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Magnetic helicity and the evolution of decaying magnetohydrodynamic turbulence
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Ensemble-averaged high resolution direct numerical simulations of reverse spectral transfer are presented,
extending on the many single realization numerical studies done up to now. This identifies this type of
spectral transfer as a statistical property of magnetohydrodynamic turbulence and thus permits reliable numerical
exploration of its dynamics. The magnetic energy decay exponent from these ensemble runs has been determined
to be nE = (0.47 ± 0.03) + (13.9 ± 0.8)/Rλ for initially helical magnetic fields. We show that even after
removing the Lorentz force term in the momentum equation, thus decoupling it from the induction equation,
reverse spectral transfer still persists. The induction equation is now linear with an externally imposed velocity
field, thus amenable to numerous analysis techniques. A new door has opened for analyzing reverse spectral
transfer, with various ideas discussed.
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On large length scales kinetic plasma effects can be
neglected and magnetohydrodynamics (MHD) gives a good
first order approximation to plasma evolution. The relevance
of MHD turbulence ranges from industrial application, fusion
research, solar physics (e.g., coronal heating) to astrophysics
and cosmology, where it might leave detectable signatures in
astrophysical processes [1] and even for the very early universe
the possibility of a large-scale primordial magnetic field
[2–5]. While there are many applications of MHD turbulence
research in the above areas, some of the theoretical problems
still remain open. Fundamental research in MHD turbulence
consists of many active fields such as the amplification of a seed
magnetic field by dynamo processes [6], different proposed
models concerning the scaling of the energy spectra taking
small-scale anisotropy into account [7], and MHD turbulence
decay, to name only a few.

Selective decay [8,9], that is the decay of ideal quadratic
invariants of MHD flows at different rates, dominates the
nonlinear evolution of decaying turbulent MHD flows. It
is related to the direction of spectral transfer of said ideal
invariants. The magnetic helicity, which is one of the three
ideal invariants of MHD flows (the other two being the total
energy and the cross helicity), has been shown to influence
the evolution of the magnetic field [10,11] possibly through its
reverse spectral transfer (RST)1 [13]. An understanding of the
underlying mechanism of RST remains elusive, though much
progress has been made.

In this Rapid Communication we expand the numerical
study of RST and its effects on MHD turbulence decay
to ensemble-averaged data, which permits more reliable
numerical exploration of the MHD equations compared to the
single realization studies done up to now. We also deconstruct
the nonlinear MHD equations and identify some of the
underpinnings of RST. Here we treat incompressible MHD
turbulence only, and the magnetic Prandtl number is set to
unity.
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1The alternative terminology “inverse cascade” might be inaccurate

as it implies spectral locality [12].

The incompressible decaying MHD equations are

∂t u = − 1

ρ
∇P − (u · ∇)u + 1

ρ
(∇ × b) × b + ν�u, (1)

∂t b = (b · ∇)u − (u · ∇)b + η�b, (2)

∇ · u = 0 and ∇ · b = 0, (3)

where u denotes the velocity field, b the magnetic induction
expressed in Alfvén units, ν the kinematic viscosity, η the resis-
tivity, P the pressure, and ρ = 1 the density. Equations (1)–(3)
are numerically solved in a cubic domain of length L = 2π

with periodic boundary conditions using a fully dealiased
pseudospectral MHD code, which we developed extending
the hydrodynamic code of [14]. All simulations satisfy
kmaxηmag,kin � 1.26, where ηmag,kin are the Kolmogorov scales
associated with the magnetic and velocity fields, respectively.
We do not impose a background magnetic field, and both
the initial magnetic and velocity fields are random Gaussian
with zero mean, with initial magnetic and kinetic energy
spectra Emag,kin(k) ∼ k4 exp[−k2/(2k0)2], unless otherwise
specified. The peak wave number k0 is varied for different
simulations depending on the desired scale separation and
resolution requirements. The initial relative magnetic helicity
is ρmag(k) = kHmag(k)/2Emag(k) = 1, the initial cross helicity
is negligible, and the initial velocity field is nonhelical, unless
otherwise specified. The ratio between magnetic and kinetic
energies 	(t) = Ekin(t)/Emag(t) equals unity at t = 0, where
Emag,kin(t) = ∫

dk Emag,kin(k,t). All spectral quantities have
been shell and ensemble averaged. Results have been obtained
for a range of Reynolds numbers; the figures show data
from the highest resolved simulations only. A summary of
simulation details is shown in Table I; further details including
benchmarking against results in the literature [15,16] can be
found in [17].

