28),
Y [UMF(b,M0)] must satisfy Y [UMF(b,M0)] = Y (M0)b−zMF

.
As a result, the universal characteristic function UMF is solved

FIG. 2. (Color online) The universal characteristic function
UMF(b,M0) for b = 2. At M0 
 0.6614, UMF = 1. The line of
bzMF/2M0 is also shown for comparison. The dotted curve shows
the nonphysical part of Eq. (29).

analytically by

UMF(b,M0)

=
√

bzMF
[
2 − 2

√
1 − M2

0 + bzMF
(
M2

0 − 2 + 2
√

1 − M2
0

)]
.

(29)

However, Eq. (29) only describes the scale transformation
for M0 < b−zMF

√
2bzMF − 1, at which UMF(b,M0) saturates to

1 (Fig. 2). Beyond that, Eq. (29) decreases monotonically
to 0 at some M0 < 1 depending on b, unless b = 1, at
which UMF(1,M0) = M0 as expected. However, this is not a
physical result, as UMF should be a monotonically increas-
ing function of M0. Since UMF(b,1) = 1, we suggest that
UMF(b,M0) is a piecewise function, which is Eq. (29) for M0 <

b−zMF
√

2bzMF − 1, and equals one for b−zMF
√

2bzMF − 1 <

M0 < 1.
Some remarks are in order here. (a) The existence of the

solution (29) to the scale transformation (27) confirms that
the universal scaling behavior exists for an arbitrary initial
magnetization M0. (b) For M0 � 1, UMF(b,M0) = bxMF

0 M0

with xMF
0 = zMF/2, restoring the previous result [21]. (c)

Equation (29) shows that a simple power law is not enough to
describe the scale transformation of the initial order parameter
for larger M0. It demonstrates the necessity of introducing the
universal characteristic function even in the mean-field theory.

2. Verification of the scaling properties of UMF

We now verify the scaling properties described by Eq. (29).
To this end, we solve numerically Eq. (21) with an arbitrary
M0 satisfying M0 < b−zMF

√
2bzMF − 1. Then, the evolution

curve of M is rescaled according to Eq. (11). The rescaled
curve is compared with the one beginning with UMF(b,M0).
From Figs. 3(a) and 3(b), one can find that these two curves
collapse onto each other in both short- and long-time stage
after a microscopic time scale. In addition, Figs. 3(c) and 3(d)
show the necessity of the universal characteristic function.
These results confirm the scaling theory characterized by the
universal characteristic function UMF in the mean-field theory.

Then, we confirm that the universal characteristic function
UMF is independent of g and h. For this purpose, we
numerically solve Eq. (21) in presence of finite g and h.
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FIG. 3. (Color online) Verification of the mean-field solution of
the universal characteristic function for (a) UMF(2,0.5) and (b)
UMF(4,0.2). The rescaled curves, obtained from the dashed curves
with the given M0, match the dotted curves with M ′

0 = UMF after
the transients. Curves with M ′

0 = UMF are compared with those of
M ′

0 = bzMF/2M0 for (c) M0 = 0.5 (b = 2) and (d) M0 = 0.2 (b = 4).
Each rescaled curve matches the dotted curve of M ′

0 = UMF, rather
than the chain curve of M ′

0 = bzMF/2M0 after a microscopic time scale.
Double-logarithmic scales are used.

Figure 4 shows that the rescaled curve and the curve from
UMF(b,M0), determined at g = 0 and h = 0, collapse onto
each other. Therefore, UMF(b,M0) depends only on M0 and b,
confirming the discussions in Sec. III.

3. Universality of UMF

To investigate the universality of UMF, we study the mean-
field theory of the multileg quantum Ising ladders. The mean-
field Hamiltonian of the quantum Ising ladder model (17) is

H̃MF = −3Mσz − hxσx. (30)

Compared to Eq. (20), we see that the figure of the first term
is just the number of bonds connecting to each spin. We can
thus generalize this ladder model to a series of multileg ladder
models, each of which consists of one Ising chain coupled
with P − 2 mutually independent other chains. The dynamical

FIG. 4. (Color online) Independence of UMF on (a) g and (b) h.
The rescaled curve matches the curve beginning with UMF, which is
obtained at g = 0 and h = 0 according to Eq. (29).

