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We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY

symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson
couplings. We identify sudden jumps in the T = 0 configurations of the XY phases as an external field is
increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which
induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the
correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches
follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as
was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick)
studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a
typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are
not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.
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I. INTRODUCTION

Hysteresis is a ubiquitous phenomenon, encountered in a
wide range of disordered systems which can be trapped in
long-lived metastable configurations. In a typical experiment,
a control parameter (e.g., an external field) is varied cyclically,
while a physical observable (e.g., the magnetization) is tracked.
In the presence of metastable states, the path taken along
the forward direction usually differs from that on the reverse
direction, displaying a dependence on the history and thus
memory effects [1].

In the presence of strong randomness in magnets, the
polarization proceeds in mesoscopic bursts, where at certain
specific values of the applied field the change of orientation of
a portion of the system triggers a large rearrangement, referred
to as an avalanche [2–6]. In ferromagnets this phenomenon is
well known as Barkhausen noise. Such avalanches have been
the subject of considerable interest in recent years [2–4,7–12].
Under certain circumstances, the distribution of avalanches
may become critical, characterized by a scale-free power law,
cut off only by a scale that diverges with the system size.
This happens, for example, at the depinning threshold of
pinned elastic interfaces (domain walls), where the criticality
of avalanche distributions reflects the dynamical criticality of
the depinning transition [13–15]. The latter governs a wide
variety of phenomena like earthquakes, domain wall motion
in magnets, crackling noise, sandpile models, etc. [7,16–22].

However, in simple toy models of random ferromagnets,
such as the random field Ising model, criticality usually
requires fine-tuning, both of the disorder strength as well
as of the external field [23]. In more realistic descriptions
of experiments, the negative feedback from demagnetization
fields can, however, ensure the existence of a parameter
window in which critical response along the hysteresis loop is
observed [24].

Interestingly, in the Sherrington-Kirkpatrick (SK) Ising
spin glass, a frustrated magnet with fully connected inter-

actions, such criticality was numerically observed along the
entire hysteresis loop, without requiring any fine-tuning [4]. A
very similar phenomenology of system-spanning avalanches
that require no fine-tuning was found in the avalanche
dynamics of long-range interacting 2D dislocation systems
[12]. The criticality found in the SK model was interpreted
as a manifestation of the self-organized criticality of the
relevant out-of-equilibrium configurations visited in the spin-
glass phase [4]. A calculation of the power-law distributed
equilibrium avalanches in the same system suggested that
there might indeed be a close link between the well-known
marginal stability of the spin-glass phase (at equilibrium) and
the observed scale-free avalanches out of equilibrium [6,25].

On the other hand, a recent study of short-range spin-glass
models on random graphs has shown that avalanches in such
systems do not follow a scale-free distribution, in spite of
their equilibrium being expected to be marginally stable. That
study suggested that it is the long range of the interactions in
the SK model, rather than its thermodynamic marginality, that
plays the crucial role in ensuring scale-free avalanches [11].
In the physically interesting intermediate case of power-law
interactions, such as unscreened Coulomb interactions which
decay as 1/r with distance, it appears that whether or not
scale-free avalanches are observed in the hysteresis depends
on the constraints imposed on the dynamics [11,26].

A. Ising versus vector spins

In essentially all of the above examples, the ordering
degrees of freedom have a discrete, Ising-like character. In
the present paper we instead investigate avalanches in a
system with continuous degrees of freedom and contrast its
phenomenology with that of Ising systems. In particular, we
focus on vector spin glasses with m = 2 components (XY

spins). Those can be considered as toy models describing
granular superconductors with Josephson couplings that are
frustrated by the presence of an external flux. Since Josephson
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couplings decay only as a power law in space, we consider
here the case of infinite range, SK-type interactions and focus
on the effect brought about by the spin rotation symmetry
on the phenomenology of the hysteresis, and in particular
the statistics of avalanches, as compared to the Ising case.
A particular realization of such a system with very long
ranged couplings is the “superconducting hay” proposed and
studied in Refs. [27–29], an assembly of needle-shaped,
superconducting islands, each of which has many crossing
junctions with other needles.

Vector spin glasses exhibit a variety of new features as
compared to their Ising counterparts, both in and out of
equilibrium. In contrast to the Ising case, for short-range
systems, the existence of a spin-glass transition at finite T

has been debated for a long time, as well as the role of
chirality [30–33]. In the presence of magnetic fields, one
has to distinguish uniform and random orientations of the
fields. Mean-field theory in a uniform field predicts the Gabay-
Toulouse transition line, where the transverse components
undergo freezing and spontaneously break the symmetry of
rotations around the axis of the external field [34]. In the
presence of randomly oriented external fields, there is no
symmetry left to be broken, but a phase transition persists
along the famous Almeida-Thouless line [35] for arbitrary
m-component vector spin glasses, as was shown within mean-
field theory in Ref. [36]. Whether or not the Almeida-Thouless
line exists for short-range models, one of the crucial questions
in the theory of spin glasses is also an interesting open question
for vector models [37].

The equilibrium properties of infinite-range models, whose
off-equilibrium counterpart we will study below, have been
discussed in Refs. [34,38–41]. However, unlike for the SK
model, a complete understanding of the T → 0 limit of the
replica symmetry breaking (RSB) solution is still lacking. The
latter would be needed to analytically describe equilibrium
avalanches (or shocks) in these systems. Below, we focus
instead on the out-of-equilibrium properties and avalanches
along the hysteresis loop. However, if we assume a close
similarity between equilibrium and dynamic response (as was
found in the SK model), we may infer conjectures about the
structure of the overlap function P (q), based on the avalanche
distribution observed in the dynamics.

Hysteresis in finite-dimensional XY and Heisenberg ferro-
magnets with random field disorder was found to generically
exhibit similar critical behavior as random field Ising magnets
[42] (even though, upon tuning an extra parameter, a different
universality class of critical avalanches was observed). In
contrast, the case of long-range frustrated spin-glasses with
continuous symmetry brings about new aspects of phe-
nomenology as compared to the Ising counterpart. Like in the
long-range Ising spin glass, one expects very large avalanches
to occur with finite probability. However, we will find that in
the XY glass most avalanches have a typical size which is set
by the system size. The probability of very small avalanches is
found to be rather negligible, and it grows as a power law with
increasing avalanche size. Interestingly, unlike in the Ising
case the distribution of avalanche sizes is thus not scale free.

Another interesting aspect of the continuous spin symmetry
is that, in contrast to Ising systems, the linear response within
a metastable state remains nontrivial, even at T = 0, since a

change in external field induces a smooth change of all angles,
whereas Ising spins start flipping only when the local field
of the least stable spin changes sign. It is thus interesting to
study the linear modes which dominate the susceptibility and
analyze their relation with the nonlinear avalanches that are
triggered when the softest of those modes becomes unstable.
We emphasize also that, unlike in the Ising case, where an
avalanche is triggered by a single spin flip, avalanches in XY

systems are induced by the instability of a collective mode that
typically involves many spins.

The above features are in fact analogous to avalanche
phenomena in other glassy systems with continuous degrees
of freedom. In particular, it is interesting to compare them
with jammed soft matter systems, which exhibit jumps in their
evolution under applied shear stress [43] or relaxation [44]. In
those systems it was found that the nonlinear jump events are
strongly correlated to the softest modes of a Hessian matrix
governing the linear fluctuations around the initial metastable
state [44].

