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Bathtub vortex induced by instability
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The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability
analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries
with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel
with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by
instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction
to be cyclonic.
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Vortical flows are often observed in bathtubs or washbowls
in our daily life, and have attracted the intense interest of not
only physicists but also persons on the street. Despite wide
and intense interest, few reports have been published on the
bathtub vortex, and the conclusions drawn are not so definite
as to convince us of the generation mechanism. This difficulty
comes from the ambiguity in the problem definition, i.e., the
lack of symmetry consideration.

Shapiro [1] may be the first who carried out systematic and
careful experiments to resolve this problem. He performed the
experiments in Boston with a cylindrical tank. He found that
the swirl direction of the vortex was mostly counterclockwise.
Then, he concluded that the bathtub vortex is produced by the
Coriolis force, which was supported by the experiments made
in Sydney in the southern hemisphere [2]. The conclusion
that no angular momentum can be supplied by viscous
stress or pressure in the axisymmetric systems is consistent
with Noether’s theorem. Note that the axisymmetric system
represents that both flow and vessel have axisymmetry.

Recently Shapiro’s conclusion was numerically confirmed
based on the assumption of axisymmetry [3]. It showed that
the formation of a bathtub vortex is a transient phenomenon
resulting from accumulation of the residual vorticity, and the
vortex decays eventually if the bathtub is set on a stationary
base. When the whole system rotates like on the earth, another
steady bathtub vortex appears owing to the Coriolis force after
decay of the transient vortex. Thus, it was confirmed that the
Coriolis force is the sole origin of the steady bathtub vortex in
the axisymmetric system.

In a vessel without any symmetry, the flow induced owing to
drainage has a finite angular momentum in total with respect to
the center of the drain hole, and hence a vortex appears above
the drain hole as a result of accumulation of angular momen-
tum conveyed by gathering fluid. For example, if the drain
hole is neither on the two symmetric planes in a rectangular
vessel, then fluid particles, possessing their own local angular
momentum, come toward the drain hole accompanying their
angular momentum to yield a bathtub vortex as a result of
accumulation of the local angular momentum.

Therefore, only systems without axisymmetry but having
plane symmetries deserve research for the generation mech-
anism of the bathtub vortex. Earlier experimental studies for

the systems with one or two plane symmetries often adopt a
rectangular vessel as in Refs. [4–6], where it was concluded
that formation of the vortex is a phase transition, and the
threshold of the discharge rate was determined. We will
confirm that the bathtub vortex is induced by instability of the
no-vortex flow in the systems having two plane symmetries
and clarify the driving mechanism of the vortex in this Rapid
Communication.

We consider the water flow in a rectangular tank with a
square drain hole at the center of the bottom, to which a
drain pipe is connected (Fig. 1). The side length of the drain
hole is defined as d, and the drain pipe length is � = 5d. The
dimensions of the tank are a = 10d in length and b = 3d in
width. We take the coordinates as shown in Fig. 1. Water is
always filled up to the height of h = d by a continuous supply
through the two inlets at the top of the two facing sidewalls
at x = ±a/2 = ±5d, and the water surface is assumed to be
flat even after a bathtub vortex appeared. The correction due
to the effects of surface deformation and surface tension was
discussed in Ref. [7].

The time evolution of the incompressible flow is governed
by the continuity and the Navier-Stokes (NS) equation for the
velocity u = (u,v,w) and the pressure p, which are expressed
in nondimensional form as

∇ · u = 0,
∂u
∂t

+ (u · ∇)u + 1

Ro
ez × u = −∇p + 1

Re
�u,

(1)

where we have chosen the side length d of the drain hole and
the mean velocity w̄ = Q/d2 at the outlet as the characteristic
length and velocity scales, Q being the flow rate of water
through the drain pipe. The nondimensional parameters are
the Reynolds number Re = Q/(νd) and the Rossby number
Ro = Q/(2�d3), where ν is the kinematic viscosity of water
and � the angular velocity of the system about the z axis. No
gravitational force term appears in the NS equation, because
the effect of the gravity is incorporated into the pressure term.