FIG. 5. (Color online) Verification of the universality of the uni-
versal characteristic function for (a) UMF(2,0.5) and (b) UMF(4,0.2)
with P = 5 and hx = hMF

xc = 5. The rescaled curves, obtained from
the dashed curves with the given M0, match the dotted curves with
M ′

0 = UMF after the transients.

equation describing the evolution of the magnetization is then

dM

dτ
= 2PM − 2PM3 − 2hxM

√
1 − M2. (31)

It can be readily checked that the dynamics of all the multileg
ladders described by Eq. (31) belong to the same universality
class as that by Eq. (21). Moreover, the condition dM/dτ =
0 when M = 1 makes the order parameter bounded and the
saturated magnetization is also M = 1. At the critical point
hMF

xc = P , the universal solution then approximately satisfies

Y (M) = 4Pτ + Y (M0). (32)

Comparing Eq. (32) with (25), one can readily find that only
the coefficient of τ is different. However, according to Eq. (28),
this difference does not change the form of UMF. Therefore,
the characteristic function of Eq. (31) is also Eq. (29). This is
verified by solving Eq. (31) numerically with various initial
M0 for an arbitrary P in Fig. 5, in which the curve, beginning
with M ′

0 = UMF(b,M0), matches the rescaled curve from M0

perfectly. This confirms the universality of the characteristic
function in the mean-field theory.

C. Numerical results via ITEBD

In Sec. IV B, universal scaling behavior has been confirmed
in the mean-field theory through the approximate analytic
solution. When quantum fluctuations are taken into account,
however, we fail to obtain such an analytic form, as it is difficult
to expand the initial state in the eigenstates of the Hamiltonian
analytically. So, the dynamic scaling properties, described
by the characteristic function, are needed to be examined
numerically. To further study the universal short-imaginary-
time dynamics, in this section, we simulate the imaginary-time
evolution using the ITEBD algorithm.

Figure 6(a) shows the imaginary-time evolution of the order
parameter M with different initial magnetization M0 for the
quantum Ising model (15). The initial-slip stage, in which
M increases, shrinks as M0 increases. Then, M enters the
power-law decay stage, in which M ∼ τ−β/νz, independent of
the value of M0. These features are consistent with those with
very small M0. However, in the initial slip stage, the shapes
of the curves of M versus τ change with M0. This is different
from the situation for very small M0, for which the curves in
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FIG. 6. (Color online) The imaginary-time evolutions of (a) M

and (b) �S with various M0 indicated at g = 0 and h = 0. The thin
dotted lines in (a) and (b) are the lines of M ∼ M0τ

θ and �S ∼
M2

0 τ 2x0/z, respectively, for vanishing small M0. Double-logarithmic
scales are used in both figures.

the initial-slip stage are straight lines with identical slopes on
a double-logarithmic scale [21]. This indicates the necessity
of the presence of the universal characteristic function U . The
evolution of entanglement entropy difference �S is shown in
Fig. 6(b). �S saturates at a constant independent of M0 for long
times. In the early stage, the slopes for larger M0 are different
from those for small M0. This also indicates the necessity
of U .

1. Determination of U(b,M0)

To determine numerically the form of U , according to
Eq. (8), we first let the system evolve at a certain g and h

starting from an initial magnetization M0, and rescale M and
τ by M → bβ/νM and τ → b−zτ , respectively. Then, we run
the system at b1/νg and bβδ/νh starting from a series of M ′

0, and

FIG. 7. (Color online) Determinations of (a) U (2,0.5) and (b)
U (4,0.2). The rescaled curves, which are obtained from the dashed
curves with the given M0, match the dotted curves with M ′

0 = U after
the transients. Both insets show two other evolution curves with M0

indicated near M ′
0 = U . Double-logarithmic scales are used.

FIG. 8. (Color online) The measured characteristic function for
several b. The curves are spline interpolation between data denoted
by symbols. The straight dashed line represents the power law bx0M0

for b = 5 and x0 = 0.498 (valid when M0 is small) [21].

compare each of these curves with the rescaled curve to find the
one that most fits it. The corresponding initial magnetization
thus satisfies M ′

0 = U (b,M0).
The generalized scale transformation (8) shows that U is

independent of the choice of g and h. So, we work at the critical
point g = 0 and h = 0 for simplicity. Figure 7 shows the
determination of U for two sets of values. It is clear that after
the nonuniversal microscopic time, the curves starting with
U (b,M0) fit well with the rescaled curves, in both the short-
and long-time stages. In contrast, if the initial magnetization
is not U (b,M0), the curves of the subsequent evolution deviate
from the rescaled curves as can be seen in the insets.

U (b,M0) measured for model (15) is shown in Fig. 8.
Two fixed points U (b,0) = 0 and U (b,1) = 1 are manifest
for different rescaling factors b. Between the two fixed points,
U increases as M0 increases. Comparing the line of bx0M0 for
b = 5 with U (5,M0), one finds that they fit well when M0 is
small and deviates from each other when M0 grows larger. U

also increases as b increases. For larger b, the curve deviates
from the power-law form for smaller M0, and tends to saturate
at smaller M0.

