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We show, by using direct numerical simulations and theory, how, by increasing the order of dissipativity («)
in equations of hydrodynamics, there is a transition from a dissipative to a conservative system. This remarkable
result, already conjectured for the asymptotic case @« — oo [U. Frisch ef al., Phys. Rev. Lett. 101, 144501
(2008)], is now shown to be true for any large, but finite, value of « greater than a crossover value ®ossover- W€
thus provide a self-consistent picture of how dissipative systems, under certain conditions, start behaving like
conservative systems and hence elucidate the subtle connection between equilibrium statistical mechanics and

out-of-equilibrium turbulent flows.
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Since the pioneering work of Hopf [1] and Lee [2] over
60 years ago, physicists have tried to understand the strongly
out-of-equilibrium, dissipative turbulent flows by using tools
of classical equilibrium statistical mechanics. What makes
such attempts difficult is that although, from a microscopic
point of view, fluid motion can be modeled via a Hamiltonian
formulation, with statistically steady states having an invari-
ant Gibbs measure, a self-consistent macroscopic approach
inevitably leads to a dissipative hydrodynamical description
with an irreversible energy loss. In the last few years,
however, significant work has gone into our understanding
of the interplay between equilibrium statistical mechanics and
turbulent flows [3-9]. In particular, thermalized solutions to
the Galerkin-truncated equations of hydrodynamics, such as
the three- (3D) or two-dimensional (2D) Euler [3,10], Gross-
Pitaevskii [11], and magnetohydrodynamic [12] equations
and the one-dimensional (1D) Burgers equation, have been
studied extensively by several authors [5,9]. Thus we can
obtain a conservative dynamical system, which obeys Gibbsian
statistical mechanics, for hydrodynamical equations of an ideal
fluid where only a finite number of Fourier modes are retained
via Galerkin truncation [3,9,13] whose existence was shown
by Cichowlas et al. [3], for the incompressible, truncated 3D
Euler equations, and the explanation of how thermalization
sets in such systems was given by Ray et al. [9] through the
phenomenon of fygers. In this Rapid Communication we now
show, analytically and numerically, that thermalization can set
in not only for inviscid equations but for viscous equations of
hydrodynamics through a resonance effect triggered by waves
generated in certain boundary layers.

Since thermalized states are discussed for finite-
dimensional, conservative systems obeying a Liouville theo-
rem, it is important to ask if there are connections between such
states and dissipative, turbulent flows described by viscous
Navier-Stokes-like equations. Frisch et al. [14] showed that
the energy spectrum bottleneck, a bump in the spectrum
between the inertial and dissipation ranges, is due to aborted
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thermalization. By using direct numerical simulations (DNSs)
of the hyperviscous Burgers equation (HBE) and eddy-
damped-quasinormal-Markovian calculations [15] of the 3D
hyperviscous Navier-Stokes equation, it was shown that if we
replace the usual viscous operator vV2u by the hyperviscous
operator —v(=V?2)?u, where v is the coefficient of viscosity, o
is the order of hyperviscosity (dissipativity), and u the velocity
field, the bottleneck becomes stronger with increasing «. The
authors observed that for extremely large values of «, the
bottleneck is due to partial thermalization [3] and that the large
o limit yields thermalized states.

The large « limit [14] is extremely important from the point
of view of our understanding of hydrodynamical equations.
However in most DNSs much smaller values of o < 16
are typically used, which, nevertheless produce significant
bottlenecks. Recently, a more complete explanation of this
effect was given in [16] where it was shown that this bottleneck
has its origins in oscillations in the velocity correlation
function. This mechanism is, apparently, very different from
the aborted thermalization for large o proposed in [14]. For
other detailed studies on the bottleneck effect, see [17-23].

Although some of the previous work on the hyperviscous
equations sought to explain bottlenecks, in this Rapid Com-
munication we answer an entirely different question, namely,
can the apparent paradox, when going from small to large
values of «, be resolved? We show how, by increasing o, a
crossover from one regime [14] to another [16] occurs and
thus resolve the paradox. This remarkable result was already
conjectured in [14] for the asymptotic case o« — oo; in this
Rapid Communication we show, by using both DNSs and
theory, that this is already the case for a large, but finite, value of
o. We thus provide a self-consistent picture of how dissipative
systems can start behaving like conservative systems and thus
elucidate the subtle connection between equilibrium statistical
mechanics and out-of-equilibrium turbulent flows.