The remainder of this paper is organized as follows: in
Sec. II, we define the infinite-range XY glass and describe
the dynamics studied at T = 0, as well as the observables and
analytical criteria that determine jumps. Section III analyzes
the statistics of jump events, as obtained from numerical
simulations of the XY spin glass. Section IV summarizes
the results and contrasts them with other systems exhibiting
avalanches. In Appendix A, the results of Sec. II are rederived
as the T → 0 limit of a finite-T calculation based on Thouless-
Anderson-Palmer equations [45,46].

II. FULLY CONNECTED XY GLASS

We consider a fully connected system of XY spins, i.e., the
two-component version of the Sherrington-Kirkpatrick [47]
model for spin glasses, with Hamiltonian

H = −1

2

∑
ij

Jij
�Si · �Sj −

∑
i

�hext · �Si. (1)

Here �Si = (Sx
i ,S

y

i ) are classical two-component vectors of unit
length �S2

i = 1 in the XY plane, and �hext is a homogeneous
external magnetic field. For convenience, we choose it to
always point in the x direction,

�hext = Hêx. (2)

The random bonds Jij are independently drawn from a
Gaussian distribution,

P (Jij ) = 1√
2πJ 2/N

e−N J 2
ij /J

2
, (3)

where N is the number of spins. Below we fix the energy units
by setting J = 1.

This Hamiltonian also describes the classical limit of large
superconducting islands with a well developed order param-
eter. They are characterized by a phase φi , whose quantum
dynamics we neglect, assuming a very small charging energy.
In this realization, the interactions Jij between the islands
arise due to Josephson couplings. In specific geometries, where
the islands are needlelike structures that come close to many
others without touching them (being spaced by insulating
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layers), and by applying a frustrating magnetic flux, such
couplings can be both very long range and random in sign
[27–29,48–51], which motivates the simplified toy model
Eq. (1). Using the parametrization of spins by their angle in
the plane, �Si = (cos φi, sin φi), as measured from the positive
x axis, we can rewrite the Hamiltonian as follows:

H = −1

2

∑
ij

Jij cos(φi − φj ) − H
∑

i

cos(φi). (4)

By solving the adiabatic evolution under slow variations of
magnetic field, Feigelman and Ioffe [29] have shown that,
in such frustrated “superconducting hay,” catastrophic events
take place when a bias H is applied to the angles (e.g., by
Josephson-coupling all islands to a big superconductor and
homogeneously increasing the coupling strength to this is-
land). Such catastrophic events occur even when the evolution
of this external bias is adiabatic. As we will discuss below they
correspond to “phase avalanches,” analogous to magnetization
avalanches in Barkhausen noise.

A. Polarization process at T = 0

We analyze this phenomenon adopting the XY spin lan-
guage for simplicity. We follow locally stable states, as the
external field H is varied slowly, and investigate the sudden
jumplike events which occur as the frustrated system is more
and more polarized. In the analogous situation in long-range
Ising spin glasses, it is known that the magnetization response
occurs in avalanche-like steps of mesoscopic size [4]. An
analog of this must also be expected in the case of continuous
spin symmetry. However, there is a significant difference. In
the present case, the instabilities which induce avalanche-like
events in the rearrangement of the XY angles are collective
soft modes where a large number of spins moves coherently,
whereas the avalanches in Ising systems are triggered by the
flip of a single spin in a vanishing local field.

We consider a given quenched realization of bonds Jij , and
analyze locally stable low-energy configurations of the system
where each spin is aligned to the local field created by all other
spins,

�mi =
�hi

|�hi |
. (5)

Here �mi is the T = 0 magnetization of spin i. The local fields
�hi are defined as

�hi = Hêx +
∑

j

Jij �mj . (6)

We are mostly interested in the dynamics at T = 0, where the
magnetization �mi within any local minimum becomes equal
to the frozen spin direction: �mi(T = 0) = �Si . The Thouless-
Anderson-Palmer equations obeyed by �mi at finite temperature
are discussed in Appendix A.

The above relations, which are valid only at T = 0, might
appear to miss the contributions of the Onsager back-reaction
[45], which, unlike in Ising systems at T = 0, remains nonzero
for vector spins at T = 0 [38]. Indeed, this finite Onsager term
is known to be responsible for a hard gap in the distribution
of local fields, as shown in Fig. 1, cf. Eq. (6). However, a
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FIG. 1. (Color online) Distribution P (h) of the modulus of the
local fields h ≡ |�hi |, obtained for a system size N = 1024 and
averaged over 1000 disorder realizations. The external magnetic field
was set to H = 0. A hard gap is clearly visible. The straight line is a
fit [f (h) = 0.96(h − 0.61)] to the roughly linear increase of P (h), as
described in Ref. [38].

careful analysis of the finite-T Thouless-Anderson-Palmer
equations confirms that the analysis below does not miss
any potential subtleties of the limit T → 0. In particular, the
inverse susceptibility matrix A at T = 0 is essentially identical
to the one we obtain below in Eq. (11) by working directly
with the more naive equations given above (see Appendix A
for details).

As the external field H is increased, the magnetization
increases smoothly by gradual readjustments of the spins,
until a point of local instability is reached. At this point
a larger discontinuous rearrangement is triggered on further
infinitesimal increase of H . We will describe the detailed
dynamical rules applied in the event of a local instability in
Sec. III. Note that at T = 0, in contrast to XY spins, Ising
systems do not display any adiabatic response but only respond
discontinuously by magnetization avalanches, whenever an
instability is triggered by a spontaneous spin flip [4].

As we will see, the avalanche-like events triggered by
local instabilities span a wide range of sizes. In fact the
long-range character of the interactions Jij often induce
system-spanning avalanches that involve a finite fraction
of all spins. This contrasts with systems with short-range
interactions for which it has been shown that single spin-flip
dynamics (in Ising systems) does not lead to arbitrarily large,
scale-free avalanches [11].

B. Susceptibility and local instabilities

Our main goal is to study the statistical properties of
instabilities and avalanches generated in the evolution of the
XY glass, as it is progressively polarized. In Ising systems
such instabilities are very easily identified by the criterion that
a local field hi needs to vanish. A further infinitesimal increase
of H will then induce the corresponding spin to flip, potentially
triggering an avalanche. For XY spins local fields no longer
easily identify instabilities, as they remain bounded away from
zero [38]. Instead, one should study the susceptibility of the
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system to small changes in the external field H . Avalanche-like
jumps will occur in configurations, in which the susceptibility
diverges. This is equivalent to the inverse of the susceptibility
matrix acquiring a zero eigenvalue, indicating that the system
becomes soft.

Below, we derive the susceptibility and determine the
condition for an instability, and thus a jump to occur in XY

spins. We define the local susceptibility to the external field H

as

�χi = ∂ �mi

∂H
.

By simple differentiation of Eq. (5), and using the definition
of the local fields (6), we find the relation

χiμ = 1

|�hi |
P i

μν

(
êxν +

∑
j

Jijχjν

)
, (7)

where P i
μν = (δμν − miμmiν) projects onto the direction

orthogonal to the magnetization vector �mi . Summation of
repeated indices ν is implied. In the above, Latin indices
such as i,j refer to sites, while Greek indices, μ,ν ∈ {x,y},
refer to spin components. Since at T = 0 we have �m2

i = 1, the
magnetic response is always perpendicular to the instantaneous
magnetization,

�χi · �mi = 0, (8)

as ensured by the projector in (7).
We can rewrite Eq. (7) using the property (8) as

χiμ = P i
μν

êxν + ∑
j JijP

j
νσ χjσ

|�hi |
, (9)

which can be transformed into a matrix equation for the
susceptibility �χi , ∑

jσ

Aiμ,jσ χjσ = Ciμ, (10)

where

Aiμ,jσ = |�hi |δij δμσ − Jij

∑
ν

P i
μνP

j
νσ , (11)

Ciμ = P i
μνêxν = δμx − miμmix. (12)

Note that the matrix A is symmetric. In fact, as we confirm
in Appendix A, it is the second derivative of the Gibbs free
energy G( �mi) with respect to �mi and �mj , that is, the inverse of
the susceptibility matrix in the T → 0 limit.