The numerous single realization studies of RST make it
evident that it should also appear as a property in ensemble-
averaged data, but this is the first analysis to adopt this
procedure. In isotropic hydrodynamic turbulence it is pointed
out in [18] that the direct cascade of kinetic energy is an
ensemble-averaged concept and in [19] that a single realization
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TABLE I. Specifications of simulations. H and NH refer to
initially helical and nonhelical magnetic fields, respectively. The
additional letter “d” refers to the decoupled system, η denotes the
magnetic resistivity, k0 the peak wave number of the initial energy
spectrum, and # the ensemble size.

Run id N 3 Rλ(0) 103η k0 # tmax

H1-8,10 1283-5283 28.69-258.19 9-1 5-15 10 50
H9 10243 74.84 0.75 23 10 6
H11 10323 645.47 0.4 5 5 22
NH1-6 1283-5123 28.69-172.13 9-1.5 5 10 10-50
Hd1-4 2563-5283 43.03-57.38 6-4.5 5 10 5
Hd5 10323 28.06 2 23 10 2
NHd1-3 2563-5123 43.03-57.38 6-4.5 5 10 5

could show energy transfer towards small wave numbers, and
it is the mean kinetic energy transfer that proceeds from low to
high wave numbers. At low k, the regime important for RST,
shell averaging is not an optimal averaging method, since there
is only a small number of points to average over. Furthermore,
the modes in a given k shell do not evolve independently
from each other, as they become increasingly correlated by
nonlinear mode coupling, whereas different realizations in an
ensemble are statistically independent. It has also been noted
that the actual measuring process in experimental studies of
decaying turbulence results in an ensemble average [8].

Our ensemble-averaged results for Emag(k) and Hmag(k) at
different times are shown in Fig. 1 for run H9 in Table I, where
the helicity spectra have been shifted for easier comparison.
Error bars have been omitted to facilitate visual comparison
between spectra at different times, but it should be noted
that the measured spectra do not lie within the error of one
another. The inset of Fig. 1 shows the flux of magnetic helicity
−
H (k) = ∫ k

0 dk′ TH (k′), where TH (k′) denotes the transfer
spectrum of the magnetic helicity [9], at one and five initial
large eddy turnover times t0 in the very low k region. It is
positive [as is Hmag(k) at all times], which again indicates RST,
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FIG. 1. (Color online) Magnetic energy and helicity spectra of
run H9 showing reverse spectral transfer. The black (upper) lines refer
to Emag(k), and red (lower) lines to kHmag(k). Solid lines indicate one
initial turnover time t0; dotted and dash-dotted lines refer to 2t0, 5t0,
and 10t0. The inset shows the flux of magnetic helicity at t0 and 5t0.

but not constant. This indicates the absence of an inertial range,
hence the observed RST here cannot be named a cascade. This
is in accord with standard results in this wave-number range;
an inertial range is not expected at the very low k [12]. For
visual purposes, we show a low Rλ result, which allows for
higher scale separation at the low wave numbers. Higher Rλ

results showing an inertial range for the magnetic helicity in
the higher k direct cascade region can be found in [17].

RST can also be studied through Emag(t) and Ekin(t). Since
RST sends magnetic energy from small length scales back
to large length scales, where dissipation is smaller, Emag(t)
should decay slower than Ekin(t). There is agreement in the
MHD literature that Ekin ∼ t−1 [5,10,20–22]. For Emag ∼
t−nE in helical MHD turbulence decay there are conflicting
results on the decay exponent nE , with two asymptotic
decay laws proposed. One model assumes equipartition of
Ekin(t) and Emag(t) during turbulence decay [10], leading
to the asymptotic decay law Emag(t) ∼ t−2/3. The second
model proposes Emag ∼ Etot(t) ∼ t−1/2 and has been derived
in [10,22] as an asymptotic decay law for the total energy with
respect to late times in the decay when the decreasing ratio
	 = Ekin/Emag is small, thus not assuming equipartition. Both
decay laws have been observed to a good approximation for
runs at specific Reynolds numbers [5,10,22,23]. One case [24]
studied a range of low Reynolds numbers and attempted an
extrapolation which supported the second model.

Ensemble averaging permits a straightforward means to
compute the statistical error on the measured quantity, here
nE , whereas with a single realization the only error one can
obtain is the error on the fit. Furthermore, for high resolution
simulations one usually assumes that the ensemble average
can be replaced with the volume average of one realization.
Since RST generates long-range correlations, different regions
in space will eventually become statistically correlated and
the volume average will not reflect this. We observed that
the energy spectra and the derived decay curves showed
little deviations between realizations for t < 7t0, while around
t ≥ 7t0 the deviations became significant. As an example, for
run H2 nE varied from 0.81 to 0.96 between realizations if
measured for t > 7t0. Further details can be found in [17].