The Burgers equation has had a long history of being a
testing ground for such ideas related to fluid dynamics [24],
and more recently the chaotic behavior in conservative systems
[9]. Therefore, we begin with the 1D, unforced, HBE:
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where u is the velocity field, x and ¢ are the space and
time variables, respectively, v is the coefficient of kinematic
hyperviscosity, and k; a reference wave number [14,16]. In
the limit v — 0, with a > 2, the solution to Eq. (1) develops
oscillations in the boundary layer around the shock. These
oscillations—which have been studied by using boundary-
layer-expansion techniques [16]—are localized in the neigh-
borhood of the shock and decay exponentially as one moves
away. The wavelength A" and the decay rate K of these
oscillations are

A= 27 0Pk 2P (2P sin[(2n, + 1B}, 2)

KM= 2/5v’ﬂk§a’3 cos[(2n, + DB7]; 3)

B = ﬁ and n, is an integer, 0 < n, < 2o — 2, whose value
is obtained via linearization and boundary-layer analysis [16].

For extremely large values of o > 500, the solution of
Eq. (1) starts thermalizing [14] and, at long times, becomes
indistinguishable from the solution v(x,?) of the associated
inviscid, conservative Galerkin-truncated Burgers equation
(GTB) [9]: % + I?(G %% = 0; the Galerkin projector I?(G is a
low-pass filter which sets to zero all Fourier components with
wave numbers k| > Kg.

At this stage, it behooves us to ask what happens for
intermediate values of «? Furthermore, is there a mechanism
which can self-consistently describe the transition from a
turbulence regime to a thermalized state in equations of
hydrodynamics?

The onset of thermalization, in the finite-dimensional Euler
or the inviscid Burgers equation, is due to the birth of localized
oscillatory structures called tygers. These are caused [9] by the
motion of fluid particles interacting resonantly with the waves
generated, because of truncation, by small-scale features, such
as shocks. The special points x5 in space where tygers appear
in the case of the GTB, are points which have the same velocity
as the shock(s) and a positive local gradient. Is there another
way, apart from truncation waves in inviscid systems, for waves
to be generated at the stagnation points in a fluid for similar
resonant interactions leading to an onset of thermalization?
We show that for « greater than a crossover value ®crossover»
a significant fraction of the oscillations, governed by Eqs. (2)
and (3), which start from the boundary layer near the shock,
must reach x, and trigger tygerlike structures leading to
thermalization.

In order to answer these questions we first perform
pseudospectral DNSs of Eq. (1) on a 27 periodic line, with
a second-order Runge-Kutta scheme for time integration. We
use a time step 6t = 10*, the number of collocation points
N =16384,v = 1072, and ks = 100. Crucially, we use 2 <
o < 500 to study this transition from dissipative dynamics to
conservative, thermalized states. Our initial condition ug(x) =
sin(x 4+ 1.5) leads to x;, = 2t — 1.5 &~ 4.8 and, in the absence
of viscosity, shock formation at time ¢, = 1.0.

We begin our simulations from o = 2 and observe [16] that
with increasing o, oscillations in a thin layer around the shock
become pronounced. However, near xg, no oscillations are seen
for @ < 40 (Fig. 1, inset). However, as « increases, finite, but
small, oscillations start to reach x; from the boundary layer
around the shock (Fig. 1). Furthermore, for values of « 2> 80,
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FIG. 1. (Color online) Solutions of the HBE, zoomed around x;,
for various values of « (see legend) at t = 1.5 showing oscillations at
X with increasing amplitude as « increases (see text). Inset: Solution
of the HBE with no oscillations at x, for small « = 20.

a distinct bulge, reminiscent of the tygers found in solutions
of the GTB [9], is clearly seen at x,. This, then, is the first
evidence of what triggers thermalization in a dissipative system
and whose dramatic consequences were studied in Ref. [14]
for the special case of o« — o0.