With the help of the matrix A we can formulate a criterion
for local instabilities: The susceptibility �χ should diverge, i.e.,
the matrix A should become degenerate and acquire a zero
mode.

The eigenvalues of A corresponding to longitudinal eigen-
vectors, parallel to onsite magnetizations, can be computed
analytically. From the definition of A, Eq. (11), it is immediate
to check that the vectors

�v(k)
i = δki �mi (13)

are eigenvectors of A with eigenvalues |�hk|. As discussed
above, the |�hk| are always bounded from below by the positive
Onsager term [38], and hence there are no soft modes in

the longitudinal sector of the spectrum. A more detailed
discussion of the Onsager term at finite temperatures can
be found in Appendix A. There the Onsager term reduces
the “instantaneous fields” |�hk| to the “thermodynamic fields”
with equal orientation but modulus |�yk| = |�hk| − 1/(2hHM),
where h−1

HM = 2/N
∑

i 1/|�yi |. The moduli of the fields �yk are
not bounded away from zero. However, the Hessian and its
eigenvectors and eigenvalues at T = 0 are not changed with
respect to those obtained via the naive derivation at T = 0.

The relevant soft modes are contained in the other half of
the spectrum which corresponds to transverse response in the
subspace orthogonal to the span of �v(k), k = 1, . . . ,N . For
every site i we define the unit vector

�ni ≡ �mi × �ez = (miy, − mix), (14)

which is orthogonal to �mi . Since �χi is perpendicular to �mi

[see Eq. (8)], we have �χi = ξi �ni with ξi = �χi · �ni . Projecting
Eq. (9) with �ni we obtain an equation in terms of ξi as follows:

|�hi | ξi = miy +
∑

j

Jij ξj �mi · �mj,

or, equivalently, ∑
j

Tij ξj = Ki, (15)

where

Tij = |�hi |δij − Jij �mi · �mj, Ki = miy. (16)

Inverting, one finds the transverse susceptibilities, ξj =
T −1

ji Ki .
The matrix T is the inverse of the transverse susceptibility

matrix. It is the central object in our study of instabilities
and avalanches. The susceptibility diverges and the considered
metastable state becomes locally unstable when T acquires a
zero mode. Below we denote by ek and a

(k)
j for k = 1, . . . ,N

the eigenvalues and eigenvectors of T .
As one should expect, the requirement of spin alignment

in a locally stable state, Eq. (5), is equivalent to imposing a
local minimum (or saddle point) of the energy function H [cf.
Eq. (4)] with respect to the angles {φi}. The matrix Tij is in
fact simply the Hessian of the Hamiltonian (4) with respect to
the angles φi ,

Tij = ∂2H
∂φi∂φj

, (17)

as we derive in more detail in Appendix B. Stability requires
the Hessian T to be positive definite. An avalanche is triggered
when its lowest eigenvalue becomes soft, e1 ↘ 0.

III. NUMERICAL ANALYSIS

A. Dynamical protocol

We have performed numerical simulations of the T = 0
dynamics of the fully connected XY spin glass, Eq. (1), with
couplings drawn from the Gaussian distribution (3). We have
adopted simple dynamical rules that continuously decrease the
energy until the system settles into a local minimum satisfying
Eqs. (5). For a fixed value of the external field H , the N spins
are sequentially aligned with their local fields, as computed
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from Eq. (5), the local fields being updated on all other sites
according to Eq. (6) after each alignment. This procedure is
iterated until the system converges to a local minimum of
energy. Convergence is assumed if the state of the system does
not change anymore (within numerical precision), and Eq. (5)
is satisfied for all spins. The external field is then increased by
a small increment, and the above dynamics is repeated.

To identify the instabilities and the ensuing jumps along
the hysteresis curve numerically, we monitor the lowest
eigenvalue, e1, of the inverse susceptibility matrix T . When
e1 reaches zero within numerical accuracy, we still need to
ascertain that we deal with a genuine instability and not
some artifact due to numerical inaccuracy or insufficient
convergence to the local energy minimum. To this end we
drive the system back and forward by two increments of H and
determine whether the spin configuration changes strongly; if
so, the event is accepted as a genuine jump [52].

We start the hysteresis loop at a large negative value H =
−H0 of the external field, such that the system is polarized and
all the spins are aligned along the negative x axis. In practice
we chose H0 = 5. The field H is then gradually increased up
to the large positive value H = H0 where all spins point along
the positive x axis. To reproduce the adiabatic evolution as
faithfully as possible we have used small increments of the field
δH = 0.005 (independent of system size). This allowed us to
find all local instabilities, with the potential exception of very
small jumps that are difficult to detect with the above-described
procedure.

B. Coercive field

There is a critical magnitude of the field, Hc, at which
the completely polarized state first becomes unstable and the
magnetization departs from its extremal plateau. Hc can be
obtained by inserting the fully polarized state into the Hessian
matrix in Eq. (16) and determining the value of H = Hc at
which its lowest eigenvalue e1 vanishes. More precisely, Hc is
the solution of the following equation:

min

(
spec

[∣∣∣∣Hc +
∑

k

Jik

∣∣∣∣δij − Jij

])
= 0. (18)

We note, however, that the value of Hc depends on N and
diverges logarithmically in the thermodynamic limit [53].

At Hc a transverse magnetization emerges, which spon-
taneously breaks the symmetry y ↔ −y. The corresponding
rearrangement of magnetization is continuous, in contrast to
the avalanches triggered by subsequent instabilities, which
we will discuss below. Indeed, one easily checks that the
expansion of the energy H({φ}) around the fully polarized
solution starts with a quadratic term, followed by quartic
terms in the angular deviations from φi = π . Thus the onset
of transverse magnetization is qualitatively similar as the
spontaneous symmetry breaking in a continuous mean-field
phase transition, as described by Ginzburg-Landau theory.

The upward and downward branches of the hysteresis curve
are found to coincide in the immediate vicinity of the fully
polarized magnetization plateau. As shown in Fig. 2 the upper
plateau is seen to be reached at H = +Hc, precisely at the point
at which the downward branch will start to deviate from the
plateau. This coincidence is in contrast to the phenomenology
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FIG. 2. (Color online) The forward branch of the hysteresis loop
in the average magnetization per spin, mx , for a representative small
sample of size N = 16 (red thick curve). At the points H = ±Hc the
hysteresis curve starts deviating from full polarization. A big jump at
H = 0 arises since the magnetization spontaneously swivels by 180◦

to realign with the external field which changes sign. Apart from that
trivial jump, two avalanche events are seen. Their magnitude ||
φ||1
is indicated by two peaks (dashed blue).

in most Ising ferromagnets, where the extremal plateau is
usually reached by a discrete final magnetization jump [54].

C. Avalanches

As illustrated in Fig. 2, between −Hc and Hc, the polar-
ization process consists of a succession of smooth sections
of adiabatic magnetization and avalanches that are triggered
when a local instability occurs. These instabilities are very
similar to spinodal lines at first-order transitions. Indeed, let us
expand the angular deviations δφi from a metastable state {φi}
into the eigenmodes a

(k)
i of the inverse susceptibility matrix

T , δφi = ∑
k �ka

(k)
i . The expansion of the energy around the

local minimum then takes a Ginzburg-Landau form,

H({�k}) =
∑

k

Ak�
2
k +

∑
klm

Bklm�k�l�m + . . . . (19)

The presence of the cubic term in the energy functional is a
characteristic feature of first-order transitions. It is responsible
for a nonlinear avalanche event, i.e., a discontinuous jump in
�k , once the local minimum at �k = 0 becomes unstable, as
illustrated in Fig. 3. Note that generically the cubic term is
nonzero. It vanishes only at H = ±Hc, due to the symmetry
of the polarized state.