The boundary conditions for the flow are stress-free at the
flat water surface, and non slip on the solid walls and the
bottom. The velocities of incoming flow through the inlets,
AA′D′D and EE′H ′H (x = ±5, −3/2 � y � 3/2, 3/4 �
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FIG. 1. (Color online) Computational model and coordinates.

z � 1), are assumed to have parabolic profiles in the y direction
and to be uniform in the z direction as u = ∓[1 − (2y/3)2].
The total inflow of the z component of angular momentum
coming through the two inlets vanishes because of the plane
symmetry of the inflow velocity profile. At the outlet, IJKL,
the natural outflow condition is used. The pressure is set as
p = 0 at the center of the outlet. On the other boundaries the
pressure gradients are evaluated from the NS equation and used
as the boundary conditions in solving the Poisson equation for
the pressure.

We choose the y component of velocity v1 at the point P1

[(x,y,z) = (1/2,0,1/2)], above the edge of the drain hole, as
the representative physical quantity to characterize the flow
field. The total angular momentum in the z direction Mz

in the whole flow field is also employed to characterize the
appearance of the vortex.

We use two different methods to explore the origin of the
bathtub vortex. One is simulations to solve Eq. (1) numerically
as an initial-value boundary-value problem by the marker-and-
cell (MAC) method, and the other is a linear stability analysis
of the no-vortex flow. The second-order central-difference
scheme with the staggered grid with a grid spacing 0.05 is
used for evaluation of the derivatives in all the numerical
calculations. The Euler method with time step 5 × 10−3 is
employed for the time integration of the NS equation for
the velocity. The successive overrelaxation (SOR) method
is employed to solve the Poisson equation for the pressure.
The numerical accuracy is evaluated in the Supplemental
Material [8].

The flow becomes steady having no vortex after long time
elapsed independently of the initial condition if Re is smaller
than a critical value. To investigate the instability of the no-
vortex flow, (u,p), we express u = u + û and p = p + p̂,
where (̂u,p̂) is a disturbance. From Eq. (1), we obtain the
linearized disturbance equations for (̂u,p̂), which are solved
numerically in the same way as Eq. (1).

We have performed numerical simulation of the flow for
50 � Re � 200, adopting the no-vortex flow for the initial
condition, which is obtained in advance under the symmetry
conditions with respect to the yz and xz planes at Re = 50.
In this Rapid Communication, the rotation-free system, i.e.,

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. (Color) Flow fields for Re = 50 [(a)–(c)] and for Re =
100 [(d)–(f)], where Ro = ∞. (a), (d) Paths of fluid particles initially
aligned on lines at midheight of the inlets. (b), (e) Horizontal pro-
jection of paths. (c), (f) Isosurfaces of mz = 0.12 (counterclockwise,
brown) and mz = −0.12 (clockwise, blue).

Ro = ∞ is mostly considered, while the effect of the Coriolis
force is discussed in the bifurcation structure (Fig. 3 below),
where Ro = 2.4 × 105 is used to imitate the experiment in
Ref. [4].

In the numerical simulations, we found two qualitatively
distinct flows. One is no-vortex and has the double-plane
symmetry with respect to the yz and xz planes. The other
includes the bathtub vortex having a line symmetry with
respect to the z axis, being invariant under rotation by π around
the z axis. In the former, fluid particles flowing in through
the inlets come to gather around the central region of the tank
and go down into the drain hole if Re is below a critical value.
An example of the double-plane symmetric flow is shown
in Figs. 2(a)–2(c) for Re = 50. Figure 2(a) is a perspective
view of paths of fluid particles initially aligned on lines at
midheight of the inlets (x = ±5, z = 7/8). The fluid particles
come together directly to the center of the tank without any
swirling motion. The double-plane symmetry with respect to
the yz and xz planes is evident in Fig. 2(b), which shows the
paths projected onto a two-dimensional horizontal plane. The
double-plane symmetry is equivalent to the line symmetry
with respect to the z axis, i.e., invariance under rotation by π

around the z axis plus the plane symmetry with respect to one
of the yz and xz planes. We define the z component of the
angular momentum density per unit volume as mz = xv − yu,
where the counterclockwise direction viewing from above is
taken as positive. The isosurfaces of mz = ±0.12 drawn in
Fig. 2(c) terminate before reaching the drain hole.