How similar is this bulge at x; for ¢ 2 80, to that seen at
t, for the Hamiltonian system of the GTB? In order to answer
this question, it is useful to examine the bulge, via ugpiracted =
u — U, where U is the (nonoscillatory) solution of the inviscid
Burgers equation. In Fig. 2 we show this subtracted bulge
for « = 100 and find that this bulge has the same symmetric
shape as tygers [9]. The wavelength of these oscillations,
as is expected from a resonance build-up argument, is the
same as the wavelength of the oscillations emanating from
the boundary layer (2). A significant difference between the
bulge observed for moderate values of « (Figs. 2 and 1), and
that of a tyger [9], is its large width and the small number of
oscillations inside it. In the truncated system, the bulge width
is proportional to K '3 and the wavelength of the oscillations
proportional to 1/ K; this yields the number of oscillations in

the bulge to be proportional to K é/ ? Inthe present problem, the
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FIG. 2. (Color online) The solution of the HBE for o = 100,
with the solution for the ordinary Burgers subtracted out, zoomed
around x;. A clear symmetric bulge, similar to those seen in inviscid,
conservative truncated systems [9], is seen.
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width of the bulge is explained as follows: At time ¢, such that
T =1t —t, ~ O(1) (when the bulge is still symmetric around
Xs), resonant interactions are confined to particles such that
TAU = T|U — Ugnock] S Ag‘, where ugpock 1 the velocity of the
shock. Since, T ~ 1, this leads to Au ~ A‘Ofl. Given that around
xs the velocity is proportional to x — x;, this yields a bulge
width ~ A" with a few oscillations inside.

In the case of the GTB, the early bulge become asymmetric
in time, leading to an eventual collapse and thermalized
states. In the present dissipative problem, although a bulge is
guaranteed to form at xg, its eventual dynamics—and indeed
whether the system actually thermalizes—depends on the
interplay between the local dissipation around x;, the fraction
of oscillations reaching xs from the boundary layer, and the
effect of the nonlinearity. For smaller values of «, when the
dissipation is strong and the amplitude of oscillations is small,
this bulge at large times remains stationary in time. However,
as o increases, the amplitude of oscillations reaching the
stagnation point is significant: Consequently for values of «
higher than a threshold acrossover, the local dissipation can no
longer compensate for the resonant pileup at x, leading to the
emergence of thermalized states in a manner exactly similar to
that of the GTB. Heuristically, an estimate of t/¢rossover Can be
obtained as follows: The fraction of amplitude at the boundary
layer that reaches x, is given by e Kd™  We assume that a
significant level of oscillations is present at x; when at least
a fraction 1/e of the oscillations produced near the shock
reaches x, i.e., K7 = 1. For moderately large values of «,
numerical simulations demand k; >> 1 and hence values of v
such that v™# — 1. Thus (3) yields dcrossover = 5(2 + ka7 ).
Although this result is obtained heuristically it predicts that
for hyperviscous systems a finite crossover value of « exists
which leads to a transition from conservative to dissipative
dynamics.

We now examine the accuracy of our estimate of o¢rossover
through detailed simulations with increasing values of o and
for k; = 100. As we increase «, our simulations show that the
bulge at the x; reaches a stationary state without collapsing.
However at around @ 2 220 we observe that the bulge which
forms, due to resonance, collapses in a finite time and then
the system thermalizes. This is best seen in Fig. 3 where we
show the solution of the HBE for o = 250 attime r = 1.5. We
note that, just as in the GTB [9], the bulge at the resonance
point becomes very large, asymmetric, and nonmonochromatic
with secondary structures on either side of it. This is exactly
similar to the onset of thermalization in conservative systems
[9]. Indeed at larger times the solution completely thermalizes
(inset of Fig. 3, at r = 5.0). Our simulations illustrate quite
clearly that (a) the heuristic estimate of o/¢rossover 18 correct (by
using the value of k; = 100, we obtain a¢rssover =~ 230 which
is consistent with the results from the numerical simulations)
and, more importantly, (b) dissipative systems, such as the
HBE, can thermalize at finite values of the order of dissipativity
in a manner similar to that of conserved, truncated systems.
(We have performed several other simulations with different
values of v and k; and found our results consistent.) The
fact that dissipative systems can start to mimic a truncated,
Hamiltonian system through the tuning of a single parameter
() is a striking result and resolves a long-standing paradox in
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FIG. 3. (Color online) Solution of the HBE, for « = 250 at r =
1.5, showing the presence of a tyger [9] at x,. Inset: u(x) for o« = 250
at a later time (r = 5.0) confirming that for & 2 otcossover the system
eventually thermalizes.