The instabilities which appear during the evolution of the
external field induce avalanche-like rearrangements of the
angles φi . They manifest themselves in the abrupt mesoscopic
magnetization jumps seen in Fig. 2, where we show the upward
branch of the full hysteresis loop of a small sample of size
N = 16. This small size was chosen in order to display the
essential avalanche features clearly. In the small sample one
sees just two discontinuous magnetization jumps. Their size is
measured by the average modulus of the change in the angle
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FIG. 3. (Color online) Schematic plot of the functional H(� =
(�1,0, . . . ,0)), Eq. (19), vs �1, for various values of the external field
H . The field increases from the top to the bottom curve. Before the
instability (H < Hα), H(�1) has a locally stable minimum at �1 =
0. However, in general, there already exist lower-lying minima at
nonzero values of �1. As the field H approaches the critical value Hα

(the dashed curve), the minimum �1 = 0 becomes locally unstable
and a spontaneous rearrangement (avalanche) is triggered.

of the spins,

||
φ||1 = 1

N

∑
i

|
φi |. (20)

This avalanche characteristic is indicated by the peaks in Fig. 2.
Note that ||
φ||1 can be rather large, even if in the course of the
avalanche the magnetization increases only by a small amount,
as is the case in the second avalanche of Fig. 2. This can happen
when negative and positive changes in φi contribute nearly
equally, such that the change in mx is small.

D. Jump at H = 0 and subextensive width of the hysteresis loop

At H = 0, one always observes a large jump in mag-
netization. This has a trivial origin: at H = 0 the energy
H is invariant under global rotations. If mx(H = 0−) < 0,
an infinitesimal increase of H → 0+ will induce the entire
magnetization pattern to swivel around by 180 degrees and
align with the positive field. The magnitude of the zero
field magnetization, s ≡ |mx(H = 0−)|, is a measure of the
vertical span of the hysteresis curve. This span is a measure
of how strongly off equilibrium the system is driven. While in
usual ferromagnets the span is finite in the thermodynamic
limit, i.e., the magnetization differs extensively from its
equilibrium value, we find here that the span scales to zero with
increasing system size N . Figure 4 shows the sample-averaged
magnetization per spin on the hysteresis curve for various
system sizes. The decrease of s fits well to a power-law decay
f (N ) = bN−c with c ≈ 0.37 ± 0.02, as shown in the inset
of Fig. 4. This behavior is very similar to the weak empiric
power-law decay N−x of the width of the hysteresis loop in the
Ising spin glass, where we found an exponent x ≈ 0.2 from
fitting simulation data. However, we note that the data are also
compatible with logarithmic scaling. The fact that in both the
XY and Ising glass the hysteresis loop has no extensive width
in fully connected models seems not to have been noticed in
previous studies. It indicates that the quasiadiabatic dynamics
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FIG. 4. (Color online) The upward hysteresis curve, aver-
aged over disorder for different system sizes N = 32,64,128,

256,512,1024,2048,4096 (top to bottom curves for H > 0
and bottom to top curves for H < 0, respectively) with the
number of disorder samples averaged over respectively being
1000,500,200,100,100,100,100,100. We show the vicinity of H =
0. The vertical span of the curve decreases with increasing N .
Inset: The average magnitude of the magnetization at H = 0−,
s ≡ |mx(0−)| is a measure for the vertical span of the hysteresis curve.
The decrease of s (red points) with N is consistent with a power law
f (N ) = bN−c. A fit yields b = 0.56 ± 0.05 and c = 0.37 ± 0.02
(blue dashed curve in the inset).

is probing states that are in fact still comparatively close to
equilibrium [55].

It is interesting to note that this phenomenon is quite similar
to what has been predicted analytically for the long-time
Langevin dynamics in the SK model at finite temperature
[56,57] and is observed numerically in simulations in fully
connected spin glasses: While the glassy system is definitely
out of equilibrium and undergoes slow aging dynamics in
phase space, the energy density and any other extensive
thermodynamic observables approach their equilibrium values
very closely, up to subextensive corrections. This happens even
quite rapidly following an initial relaxation. Here we find a
close analog of this behavior at strictly zero temperature, under
adiabatically slow driving.

E. Avalanche observables

In Ising systems, magnetization avalanches are almost
completely characterized by two quantities: The increase of
the total magnetization, 
M , and the size of the avalanche,
S, that is, the number of spins that flip during this avalanche
[4,7,11]. In contrast, glasses with continuous symmetry are
richer in the sense that they allow for a finer characterization of
the avalanches and their relation with the inverse susceptibility
matrix just before the avalanche is triggered.

1. Magnetization jump and avalanche size

Apart from the change in the x component of the total
magnetization 
Mx ,


Mx =
∑

i


mix = N
mx, (21)
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FIG. 5. (Color online) The distribution of the participation ratio
Y2, as defined by Eq. (23) for several system sizes N . The peak of
the distribution increases with N and shifts towards Y2 = 0. Even
though the thermodynamic limit is not yet clearly reached at N =
4096 [curve with the highest peak (orange)], the data suggest that,
as N → ∞, P (Y2) remains peaked at a finite Y2 ≈ 0.05. This would
imply that there is a typical avalanche size of order N .

we also monitor the magnitude of the change in the magneti-
zation vector |
 �M|,

|
 �M| =
∣∣∣∣∑

i


 �mi

∣∣∣∣. (22)

The notation 
X denotes the difference of the quantity X in the
metastable configuration just after and before the avalanche.

In order to characterize the fraction of spins effectively
involved in an avalanche, we consider the participation ratio
Y2, defined as follows:

Y2 = 1

N

[
∑

i(
mix)2]2∑
i(
mix)4

. (23)

We evaluated its probability distribution P (Y2) over all
avalanches in a given sample. The sample-averaged P (Y2)
is plotted in Fig. 5. The data suggests that a finite fraction of
order ∼0.05 of all spins participates in a typical jump, while
avalanches that are much smaller than the system size are
rare. Interestingly, this differs from avalanches in the Ising SK
model, where the density of small avalanches diverges as an
inverse power law of the avalanche size. The latter can be seen
as a form of self-organized criticality of those Ising systems.

2. Fraction of avalanches in the magnetization process

Ising spins at T = 0 can adjust to a change of external
field only by discontinuous spin flips and avalanches. In
contrast, systems with continuous degrees of freedom continue
to polarize under an increase of the external field, even between
discontinuous jumps, as seen in Fig. 2. It is thus interesting
to ask, what fraction of the polarization reversal along the
upward hysteresis branch is due to discontinuous jumps
and adiabatic polarization, respectively. For the XY glass,
we studied numerically the fraction fdisc due to avalanches.
Figure 6 shows that fdisc increases with the system size but
presumably saturates to some finite value fdisc(N → ∞) < 1,
since the linear susceptibility between avalanches remains of
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FIG. 6. (Color online) Fraction of the total magnetization rever-
sal, which occurs in the form of discontinuous avalanches. In the
thermodynamic limit, the curve saturates, conceivably to a fraction
less than 1. However, larger system sizes would be needed to yield a
reliable estimate of fdisc(N → ∞).

order O(1). The survival of a finite fraction due to continuous
events was predicted in a different system, namely pinned
elastic manifolds and their static, equilibrium evolution under
an external force [6,25]. In order to determine the limiting
fraction for the XY glass as N → ∞, however, one would
have to perform simulations of larger systems than we were
able to study.