We measured nE for an Rλ(0) range of 28.69–645.47
using ensembles of typically ten runs on up to 10323 grid
points (see Table I), with our results in Fig. 2. The largest
simulation H11 was run up to t = 27t0, while the lower
resolved runs reached t = 64t0. As shown in the figure, we
find nE has a 1/Rλ dependence. Extrapolating from this data
to the infinite Reynolds number limit results in an asymptotic
decay law Emag(t) ∼ t−nE,∞ with nE,∞ = 0.47 ± 0.03. These
results show that decay of magnetic energy in a helical system
is slower than kinetic energy, thus supporting the presence of
RST. Moreover, our asymptote is consistent with the second
model mentioned above [10,22] and is unambiguously not
consistent with the first model. As can be seen in the inset
of Fig. 2, the ratio 	(t) = Ekin(t)/Emag(t) decreases over
time. Our results also go further than [10,22] as they yield
finite Reynolds number results and a 1/Rλ dependence of
nE . A Reynolds number dependence of nE consistent with
nE,∞ = 1/2 had been found before [24], albeit at much lower
resolution using Reynolds numbers defined with respect to a
length scale associated with the helicity. We also found that the
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FIG. 2. Reynolds number dependence of decay exponents of
Emag(t) for maximally helical initial magnetic fields. The inset shows
the decay of 	(t) for runs H3-H11.

evolution of the integral scale approaches Lmag(t) ∼ t1/2 (not
shown). This is consistent with the approximate conservation
of magnetic helicity at large magnetic Reynolds number, since
Hmag(t) ∼ Emag(t)Lmag(t) [9].

For the nonhelical case we have done a small analysis in
response to [25] for ensembles of 10 runs on up to 5123 grid
points, resulting in exponents consistent with Emag(t) ∼ t−1,
in agreement with [4,5,20] and the theoretical analysis by
Campanelli [21]. Since the decay exponents of Ekin(t) and
Emag(t) coincide for a nonhelical magnetic system, if one field
shows RST so should the other, provided RST is large enough
to influence the time evolution of the system. Brandenburg
et al. [25] recently reported RST of magnetic and kinetic
energies from a single realization run of an initially nonhelical
magnetic system on 23043 grid points. Our ensemble of runs
shows similar behavior for the magnetic energy.

To further investigate RSTs we made an ad hoc modification
of the momentum equation (1) by omitting the Lorentz force
(∇ × b) × b, which decouples the velocity field from the
magnetic field. This approach clearly does not lead to a faithful
representation of MHD, since the decoupled fluid-magnetic
field system ceases to be energetically closed. Its purpose
is to serve as a diagnostic tool to unravel the complicated
nonlinear set of equations to allow an understanding of the
mathematical properties of the induction equation (2) as a
linear partial differential equation. In particular, one can test if
RST is among those mathematical properties.

The logic behind this modification can be viewed in another
way. One can solve the full MHD equations and store the
u(x,t) solution. One can imagine now doing this slightly
differently by solving just the induction equation with the
same initial conditions using the above stored u(x,t) function.
In both cases one obtains exactly the same solution for b(x,t).
However, in the second case it was through the solution of a
linear partial differential equation with variable coefficients,
here given by u(x,t). The step made here is to provide an
alternative viewpoint, that is, the entire problem of RST can be
analyzed through solving a linear partial differential equation
with variable coefficients. This is still a hard problem, but now
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FIG. 3. (Color online) Magnetic energy spectra showing reverse
spectral transfer for the decoupled system (run Hd5). Note the absence
of RST for the magnetic helicity. The black (upper) lines refer to
Emag(k,t), the red (lower) lines to kHmag(k,t), and the solid lines
are earlier in time than the dotted lines. The inset shows the flux of
magnetic helicity.

linear and thus tractable. One way forward is to dismiss the
MHD equations and study the induction equation in isolation
with different external u fields, as a means to probe this
equation for features that produce RST. That is what we did
here with perhaps the most obvious initial example of an
independently evolving turbulent u field, and as will be shown
below, have found even in that case, the induction equation
leads to RST.

We have conducted simulations for this decoupled system
on up to 10323 grid points with our results shown in Fig. 3 for
an ensemble of 10 runs. As seen in this figure, there is a RST
of magnetic energy, which is interesting since it emerges from
a linear equation. To diminish the possibility of a finite-size
effect, we set the peak of the initial spectra relatively high, e.g.,
in Fig. 3, k0 = 23. Moreover, we have done several tests [17]
to verify this linear RST, such as reproducing the same effect
in slightly compressible MHD using the PENCIL CODE [26].