We can apply the scale transformation of the entropy
S [Eq. (10)] to determine U as well. However, we ap-
ply this to check the foregoing determined U . According
to Eq. (10), the scale-transformed curve S(bzτ,g,h,M0) −
(c/6)logb which starts with M0 should coincide with the
curve of S[τ,b1/νg,bβδ/νh,U (b,M0)]. From Fig. 9, it can be

FIG. 9. (Color online) (a) U (2,0.5) = 0.650 and (b) U (4,0.2) =
0.382 checked with S at the critical point. Semilogarithmic scales are
used.
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FIG. 10. (Color online) U (4,0.2) = 0.382 determined from M

when g = −0.002 in (a) and (b). The curve with M0 = 0.2 for
g = −0.002 is compared with that for g = 0 in (c). At long times,
the magnetization for g = −0.002 tends to its equilibrium value,
which satisfies M ∼ (−g)β . Fitting of the equilibrium M versus
various g in (d) gives β = 0.123, which is close to its exact value
1
8 . Double-logarithmic scales are used.

seen that, after a microscopic time scale, the curve from
M ′

0 = U (b,M0), determined in Fig. 7, and the corresponding
rescaled curve collapse onto each other. As the entanglement
entropy S is closely related with the correlation length ξ , which
is responsible to the universal behavior in the critical region,
we expect that the universal characteristic function U must be
considered for all the macroscopic quantities.

2. Off-critical-point situation

When the system deviates a little from the critical point, i.e.,
g 
= 0 or h 
= 0 (or both), the generalized scale transformation
(8) still holds, and the characteristic function is not dependent
on the value of g or h as long as the system is close to the
critical point. We have demonstrated this independence in
the mean-field approximation in Sec. IV B. In this section,
we show that this scaling property still holds in presence of
the quantum fluctuations.

To this end, first we study a system slightly deviated from
the critical point with g ≡ hx − hxc 
= 0. When g > 0, the
system is in the disordered phase and M tends to 0 as the
evolution continues; when g < 0, the system is in the ordered
phase and M tends to M ∝ (−g)β in equilibrium as shown
in Figs. 10(c) and 10(d). From Figs. 10(a) and 10(b), one can
find that the value M ′

0, from which the evolution curve and
the rescaled curve from M0 collapse, is almost the same as
U (b,M0) determined at the critical point, although the shape
of the curve for finite g is significantly different from that for
g = 0, as displayed in Fig. 10(c).

Then, we examine the situation with a small symmetry-
breaking field h. We will restrict it to be in the same direction of
the initial order parameter in order to prevent M from dropping
below zero in the evolution. In equilibrium, M should tend to
M ∝ h1/δ as shown in Figs. 11(c) and 11(d). In spite of the
fact that the curve of h 
= 0 is different from that of h = 0,
as displayed in Fig. 11(c), Figs. 11(a) and 11(b) show that

FIG. 11. (Color online) U (2,0.3) = 0.410 determined from M

when h = 0.0003 in (a) and (b). The curve with M0 = 0.3 for
h = 0.0003 is compared with that for h = 0 in (c). At long times,
the magnetization for h = 0.0003 tends to its equilibrium value,
which satisfies M ∼ h1/δ . Fitting of the equilibrium M versus various
h in (d) gives 1/δ = 0.0668, which is close to its exact value 1

15 .
Double-logarithmic scales are used.

U (b,M0) is identical with the corresponding one in the absence
of h.

We have measured the dependence of U on b and M0 in
presence of g and h. b ranges from 2 to 5 with an increment
1 and M0 ranges from 0.1 to 0.9 with an increment 0.1. Part
of the results are listed in Table I. From this table, we find that
the characteristic function U (b,M0) is really independent of g

and h. Moreover, we have also measured the deviation of the
measured M ′

0 from U (b,M0), which is determined at g = 0
and h = 0, for various g and h in different magnitudes. The
results, listed in Table II, show that the deviations are almost
all zero in the present degree of precision and demonstrate that
the universal characteristic function is independent of g and h.

3. Universality of U(b,M0)

In this section, we confirm the universality of the character-
istic function. First, we show that the universal characteristic
function only depends on the value of the initial magnetization,
rather than its detailed realization. Second, the universality of

TABLE I. U (b,M0) at and off the critical point.