F. Marginal stability: Gapless spectrum of the inverse
susceptibility matrix

We have already discussed that the lowest eigenvalue of the
inverse susceptibility matrix T , e1, vanishes at an instability. It
is also of interest to analyze the remainder of the spectrum of T

along the hysteresis curve. The spectral density of T , averaged
over critical metastable states (just before an instability) is
shown in Fig. 7. The distribution at small eigenvalues is given
by the edge of a semicircle law [58],

ρ(λ) ∼
√

λ. (24)

This is reminiscent of the spectrum of Hessians found in
the dynamics of fully connected glasses [59]. However, it
differs substantially from the rather pathological spectra,
which one finds for Hessians evaluated on metastable solutions
of Thouless-Anderson-Palmer equations at extensive energies
above the ground states [60,61]. This is again consistent with
the finding that our adiabatic spin alignment dynamics remains
subextensively close to the ground state and does not explore
the regime of high excitation energies, which are presumably
irrelevant for physical dynamics.

Between the jumps the inverse susceptibility matrix has a
small positive gap e1 > 0. However, the gap never becomes
large but rather scales as

e1 ∼ N−2/3, (25)

being of the same order as the level spacing between e1 and e2,
given the spectral density (24). This is similar to what is found
in the analysis of metastable states at T = 0 [60]. The above
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FIG. 7. (Color online) Average spectral density of the inverse
susceptibility matrix T , averaged over all instability points occurring
for |H | < 1 (except the trivial jump at H = 0) in a single disorder
sample of size N = 1024 (red dots). The blue dashed curve is
a fit to the function ρ(e) = a

√
e in the region [0,1.5], with a =

0.335 ± 0.003. This confirms the gapless “semicircle law” (24) for
small eigenvalues.

may be seen as the analog of the fact that in metastable states of
the Ising spin glass the smallest local field always remains of
the order of N−1/2, which is of the same order as the difference
between the smallest two local fields. In this sense both glassy
systems are thus marginally stable, having a stability towards
perturbations which vanishes in the thermodynamic limit. This
feature is not unexpected, since, at least at equilibrium, the
continuously broken replica symmetry of the spin-glass phase
ensures the presence of massless replicon modes and thus
criticality.

G. Density of avalanches and fractality of soft modes

Despite the different scalings and the different nature of
the trigger of avalanches in XY and Ising glasses, the discrete
values Hα of the external field, at which avalanches occur,
appear to be spaced by similar orders of magnitude, δHα =
Hα+1 − Hα ∼ N−α with α ≈ 1/2. For the Ising case, this was
established numerically in Ref. [4], and α = 1/2 was shown to
be the exponent arising in equilibrium shocks in Refs. [6,25].
For the XY glass the numerical data in Fig. 8 shows that
the number of avalanches per unit of the external field (for
0 < |H | < 1) is consistent with a scaling Nα with α ≈ 0.57.

Theoretically, one might anticipate a scaling δHα ∼ N−1/2

based on the following heuristic consideration. In the SK glass
it was found that the numerically studied out-of-equilibrium
avalanches are distributed with the same power laws as static
magnetization jumps in the ground-state configuration, and
both feature a typical number O(N1/2) of avalanches or
jumps per unit increment of the field. This is presumably a
consequence of the before-mentioned fact that the dynamics
remains in a certain sense close to equilibrium. If the same
similarity holds in the XY glass, we may conjecture the scaling
of δH based on such static considerations. Those are in fact
the same as in the Ising model: Replica symmetry breaking
in the spin-glass phase suggests that there are a number

 0.01

 0.1
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n-1/2
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FIG. 8. (Color online) The log-log plot of the average inter-
avalanche spacing δH within the range |H | � 1 of external fields. The
(red) dots are the numerical data. For comparison we show the two
power laws N−1/2 [top line (black)] and N−2/3 [lower line (brown)]
that are suggested by scaling arguments. The best fit to the numerical
data is δH ∼ N−a with a = 0.57 ± 0.01 [middle line (blue)].

low-lying states with energy difference of 
E = O(1), whose
spin orientation, however, macroscopically differs (with an
overlap strictly smaller than 1). Their total magnetizations Mx

are expected to differ by subextensive fluctuations 
Mx =
O(

√
N ). From this one expects the ground state to jump as

soon as the external field is varied by a quantity of order

δHstatic = 
E/
Mx ∼ N−1/2. (26)

However, in order to better understand these scalings in the
dynamics of the XY glass, we estimate the typical distance
between avalanche-like events, δHdyn, with simple scaling
arguments. In the local minimum of the anlges {φi} which
the system reaches via an avalanche right after an instability,
the inverse susceptibility matrix T = T0 is expected to have
a lowest eigenvalue 0 < e1 ∼ N−2/3. The corresponding soft
mode is likely to drive the next instability as we increase the
field further by δH . Expanding the deviation from {φi} as
δφi = ∑

k �ka
(k)
i , where the a

(k)
i are the eigenmodes of T0,

and expanding the energy H as a function of the �k , we find

H = δH
∑

k

bk�k +
∑
jk

ekδjk + δH cjk

2
�j�k + . . . , (27)

where

bk =
∑

i

a
(k)
i sin(φi), (28)

cjk =
∑

i

a
(j )
i a

(k)
i cos(φi). (29)

The next instability is expected when the first eigenvalue
of the perturbed Hessian, ekδjk + δHcjk + O(�), turns zero.
To leading order in δH , the eigenvalues are simply shifted as
e′
k = ek + δH ckk . Thus we expect, to leading order at large

N , the distance between avalanches to be given by

δHα = mink,ckk<0

[
ek

ckk

]
. (30)

As mentioned above, the smallest eigenvalues ek scale as
N−2/3. The coefficients ckk are more subtle to estimate, and
their scaling may in fact depend on the location along the
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FIG. 9. (Color online) Participation ratio of the soft mode divided
by the system size, n1/N , plotted versus N . The (red) dots are
the numerical values, the solid (blue) curve is the fit to the
data: ln(n1/N ) = 1.26 − 0.65 ln(N ), which is compatible with the
theoretically anticipated scaling n1 ∼ N 1/3.

hysteresis loop. To estimate the sum in Eq. (29), we first need to
analyze the structure of the softest eigenvectors. Interestingly,
they are neither fully localized, nor completely delocalized.
Instead they are fractals, having an inverse participation ratio,
which we empirically find to scale as

1

nk

≡
∑

i

[
a

(k)
i

]4 ∼ 1

N1/3
. (31)

This is extracted from the numerical data in Fig. 9, where
we show the average participation ratio n1 of the softest
eigenmode e1 as a function of N (averaged over the hysteresis
loop in the range 0.01 < |H | < 1). We checked that the scaling
of higher moments,

∑
i[a

(k)
i ]2q , is consistent with n

1−q

1 , that
is, there are no indications of multifractality of those modes.

The above suggests that we may think of the terms [a(k)
i ]2

in (29) as being of order 1/n1 on O(n1) sites, while being
negligible in the bulk of the system. For avalanches in the
low field region, where |H | � 1 and cos(φi) = mx � 1,
we further assume that on the relevant O(n1) sites the
magnetization mix = cos(φi) is randomly signed. From this
we finally expect the scaling

ckk ∼ n
−1/2
k ∼ N−1/6. (32)

Together with (25) this then suggests the scaling

δHdyn ∼ ek

ckk

∼ N−2/3n
1/2
k ∼ N−1/2, (33)

at least at small H . This is indeed in agreement with the
expectation (26) from static considerations. At larger H ,
however, where the magnetization is extensive, it is not clear
that cos(φi) on the relevant sites for the softest mode can
be considered random in sign. One might then rather expect
ckk ∼ O(1) and thus a trend to see δHdyn ∼ N−2/3.