Interestingly, we do not find RST of magnetic helicity
in these simulations. The reverse transfer of Emag(k,t) is
usually thought to be driven by the reverse transfer of
Hmag(k,t) by virtue of the realizability condition |Hmag(k,t)| ≤
2Emag(k,t)/k [9]. Our results show that RST of magnetic
energy is possible without RST of magnetic helicity, despite
the magnetic field being initially maximally helical. Although
some realizations showed RST of Hmag(k,t) at k = 1 and there
appears to be a hint of RST at k = 2, the ensemble average
strongly supports the absence of RST of Hmag(k,t). The data
point at k = 2 lies within the error of the ensemble-averaged
data at earlier time. The flux of magnetic helicity is shown
in the inset of Fig. 3 to be negative at low k, thus indicating
the absence of RST, as opposed to the coupled case shown in
Fig. 1, where it is positive at low k.

As the velocity field is not influenced by the magnetic field
in this decoupled system and is initially nonhelical for the
results in Fig. 3, effects of kinetic helicity could not influence
the evolution of the magnetic field. However having decoupled
these two equations, it permits us to cleanly test the influence
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FIG. 4. (Color online) Magnetic energy and helicity spectra for
the decoupled case Hd4 showing RST for an initially helical velocity
field. The black (upper) lines refer to Emag(k,t), the red (lower) lines
to −kHmag(k,t), and the solid lines are earlier in time than the dotted
lines. Since Hmag(k,t) is positive at larger k, it does not show on
logarithmic scales.

that kinetic helicity can have on the magnetic system. In
Fig. 4 our initial u and b fields were set to be maximally
helical in the same direction and now we observe RST of both
magnetic energy and helicity. In particular, this simulation
was started with Hmag(k) > 0 for all k > 0, and we found the
magnetic helicity to increase at large wave numbers while it
decreased at low wave numbers, eventually changing sign. The
now negative magnetic helicity is subsequently transferred to
lower k. This suggests that RST of magnetic helicity relies on
the presence of kinetic helicity, which hints at a connection
between large-scale dynamo action and RST of Hmag(k,t).

We also examined in our decoupled equations the case of an
initially nonhelical magnetic field. Two cases were investigated
here: one with Emag(k,0) = Ekin(k,0) ∼ k4 at low k and one
with Ekin(k,0) ∼ k2 while Emag(k,0) ∼ k4 at low k as in [25].
We found RST in both cases, more pronounced in the second
than in the first case. These results further support the findings
in [25,27] on nonhelical RST, now also for our linear RST.

A plausible explanation of these observations would be
that RST of magnetic energy has two components: a dominant
(nonlinear) one due to the reverse transfer of magnetic helicity
and a residual (linear) one which is slightly augmented by
the presence of magnetic helicity. Our numerical results show
that coupling between helical modes has an impact on RST,
especially if the coupling includes helical u modes. For

initially helical u fields we also saw that coupling between
positively helical b and u modes led to a positively helical
magnetic field becoming negatively helical. Decomposing
both fields into helical modes to study the mode couplings
might lead to further insight.

In order to understand the physical nature of RST, an
analytic study of the induction equation as a linear partial
differential equation in this decoupled system might lead to
further insight and can serve to get a step further towards
the full nonlinear problem. The induction equation can be
further studied using classical techniques such as Green’s
functions and integral transforms. One could further dissect
it by retaining one of the transfer terms only. If the advective
term (u · ∇)b is retained, we obtain an advection-diffusion
equation, which has been extensively studied in the literature.
The nature of the linear RST would be different depending on
which of the transfer terms produces it, and this could inspire
models to be put forward that highlight physical processes
responsible for the full nonlinear RST, which is analytically
intractable. In the case of the kinetic source term (b · ∇)u, RST
would be a transfer of kinetic to magnetic energy, while in the
case of the advective term the transfer would be of magnetic
energy only.

In summary, this Rapid Communication presented the first
ensemble-averaged measurements of reverse spectral transfer
of magnetic energy and helicity, which show that these forms
of transfer are statistical properties of the MHD equations.
Our analysis showed that at early times single realization
measurements are sufficient to replicate the properties of
the ensemble average, while at later times in the decay
the ensemble average becomes a must, as we observed
larger deviations between realizations. Turbulence decay is
influenced by reverse spectral transfer; in the helical case
we observed a Reynolds number dependence of the decay
exponent nE = n∞ + A/Rλ with n∞ � 1/2 and A = 13.9 ±
0.8. The reverse transfers of magnetic energy and magnetic
helicity were further investigated in a simplified system, which
decoupled the evolution of the velocity field from the magnetic
field. The magnetic helicity shows no reverse transfer in this
system, and a new aspect of reverse transfer of magnetic energy
was found, which is linear in nature and thus amenable to
further mathematical analysis.
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