The flow pattern at Re = 100 [Figs. 2(d)–2(f)] is quite
different from that observed at Re = 50. The fluid particles
coming through the inlets turn to one side before coming to the
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FIG. 3. (Color online) Bifurcation diagram for Ro = ∞. v1 =
v(P1): Circumferential velocity at the representative point. Solid lines:
Stable solutions; dashed line: unstable solution. Inset: Enlarged view
of bifurcation diagram for both Ro = ∞ (solid and dashed lines) and
Ro = 2.4 × 105 (dotted lines).

center, and they are drawn into the drain pipe. The projection
in Fig. 2(e) shows that the fluid particles coming from both
sides meet around the z axis to be mixed up, and go through the
drain pipe drawing helical paths. The isosurfaces of mz = 0.12
extend from the inlets to the z axis and bend downward to
the drain pipe, while those of mz = −0.12 terminate before
reaching the drain hole as seen in Fig. 2(f). It shows that the
flow has a bathtub vortex swirling in the counterclockwise
direction and that the positive angular momentum is drawn
into the drain hole.

We numerically evaluated the circumferential velocity v1 =
v(P1) [P1 = (1/2,0,1/2)] in the steady state for various Re.
The velocity is plotted as a function of Re in Fig. 3. In this
figure, v1 vanishes if Re is less than a critical value, which is
Rec = 62.23. The velocity deviates from 0 above the critical
value. We confirmed two different flows with positive and
negative values of v1, where the established bathtub vortex has
the counterclockwise (v1 > 0) or clockwise (v1 < 0) direction.
Furthermore, the no-vortex double-plane symmetric flow is
also confirmed to be a solution of Eq. (1).

The relation v2
1 ∝ (Re − Rec) above Rec and the diagram

depicted in Fig. 3 show that the appearance of the bathtub
vortex is due to a pitchfork bifurcation, a symmetry-breaking
bifurcation from a steady state having symmetries into another
steady state having fewer symmetries. In the present case,
the system had the line symmetry with respect to the z axis
plus the plane symmetry with respect to one of the yz and
xz planes, which is equivalent to the double-plane (the yz

and xz planes) symmetry before the bifurcation. Owing to
the symmetry-breaking bifurcation the system loses one plane
symmetry but keeps the line symmetry. From this point of
view, the line symmetry plus the plane symmetry is more
natural to specify the symmetry that the system has than
the double-plane symmetry, though both are equivalent. The
pitchfork bifurcation caused by instability due to a stationary
disturbance yields two branches, v1 > 0 and v1 < 0, stemming

FIG. 4. (Color online) Eigenfunction of disturbance from the
linear stability analysis (horizontal velocities on z = 1/2 and paths
of fluid particles). Re = 65; Ro = ∞. Top view.

from that of v1 = 0 at Rec. Either flow with positive or negative
circulation emerges depending on the initial condition, and
the swirl direction is not determined a priori unless the initial
condition including the residual angular momentum is given
precisely.

When Ro is finite, the system does not have the plane
symmetries but has the line symmetry. Then, the bifurcation
diagram is altered dramatically to be imperfect and determines
the swirl direction to be cyclonic if the residual angular
momentum is much smaller than the effect of the Coriolis
force (inset of Fig. 3).

The linear stability analysis gives the eigenfunction of
the disturbance leading to the bathtub vortex flow, which is
depicted in Fig. 4. The flow field shows a global circulation
in the counterclockwise direction around the z axis. Two
small vortices adjacent to the long walls are important in
discussion of the instability mechanism to lead the flow
to self-excitation. Apparently, the counterpart obtained by
reversing the circulation direction of the vortex is also a
solution of the linear eigenvalue problem. This also confirms
that the direction of swirl in the bathtub vortex is not uniquely
determined if any initial condition is not precisely prescribed
when Ro = ∞.

We proceed to explore the physical mechanism to induce
and maintain the vortical flow. Since the no-vortex flow is
taken as the initial condition in all the numerical simulations,
the vertical component of the total angular momentum Mz is
0 initially, but increases exponentially during a time period
t � 300 to attain a constant owing to the nonlinearity as seen
in Fig. 5(a). The positive Mz means that the counterclockwise