A numerical study of the scaling of the avalanche-averaged
coefficient c11 with N was too inconclusive to allow us to
establish the scaling (32) directly. A possible reason is that the
scaling indeed depends on the proximity to zero magnetization,

in which case the averaging over avalanches in a finite window
of H would result in inconclusive scalings with N . These
considerations might also be the reason why the total number
of avalanches within H ∈ [−1,1] was found to scale like Nα ,
cf. Fig. 8, with the best fitting exponent α = 0.57 ± 0.01 being
intermediate between the scalings one may expect close to
H = 0 and at finite H .

To conclude this discussion, it is interesting to note that,
if one assumes the scalings in Eqs. (26) and (25) as given, as
well as the scaling ckk ∼ n

−1/2
k , one could predict the fractality

(31) of the soft modes, nk ∼ N1/3. Obviously, it would be
interesting to derive this fractality directly, without invoking
the various heuristic arguments above.

We point out that the fractality of the softest eigenvector of
the spin-glass Hessian is not a trivial finding. If one considers
the Hessian (16) as essentially a random Gaussian matrix,
apart from some shifts on the diagonal, one might expect the
eigenvectors to behave like in the standard Gaussian matrix
ensembles, namely as nk ∼ N . The fact that this is not true
implies that the Hessians of spin-glass minima distinctly differ
from standard random matrix ensembles.

H. Statistics of avalanches

A numerical study of hysteresis in the fully connected Ising
spin glass [4] displayed self-organized criticality throughout
the hysteresis loop, the distribution of avalanche sizes being
a scale-free power law, cut off only by the system size.
Self-organized criticality [20,62] is said to occur in a system
if, without fine-tuning, it acquires critical behavior, such as
widely distributed, scale-free response, as a consequence of
the dynamical evolution towards a critical attractor.

The criticality of the fully connected SK model contrasts,
however, with short-ranged Ising systems, such as the random
field Ising model [2,7,63] or Edwards-Anderson spin glasses
in finite dimensions [11], which display criticality only upon
fine-tuning the strength of disorder and the value of the external
field. In the SK model, criticality arises due to the long (infinite)
range of interactions: The flip of a single spin has a finite
probability of inducing other spin-flips and thereby triggering
a large avalanche. Since in the SK model the spin flips are
not confined to a small neighborhood of the original spin,
the avalanche may spread up to sizes which diverge with the
system size.

It is interesting to see whether this intriguing criticality and
system spanning avalanches are also present in systems with
continuous degrees of freedom, as considered here. Naturally,
it is to be expected that long-range interactions are again
crucial, as is also suggested by studies on random field XY

models [42]. As we will show below the avalanches are still
system spanning, but they are typically of the system size and
do not display a scale-free power law which decreases with
increasing system size.

We have analyzed the statistics of several avalanche
characteristics, such as the magnetization jump 
Mx and the
size of the avalanche, as measured by |
 �M|. More precisely,
we have calculated the frequency of occurrence of a given
avalanche observable, let us call it X, per unit of external field
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and unit interval in X, upon averaging over disorder,

ρ(X) ≡ 1


H δX

∑
Hα∈[H−
H/2,H+
H/2]

χ[X,X+δX](Xα).

In this formula Hα are the values of external fields at
which instabilities occur, and Xα are the associated avalanche
observables. χ[a,b] denotes the characteristic function of the
interval [a,b], and the overbar denotes the disorder average.
Note that in typical samples the sum is expected to contain
a number of terms of the order of Nα
HδX, with α ≈ 1/2,
as discussed above. Therefore we expect that N−αρ(X) has a
proper thermodynamic limit, upon which one may shrink the
increment δX → 0. One could also take the limit 
H → 0
and study ρ(X) as a function of the external field H . However,
here we content ourselves with an analysis of the avalanche
statistics in a finite interval, setting H = 0 and 
H = 2,
but excluding the huge jump at H = 0 which we discussed
previously. Notice that we do not normalize these densities,
that is, we do not impose

∫
dXρ(X) = 1, otherwise we would

lose information about the frequency with which avalanches
occur as H increases.

For system sizes N � 2048, we generated 1000 samples
of disorder, while for the largest systems, N = 4096, we
considered 714 samples.

We assume that in a finite-size system the distribution of
the observable X has a cutoff which scales as Na , where a

depends in general on the observable. It is then natural to
define the rescaled variable s ≡ N−aX. As argued above, we
expect O(Nα) avalanches per unit interval of H . Thus we
define the rescaled density r(s) as follows:

r(s) ≡ N−α


Hδs

∑
|Hα |<
H/2

χ[s,s+δs](sα ≡ N−aXα)

= N−α


Hδs

∑
|Hα |<
H/2

χ[Nas,Nas+Naδs](Nasα ≡ Xα)

= Na−α


HδX

∑
|Hα |<
H/2

χ[Nas,Nas+δX](Xα)

= Na−αρ(X = Nas), (34)

which we expect to have a well-behaved limit as N → ∞,
provided the value of the exponent a is chosen appropriately.
Considering that a finite fraction of the magnetization process
occur in avalanches, and that the bulk of the increase of Mx

from −N to N occurs over a range of order 1 in H , through a
number Nα of avalanches, it is natural to expect that the typical
scale for 
Mx is N1−α , i.e., α = 1 − a. Essentially the same
scaling appears to apply to |
 �M| as well. Thus, we attempt a
scaling plot of N2a−1X versus s = N−aX, treating a as a free
exponent to be fitted. For both observables X = 
Mx and
X = |
 �M|, we found the best data collapse for the function
r(s) with the cutoff exponent a = 1 − α = 0.43, as shown in
Fig. 10. This is in good agreement with the exponent α =
0.57 obtained from the scaling of the density of avalanches in
Fig. 8.

The scaling plots in Fig. 10 show that both quantities
X = 
Mx and X = |
 �M| are reasonably well described by
scaling laws. However, unlike analogous distributions in Ising
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FIG. 10. (Color online) Data collapse of scaled densities of
two different measures of avalanches: (a) s1 = N−a
Mx , r1(s1) =
N 2a−1ρ(
Mx) and (b) s2 = N−a|
 �M|, r2(s2) = N 2a−1ρ(|
 �M|). The
body of the data collapses best with an exponent a = 1 − α = 0.43,
which is in agreement with α = 0.57 obtained in Fig. 8. The solid
(black) line corresponds to a power law ∼s1/2.

glasses, their distribution does not display scale-free behavior
with a decreasing power law. Rather, small avalanches are
rare and the bulk weight of the distribution sits at the cutoff
scale. Note also that for small values of the scaling variable
s, the scaling collapse is rather poor. We attribute this to
difficulties in the detection of those small jumps. As we
described earlier, we had used the presence of local hysteresis
as a necessary criterion to qualify a candidate avalanche as a
genuine instability. However, this test is not rigorous for very
small jumps with a magnetization change comparable to that of
the typical smooth increase of magnetization over an interval
of the length of our numerical increment δH = 0.005. Thus,
the densities for small jumps 
Mx = Nas � NδH , i.e., for
s � 0.005 × N1−a , are not really reliable.

We conjecture instead that the true densities should also
scale at small s. In fact, a power law r(s) ∼ sγ with
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0 < γ ≈ 0.5 seems to describe relatively well the data for
smaller N , where we have higher confidence in our small-s
statistics. Such an increasing power law is quite in contrast
with the decreasing power law ∼1/s in the Ising glass, which
implies a scale-free avalanche distribution in that system.
On the other hand, a similar increasing power law (but
with different exponent, ∼s) is found in the distribution of
equilibrium jumps of mean-field systems that display one-step
replica symmetry breaking [6].