the area of turbulence and statistical mechanics. It is not hard to
conjecture that this crossover should be possible for « — oo
[14]; however, remarkably, we now show that the onset to
thermalization actually occurs at a finite value o/¢rossover-

Let us finally address the question of whether this phe-
nomenon can be captured within a systematic theoretical
framework. Rewriting Eq. (1) in terms of the solution U of
the inviscid Burgers equation and the discrepancy & = u — U,

. 2 .
and using % + %% = 0, we obtain

1 92
k3 9x2

on 9 . 19i?
— 4+ —Ui)+ z—=—v

at  0x 2 0x ) @+0). @

At times close to #,, and away from the shock, we can linearize
(1) since i/ U <« 1. Next, we note that U is linear in x away
from the shock which implies that higher derivatives of U
vanish around xs. By using these two approximations, we

obtain
il d 1 32\
» +3x(Uu)— v( 2 8x2> ii. %)

We first validate our linear theory by numerically solv-
ing (5) for &# with a further approximation that U is the
solution at ¢, of the inviscid Burgers equation with the
initial condition sin(x + 1.5). We choose two kinds of initial
conditions iy = i(t = 0): (I1) iy is alow amplitude sinusoidal
function with a wave number equal to 10; and (I2) @y =
e~ Ka'lx—xsmoul gin W, where Xgock is the position of the
shock. Our numerical integration of Eq. (5) for both initial
conditions yield similar results as illustrated in Fig. 4 where
we present a representative plot of i, solved for Eq. (5), at
time ¢ = 2 (blue curve) and t = 2.5 (red curve) for « = 100
by using I2; the inset shows the solution of Eq. (5) for I1 at
time # = 10.0. A symmetric bulge at the stagnation point, just
like in the solutions Eq. (1) for large «, is clearly seen. The
essential features of the bulge are reproduced by our linear
model. Having established the validity of the linear model to
predict the location and the nature of the bulge, we can now
solve Eq. (5) by various standard analytical means such as by
using the method of separation of variables or through a Fourier
transform of Eq. (5), to obtain solutions (up to constants) which
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FIG. 4. (Color online) The solution i of the linearized equation
(5) with initial conditions (I2) at time ¢t = 2.0 (blue or darker curve)
and ¢ = 2.5 (red or lighter curve) for « = 100 (see text). Inset: i with
initial conditions (I1) at time ¢t = 10.0.

show the existence of symmetric bulges at x; which decay
on either side of the stagnation point. We note, in passing,
that although the linear model predicts the early stages of the
formation of the bulge at x,, our simulations of the linear
model, for various large values of «, not surprisingly, fails to
capture the collapse of the bulge and eventual thermalization
[9]. A plausible conjecture for this is that the nonlinearity,
however weak, is responsible for the stretching of the bulge
and generating an associated Reynolds stress which makes the
symmetric bulge collapse and trigger thermalization.
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For the past many decades, a vexing and open question
in the areas of turbulence and statistical mechanics is, how
meaningful are thermalized states in such problems? In this
Rapid Communication we answer this question via detailed
numerical simulations and linear models. Our results show
that just as in the case of Hamiltonian systems of the Galerkin-
truncated equation, where monochromatic truncation waves
can reach x;, leading to an accumulation, via resonance,
and eventual thermalization, similarly, for dissipative systems
such as the HBE, for moderately large o, monochromatic
boundary-layer oscillations reach and accumulate, via the
same resonant effect, at x;. These bulges are the seeds of
an eventual thermalized regime and for & 2 Qcrossover the dis-
sipative system does thermalize at large times. Our work thus
connects the apparently disconnected worlds of conservative
and dissipative systems. Although we have confined ourselves
to the one-dimensional Burgers equation, the central result
obtained in this Rapid Communication should be valid in the
multidimensional Navier-Stokes equation for the reasons out-
lined in Refs. [9,14,16]. A detailed study of this is beyond the
scope of this Rapid Communication and is left for the future.
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