M0 0.1 0.3 0.5 0.7 0.9

U (2,M0) g = h = 0 0.140 0.410 0.650 0.845 0.980
h = 0.0001 0.140 0.410 0.650 0.845 0.979
g = 0.001 0.141 0.410 0.650 0.845 0.980
g = −0.001 0.141 0.411 0.651 0.845 0.980

U (4,M0) g = h = 0 0.197 0.548 0.802 0.949 1.000
h = 0.0001 0.196 0.547 0.802 0.949 0.999
g = 0.001 0.197 0.547 0.800 0.948 0.999
g = −0.001 0.197 0.548 0.802 0.950 1.000
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TABLE II. Deviation of M ′
0 from U off the critical point.

h 0.00001 0.00005 0.0001 0.0005 0.001
M ′

0 − U (2,0.3) 0.000 0.000 0.000 0.000 0.001
−g 0.00001 0.00005 0.0001 0.0005 0.001
M ′

0 − U (2,0.3) 0.000 0.000 −0.001 0.001 0.000
g 0.00001 0.00005 0.0001 0.0005 0.001
M ′

0 − U (2,0.3) 0.000 0.000 0.000 0.000 0.000

the characteristic function is confirmed for other models in the
same universality class.

To explore the effects induced by the initial state, we
use the staggered initial wave function (18) and define the
magnetization difference of different sublattices δM as

δM ≡ |MA − MB |, (33)

where MA and MB are the magnetization for sublattices A

and B, respectively. Figure 12(a) shows that δM approaches
zero after the transients, irrespective of the realizations of
the initial magnetization. This indicates the high-momentum
modes decay in a microscopic time scale. After that, the long-
wavelength modes control the universal behavior, described by
the universal characteristic function. These long-wavelength
modes only depend on the averaged initial magnetization M0.
These remarks are further illustrated in Fig. 12 (b), which
shows that the local order parameters of different sublattices
and their averages tend to a unified curve, which is identical
to the one starting with the homogeneous realization of
M0. These results are consistent with those in the previous
study [21], demonstrating that the universal critical initial-slip
behavior is independent of the detailed realization of the initial
magnetization.

Figure 13 shows the imaginary-time evolution for the
quantum XXZ model (16) for Jxy = 0.2 and 0.3 at their re-
spective critical points. From M ′

0 = U (b,M0), where U (b,M0)
is chosen to be identical with the value of model (15), the curve

FIG. 12. (Color online) (a) Evolution of the difference of the
magnetization between sublattices A and B with M0 = 0.2. For
different realizations of the initial magnetization, δM becomes van-
ishing after a microscopic time scale. (b) Imaginary-time evolution
of the magnetizations in sublattices A and B and their averages
M (1) and M (2) for different realizations of the initial magnetization.
All the curves converge to the solid curve of the homogeneous
initial condition after the transients. The different initial realizations
in (a) and (b) are defined as M

(1)
0A = 0.4, M

(1)
0B = 0.0, M

(2)
0A = 0.3,

M
(1)
0B = 0.1, M

(3)
0A = 0.5, and M

(3)
0B = −0.1. As M

(3)
0B is negative, the

last one is absent in (b), where double-logarithmic scales are used.

FIG. 13. (Color online) U (2,0.5) = 0.650 and U (4,0.2) = 0.382
checked in the quantum XXZ model for Jxy = 0.2 and 0.3 at their
respective critical points. Double-logarithmic scales are used.

and the corresponding rescaled curve from M0 collapse onto
each other after the early microscopic time stage. Although
the shape of the evolution curve in this model is slightly
different from that in the 1D Ising chain, the values of U

are identical for both models, thus confirming the universality
of the characteristic function. Similarly, Fig. 14 confirms the
universality of U (b,M0) in the quantum Ising-ladder model
(17). These results demonstrate that the universal characteristic
function depends only on the universality class.

V. SUMMARY

We have studied in this paper the relaxation quantum
critical dynamics in imaginary time with an arbitrary initial
order parameter. We have shown that a universal characteristic
function U must be introduced to describe the universal
properties in both short and long times for an arbitrary
initial magnetization M0 similar to the classical case. This
characteristic function contains the rescaling factor b and M0

as its arguments. It is identical for the models belonging to
one universality class. According to the scale transformation
including U , the form of this function has been determined
for the 1D transverse-field Ising model in a mean-field theory
and with numerical results. The value of the characteristic
function is shown to be independent of the detailed realization
of the initial magnetization. The universality of U has also

FIG. 14. (Color online) (a) U (2,0.5) = 0.650 and (b) U (4,0.2) =
0.382 checked in the quantum Ising ladder at its critical point. Double-
logarithmic scales are used.
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been confirmed in the transverse-field quantum XXZ model
and the quantum Ising-ladder model. Although we have only
studied one universality class, the theory should be applicable
to models in other universality classes as well.
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