Given that the low-T limit of the Parisi solution for vector
spin glasses is not well understood to date, we may our out-
of-equilibrium findings to make a conjecture about the nature
of replica symmetry breaking in these glasses. Let us assume
for a moment that the XY glass is described by continuous
replica symmetry breaking and an order parameter function
with a low-T limit behaving as q(x � T ) ≈ 1 − c(T/x)μ with
μ > 0, similarly as in the Ising glass, where μ = 2. Then the
analytical results of Ref. [6], generalized to the present case,
predict equilibrium jump distributions with a decreasing power
law ρ(
Mx) ∼ 
M−τ

x with exponent τ = 2/μ. If one further
stipulates that dynamic and static avalanches behave similarly
in systems with continuous RSB, as it happens in the Ising
case, this would be inconsistent with our numerical findings.
This leads us to conjecture that the replica symmetry breaking
at low temperature in the XY glass is not simply continuous
(sometimes referred to as “full replica symmetry breaking”).
On the other hand, there is definitely such a continuous replica
symmetry breaking at temperatures below but close to Tc, and
it appears unlikely that it would turn into a simple one-step
phase at lower T [34,36,39,40]. A more likely scenario might
be a low T transition to a phase with a 1+FRSB structure,
where the overlap function q(x) has a discontinuity at large q,
as it was found in spin glasses with mixed spin interactions
[64].

I. Role of the soft mode in the jumps

Since jumps are triggered by a single mode which becomes
soft at the instability, it is natural to ask how much the
(nonlinear) jump is actually correlated with the soft mode
which triggers it. An analogous problem was investigated
in the context of jamming [44], where a strong correlation
between the few softest modes of the corresponding inverse
susceptibility matrix and the ensuing avalanche was found.
Here we find a very similar situation: In an avalanche the
softest linear modes contribute most. Below we quantify this
in more detail.

We define the N -dimensional vector of magnetization
jumps �Z = (
 �m1,
 �m2, . . . ,
 �mN ). The two-dimensional

 �mi and the jumps in the angles, 
φi , are simply related
by


 �mi = −(1 − cos 
φi) �mi − sin 
φi �ni, (35)

where �ni was defined in Eq. (14). As we discussed in
Sec. II, the spectrum of the inverse susceptibility matrix A

splits naturally into longitudinal eigenvectors, Eq. (13), and
transverse eigenvectors, given by the spectrum of the Hessian
(17). Denoting them �vLj and �vTj respectively, j = 1, . . . ,N ,
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FIG. 11. (Color online) Average contribution WL [see Eq. (37)]
of longitudinal modes to the avalanches, plotted as a function of
system size. Note the large standard deviations, indicating that jumps
come in all sizes.

we have the following decomposition of unity:

1 =
N∑

j=1

( �Z · �vLj )2

| �Z|2 +
N∑

j=1

( �Z · �vTj )2

| �Z|2 ≡
N∑

j=1

ω2
Lj +

N∑
j=1

ω2
Tj ,

(36)

where ω2
Lj = (�vLj · �Z/| �Z|)2 and ω2

Tj = (�vTj · �Z/| �Z|)2 are the
contributions due to longitudinal (L) and transverse (T) modes,
respectively.

We quantify the contribution of a set of linear modes to
a magnetization jump �Z by the total weight of that set in
the decomposition. The total contribution from longitudinal
modes can be written as follows:

WL =
N∑

j=1

ω2
Lj =

∑
i(1 − cos 
φi)2

2
∑

i(1 − cos 
φi)
, (37)

where we have used that | �Z|2 = 2
∑

i(1 − cos 
φi). WL

quantifies the nonlinearity of a jump: The bigger WL, the
larger the dominant 
φi , and, hence, the more nonlinear the
jump. Figure 11 shows the average of WL over avalanches as
a function of system size, which seems to saturate to a fairly
large value of the order of 0.2 in the thermodynamic limit. This
is consistent with the findings of Fig. 10. Both show that large
nonlinear jumps are frequent among the avalanche events.

The weights of transverse modes are given by

ωTj = −
∑N

i=1 a
(j )
i sin 
φi√

2
∑N

i=1(1 − cos 
φi)
, (38)

where a
(j )
i = �vTj,i is the j th normalized eigenvector of the

Hessian T (17). In what follows, we focus on those modes
only. They dominate the smaller jumps, which are only weakly
nonlinear.

We define the participation ratio as follows:

Yω = 1

N

[∑N
j=1 ω2

Tj

]2[ ∑N
j=1 ω4

Tj

] , (39)
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FIG. 12. (Color online) Top: Distribution of the participation
ratio Yω of transverse modes, as defined in Eq. (39). Bottom:
Cumulative distribution function of Yω, rescaled by its average, for
different system sizes. The absence of a clear collapse onto a single
curve indicates the presence of many scales in the distribution of Yω.

to characterize correlations between the linear modes of T and
the nonlinear jump. PR quantifies how many of the eigenmodes
of T contribute effectively to a jump.

The distribution of Yω, shown in Fig. 12 has a rather
complex structure. In particular, it does not exhibit a simple
scaling with system size. Indeed, upon rescaling the cumula-
tive distribution function (CDF) of Yω by the average, 〈Yω〉,
does not collapse the data for different system sizes. This
indicates that jumps with different scalings are involved. This
is also consistent with the scalings of various observables
related to Yω: The average Yω is found to scale like N−0.59.
The typical value, i.e., the logarithmic average ln Yω [65], and
the median Yω scale like N−0.65, while the 10th percentile
(from the side of small participation ratios) scales like N−0.75.
These findings suggest that there are largely different jump
events, small ones that one finds to be dominated by the
softest modes of the susceptibility matrix, and large, strongly
nonlinear jumps, which have much less in common with the
linear modes of the susceptibility matrix.

IV. DISCUSSION AND CONCLUSION

In this paper we have studied avalanche phenomena along
the hysteresis loop in the fully connected XY spin glass at
zero temperature. Avalanches are triggered when the softest
collective mode of the inverse susceptibility matrix becomes
soft. This happens rather frequently, avalanches being sepa-
rated only by increments δH ∼ N−α with α ≈ 0.57 ± 0.01.
We observe that the softest modes of the inverse susceptibility
matrix account for a large fraction of the nonlinear avalanche

events for small jumps, similarly as in jammed soft matter
systems. For big jumps, however, many more modes of the
susceptibility matrix contribute.

Let us now discuss a few of the interesting findings of this
work. Interestingly, the soft modes triggering avalanches have
a fractal support on the spins, involving only ∼N1/3. This
shows that the Hessians that occur in metastable minima of
spin-glass problems are in fact nontrivially correlated random
matrices, since in standard random matrix ensembles the
eigenvectors have extensive participation ratios rather than
being fractals. So far, the understanding of the participation
ratio N1/3 is indirect and based on a number of assumptions
whose status is not fully clear. A more direct analytical
understanding of properties of soft modes in spin-glass minima
would thus definitely be of interest.

The sizes of magnetization jumps in avalanches extend up
to scales set by the system size, similarly as in Ising spin
glasses. However, in contrast to the latter, the XY glass is found
not to display self-organized criticality. Namely, avalanches
typically involve a finite fraction (of the order of 5%) of all
spins, instead of being distributed according to a scale-free,
decreasing power law. It would be interesting to understand
whether this difference between spin glasses with discrete and
continuous degrees of freedom extends to other systems as
well and what the mechanisms are that lead to, or prevent,
self-organized criticality.