FIG. 5. (Color online) Time evolution of the total angular mo-
mentum Mz, angular momentum outflow Q2, and torques due
to pressure and viscous stress on the sidewalls and the bottom.
Re = 100; Ro = ∞. (a) Angular momentum Mz. (b) Inflow of the
angular momentum (−Q2) from the outlet (Q2: outflow); torques due
to viscous stress Nvx , Nvy , and Nvz; torques due to pressure Npx and
Npy .
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rotation was chosen by chance in the present case. The time
evolution of Mz is determined by the angular momentum
outflow through the outlet Q2, and torques Npx , Npy , Nvx ,
Nvy , and Nvz, where the first suffix p or v indicates that the
torques come from pressure or viscous stress, respectively,
and the second suffix x, y, or z shows the normal axis of
the solid boundaries from which the torques are exerted on
the fluid. Note that the angular momentum inflow through
the inlets Q1 always vanishes by the inflow boundary
condition, and that Npz = 0 both on the free surface and
on the bottom. The torque Npy is exerted by the pres-
sure on the sidewalls normal to the y axis, which is ex-
pressed as Npy = − ∫∫

Sy+
xp(x,3/2,z)dxdz + ∫∫

Sy−
xp(x, −

3/2,z)dxdz, where Sy± indicates the areas of the sidewalls
at y = ±3/2. Similarly, the torque due to the viscous stress
on the bottom is defined as Nvz = Re−1

∫∫
Sz

(−x∂v/∂z|z=0 +
y∂u/∂z|z=0)dxdy, where Sz denotes the area of the bot-
tom except the drain hole. The angular momentum con-
servation is written as dMz/dt = −Q2 + Npx + Npy + Nvx

+ Nvy + Nvz.
The outflow Q2 is positive having the same sign with the

induced angular momentum Mz, and hence the contribution
(−Q2) to the growth of Mz is negative as shown in Fig. 5(b).
All the torques due to the viscous stress Nvx , Nvy , and Nvz are
negative, because the viscous stress resists the vortical motion.
The only acceleration of Mz is brought by the pressure on the
sidewalls normal to the y axis Npy , though the pressure on the
sidewalls normal to the x axis Npx works against the vortical
motion. Therefore, once the vortical motion arises, the vortical
motion is accelerated autonomously by self-excitation cycles
through the pressure on the sidewalls normal to the y axis.

Next, we examine how the induction of the vortex
is achieved by the pressure on the sidewalls. It is the
most comprehensive to observe the torque density on the
sidewalls at y = ±3/2, which are caused by the pres-
sure perturbation p̃ obtained as the eigenfunction in the
linear stability analysis. We denote the pressure as p =
p + Ap̃ with the disturbance amplitude A and p̃. Then,
we obtain Npy = −2A

∫∫
Sy+

xp̃(x,3/2,z)dxdz, where the
symmetries p(x,3/2,z) = p(−x, − 3/2,z) and p(x,3/2,z) =
p(−x,3/2,z) are used. Thus, the torque Npy is determined
solely by p̃. The pressure perturbation along midheight of the

FIG. 6. (Color online) Pressure perturbation and torque density
on the sidewalls. Re = 65; Ro = ∞. (a), (c) Pressure (solid line) and
torque density (dotted line) along the center line at midheight of the
sidewalls. (b) Torque density on the sidewalls (the same on ±3/2).
(a) y = 3/2, (c) y = −3/2.

sidewalls p̃(x, ± 3/2,1/2) are shown in Figs. 6(a) and 6(c),
respectively. We observe that the pressure perturbation p̃ is
an antisymmetric function of x and that it drives the fluid
to rotate counterclockwise. We further confirm the driving
mechanism by drawing the torque density per unit area
ñpy(x, ± 3/2,1/2) [= ∓xp̃(x, ± 3/2,1/2)] along midlines
(z = 1/2) shown in Figs. 6(a) and 6(c) (dotted line). It is
evident that the torque density is positive over both sidewalls.
This is also confirmed from Fig. 6(b), where contours of the
torque density ñpy(x, ± 3/2,z) are shown. The torque density
ñpy(x, ± 3/2,z) is a symmetric function of x and positive
everywhere. We found the torque Npy has the same sign as
the angular momentum of the disturbance and its strength
|Npy | is proportional to the magnitude A of the disturbance
itself. This indicates self-excitation of the vortical motion.
This self-excitation is the key mechanism of the generation and
maintenance of the bathtub vortex. This pressure distribution
leading to self-excitation is caused by the two small vortices
adjacent to the sidewalls observed in Fig. 4.
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