The absence of self-organized criticality, together with
considerations about the similarity between off-equilibrium
and equilibrium response, hints at the possibility that the
ground state of the fully connected XY glass, and presumably
of fully connected vector glasses in general, might be described
by a replica symmetry-breaking order parameter function q(x),
which is not simply continuous as in the Ising case but might
rather have discontinuous jumps in the low-T limit as well.
To test this conjecture and to better understand the difference
with the Ising case, it would therefore be interesting to find the
T → 0 limit of the equilibrium solution for these vector spin
glasses.

We have found that the states visited along the hysteresis
loop are actually not very strongly out of equilibrium. Indeed,
the width of the full hysteresis loop is found to be subextensive,
unlike in finite-dimensional systems. A deeper analytical
insight into why and how the T = 0 dynamics remains so close
to equilibrium is an interesting question for future studies of
avalanche dynamics.
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APPENDIX A: DERIVATION OF THE INVERSE
SUSCEPTIBILITY MATRIX FROM FINITE-T

TAP EQUATIONS

The aim of this appendix is to derive the results of Sec. II
starting from the Thouless-Anderson-Palmer (TAP) equations
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at finite temperature, and taking the limit T → 0, to have
full control over the Onsager back-reaction [the last term in
Eq. (A1) below]. The TAP equations for vector spin glasses
were derived by Bray and Moore in Ref. [66] as follows:

�yi = Hêx +
∑

j

Jij �mj − β

2
(1 − q) �mi (A1)

�mi = �yi

|�yi |L(β|�yi |), (A2)

cf., their equations (4.9) and (4.10). L(x) is the Langevin
function for XY spins,

L(x) = I1(x)/I0(x),

with I0,1(x) being modified Bessel functions. The overlap q is
defined by

q = 1

N

∑
i

�mi · �mi.

Note that we use a different inverse temperature scale as
compared to Ref. [66], 2βBM = β. The “thermodynamic field”
�yi appearing here is related to the average field �hi defined in
Eq. (6), by the Onsager shift,

�hi = �yi + β

2
(1 − q) �mi. (A3)

There are two equivalent ways to proceed in order to take
the β → ∞ limit. Let us first analyze the magnetic response
to a homogeneous field at finite T ,

�χi = ∂ �mi

∂H
= ∂

∂H

( �yi

|�yi |
)

L(β|�yi |) + �yi

|�yi |
∂L(β|�yi |)

∂H
,

and only then take the T → 0 limit. We will see below that
this limit commutes with the differentiation, however.

Differentiation of the TAP equations (A1) yields, upon
using the definition of q,

∂ �yi

∂H
= êx +

∑
j

Jij �χj − β

2
(1 − q) �χi + β

N

(∑
i

�χi · �mi

)
�mi

and

∂

∂H

( �yi

|�yi |
)

= P i

|�yi |
(

∂ �yi

∂H

)

= P i

|�yi |

⎛
⎝�ex +

∑
j

Jij �χj − β

2
(1 − q) �χi

⎞
⎠ ,

where the 2 × 2 matrix P i projects on the component trans-
verse to �mi , as defined after Eq. (A2). With this, we obtain the
expression for the susceptibility �χi at arbitrary temperature as
follows:

�χi = P i

|�yi |

⎛
⎝�ex +

∑
j

Jij �χj − β

2
(1 − q) �χi

⎞
⎠ L(β|�yi |)

+ �yi

|�yi |
∂L(β|�yi |)

∂H
. (A4)

Projecting with �mi from Eq. (A2) we obtain

�χi · �mi = L(β|�yi |)L′(β|�yi |) β

|�yi |
(

∂ �yi

∂H
· �yi

)
.

One verifies that the function x L(x) L′(x) tends to zero
as x → ∞, which is a consequence of the fact that at
T = 0 the magnetic field cannot change the magnitude of
the magnetization | �mi | = 1. Therefore �χi · �mi , as well as the
second term in (A4), vanish as T → 0.

1. Onsager term

Next we analyze the term β(1 − q) as follows:

β

2
(1 − q) = β

2

[
1 − 1

N

∑
i

L2(β|�yi |)
]

→ 1

2N

∑
i

1

|�yi | = 1

2hHM
, (A5)

since L(x) = 1 − 1/2x as x → ∞. Here hHM is the harmonic
mean of the fields |�yi | over all the sites.

Inserting this in Eq. (A4) we obtain the susceptibility in the
zero temperature limit as follows:

�χiμ = P i
μν

|�yi |

⎡
⎣δν,x +

∑
j

Jijχjν − �χiν

2hHM

⎤
⎦ . (A6)

Therefore the susceptibility is a solution of the following
matrix equation (μ,ν refer to spin components):∑

jν

Aiμ,jνχjν = Ciμ,

Aiμ,jν = |�yi |δij δμν + 1

2hHM
δijP

i
μν − Jij

∑
σ

P i
μσP j

σν,

Ciμ = δμx − miμmix. (A7)

This expression is almost identical to Eq. (11) except for the
extra term proportional to 1/2hHM. However, it is immediate
to see that in the transverse sector the susceptibility matrix,
T (16), is exactly the same. Projecting from both sides with
�ni = (miy, − mix), we have the following:

Tij = niμAiμ,jνnjν =
(

|�yi | + 1

2hHM

)
δij − Jij �mi · �mj,

(A8)

while in the longitudinal sector we find

miμAiμ,jνmjν = |�yi |δij . (A9)

At T = 0 we have �yi ‖ �mi and |�hi | = |�yi | + 1/2hHM. The
only effect of the Onsager back-reaction is to modify the
longitudinal spectrum of the inverse susceptibility matrix,
replacing average fields �hi by thermodynamic fields �yi . The
relation |�hi | = |�yi | + 1/2hHM immediately implies a hard gap
in the distribution of |hi | of at least 1/2hHM, as shown in
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Fig. 1. This lower bound on the hard gap is expected to be
tight [66].

2. Direct T = 0 limit

The above result can also be obtained by setting T = 0
directly within the TAP equations (A1) and (A2) and differ-
entiating afterwards. Since β(1 − q) → 1

hHM
and L(β �yi) → 1,

the TAP equations become

�yi = H êx +
∑

j

Jij �mj − 1

2hHM
�mi, �mi = �yi

|�yi | .

Equation (A7) follows from this by differentiation with respect
to yi .

APPENDIX B: INVERSE SUSCEPTIBILITY MATRIX Ti j

AS THE HESSIAN OF THE ANGULAR ENERGY
FUNCTIONAL H(φ)

In this Appendix we demonstrate that the transverse inverse
susceptibility matrix Tij (16) follows naturally from the
angular energy functional (4). We again neglect the Onsager
term. Let us analyze directly the angular energy functional of

Eq. (4) as follows:

H = −1

2

∑
ij

Jij cos(φi − φj ) − H
∑

i

cos(φi), (B1)

and establish its relationship with the T → 0 limit of the TAP
equations.

Indeed, its Hessian is

∂2H
∂φi∂φj

= δij

[
H cos(φi) +

∑
k

Jik cos(φi − φk)

]

−Jij cos(φi − φj ). (B2)

Recalling the definition of average fields, Eq. (6),

�hi = Hêx +
∑

k

Jik �mk,

one easily sees that the coefficient of δij in (B2) is the projection
of �hi onto the unit vector �mi = �hi/|�hi |, i.e., �hi · �mi = |�hi |.
This establishes the equivalence of the Hessian (B2) with the
transverse inverse susceptibility matrix Tij of Eq. (16),

∂2H
∂φi∂φj

= Tij . (B3)
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